> MATH 136 - Calculus 2
> Practice Day on Properties of $\int_{a}^{b} f(x) d x$
> January 27, 2020

Background

We have now introduced the definite integral $\int_{a}^{b} f(x) d x$ and discussed:

- the interpretation of of this number as a signed area,
- the interval additivity property: If f is integrable on $[a, b]$ and $a \leq c \leq b$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

- In one video for today, we also saw the comparison property: If f is integrable on $[a, b]$ and $m \leq f(x) \leq M$ for all x in $[a, b]$, then

$$
m \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq M \cdot(b-a)
$$

Questions Let $f(x)$ be the function on the interval $[0,6]$ plotted on the back. Thinking of the definite integral as signed area, answer these questions.
(1) What are $\int_{0}^{4} f(x) d x, \int_{4}^{6} f(x) d x, \int_{0}^{6} f(x) d x$? How can you get the last one using the first two? $\int_{0}^{6} f(x) d x=\int_{0}^{4} f(x) d x+\int_{4}^{6} f(x) d x$.
(2) What is $\int_{5}^{6} f(x) d x$? How can you tell?
(3) Let m be the minimum value of $f(x)$ on $[3,5]$ and let M be the maximum value of $f(x)$ on $[3,5]$ (use the information from the graph). Find m, M and verify that

$$
m \cdot(5-3) \leq \int_{3}^{5} f(x) d x \leq M \cdot(5-3)
$$

Figure 1: The region

