Mathematics 136 - Calculus 2
More on Distribution Functions (pdfs)
March 17, 2020

Background

A function $f(x)$ that is non-negative for all x and that satisfies the condition that the total area between the graph $y=f(x)$ and the x-axis is one, i.e.

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) d x=1 \tag{1}
\end{equation*}
$$

is called a probability density function (pdf). A random variable X is said to have pdf $f(x)$ (or have a distribution described by $f(x)$) if the probability that $a \leq X \leq b$ is given by

$$
\begin{equation*}
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x \tag{2}
\end{equation*}
$$

for all a, b.
The mean, or expected value of a random variable X with distribution described by the pdf $f(x)$ is computed by

$$
\begin{equation*}
E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x \tag{3}
\end{equation*}
$$

provided that this improper integral exists. This can be thought of as something like the weighted average of x, with weights given by the pdf $f(x)$.

Note that the integrals in (1), (3) are improper integrals, and the integral in (2) can be improper as well. This means that we will need to apply the techniques we learned for improper integrals to compute them if we need to.

Questions

A) Find the constant c so that the function

$$
f(x)= \begin{cases}c e^{-3 x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

is a pdf. Use your value of c to determine $P(1<X<3)$ if X is a random variable with a distribution described by this pdf. (These are
called exponential pdfs. They are used to model the distributions of random quantities like the lifetime of a randomly selected electronic component of a particular type, or the time between random incoming calls to customer service call centers, etc.)
B) Find the expected value of X from question A . What is the probability that $X>E(X)$? What is the value x_{m} where $P\left(X>x_{m}\right)=\frac{1}{2}$ (the median)? How are the mean and median related in this example?
C) Find the c so that $f(x)=\frac{c}{x^{2}+1}$ (domain all real numbers) is a pdf.
D) Does the expected value exist for a random variable with pdf as in part C? Why or why not? Does the median exist?

