MATH 136 - Calculus 2
Practice Day on the L_{N}, R_{N}, M_{N} Riemann Sums
January 24, 2020

Background

We have now introduced the L_{N}, R_{N}, M_{N} sum approximations to the area between the graph $y=f(x)$ and the x-axis, for x in $[a, b]$. All three sums are based on a partition, or subdividision, of the interval $[a, b]$ into some given number N of smaller intervals of width $\Delta x=\frac{b-a}{N}$. The endpoints of the smaller intervals are then given by

$$
x_{j}=a+j \Delta x, \quad \text { for } \quad j=0,1,2, \ldots, N
$$

The midpoint of the j th subinterval is

$$
m_{j}=\frac{x_{j-1}+x_{j}}{2}
$$

Then we have

- using the left endpoints: $L_{N}=\sum_{j=1}^{N} f\left(x_{j-1}\right) \Delta x$
- using the right endpoints: $R_{N}=\sum_{j=1}^{N} f\left(x_{j}\right) \Delta x$
- using the midpoints: $M_{N}=\sum_{j=1}^{N} f\left(m_{j}\right) \Delta x=\sum_{j=1}^{N} f\left(\frac{x_{j-1}+x_{j}}{2}\right) \Delta x$.

These are all special cases of the more general Riemann sums, named for the German Georg Friedrich Bernhard Riemann (1826-1866), who was one of the most celebrated and original mathematicians of the 19th century.

Questions

(A) Let $f(x)=x^{2}+3 x+1$ on the interval $[a, b]=[2,4]$.
(1) Take $N=3$ and compute the L_{3}, R_{3}, M_{3} sums for this function.
(2) With the same function and the same interval, now take $N=6$ and compute the L_{6}, R_{6}, M_{6} sums for this function.
(3) Which is closer to the true area under the graph $y=x^{2}+3 x+1$ on $[2,4], L_{3}$ or L_{6} ? Explain by drawing the picture of the graph and the approximating rectangles.
(4) Similarly, which is closer to the true area under the graph, R_{3} or R_{6} ?
(5) Of the six numbers you computed in parts (1) and (2), which do you think is the closest to the true area under the graph? Explain.
(B) Repeat parts (1) and (2) of question A for $f(x)=\sin (x)$ on the interval $[a, b]=[0, \pi]$. Explain why the answers to parts (3), (4), and (5) are not as easy to see in this case(!)

