> MATH $136-$ Calculus 2
> Practice on Separable Differential Equations and Applications March 20, 2018

Background

A differential equation is a relation between derivative(s) of an unknown function and other known functions. A differential equation often serves as a mathematical model for how some quantity is evolving with respect to time. For example, Newton's Law of Cooling (and Heating) says: if an object is placed into a surrounding medium held at constant temperature A, then the object's temperature changes at a rate proportional to the difference between its temperature and the ambient temperature. If T is the object's temperature, this statement is equivalent to the differential equation

$$
\frac{d T}{d t}=k(T-A)
$$

for some constant k.
Any differential equation of the form

$$
\frac{d y}{d x}=g(y) \cdot h(x)
$$

is called a "separable" equation and can be solved by

- separating the variables to the form

$$
\frac{d y}{g(y)}=h(x) d x
$$

- integrating on both sides (on the left, treat the variable of integration as y, not x; this can be justified by the substitution method for integration):

$$
\int \frac{d y}{g(y)}=\int h(x) d x
$$

- solving the resulting equation for y
(A) To practice, solve the following separable equations:
(1)

$$
\frac{d y}{d x}=\frac{y}{x^{2}+1}
$$

Solution: Separated:

$$
\frac{d y}{y}=\frac{1}{x^{2}+1} d x
$$

We integrate both sides:

$$
\int \frac{d y}{y}=\int \frac{1}{x^{2}+1} d x \Rightarrow \ln |y|=\tan ^{-1}(x)+C
$$

To solve for y, we exponentiate, then take both choices of sign:

$$
y= \pm e^{C} e^{\tan ^{-1}(x)}=k e^{\tan ^{-1}(x)}
$$

where k is a positive or negative constant: $k= \pm e^{C}$.
(2)

$$
\frac{d y}{d x}=x^{3} y^{2}+y^{2}
$$

(Hint: factor on the right, then you can separate variables)
Solution: Factored, $\frac{d y}{d x}=y^{2}\left(x^{3}+1\right)$, so

$$
\int \frac{d y}{y^{2}}=\int x^{3}+1 d x
$$

and hence

$$
\frac{-1}{y}=\frac{x^{4}}{4}+x+C
$$

Then solving for y,

$$
y=\frac{-1}{x^{4} / 4+x+C}
$$

(B) Solve the following Newton's Law of Cooling problem: A hot cup of coffee is poured at time $t=0$ with the temperature being $80^{\circ} \mathrm{C}$. The cup is placed on a desk in a room with temperature maintained at 23° C. Five minutes later, the coffee has cooled to $70^{\circ} \mathrm{C}$. At what time will the coffee have cooled down to $40^{\circ} \mathrm{F}$?

Solution: Here the ambient temperature is $A=23$ degrees C. From the explanation above, we know the temperature T of the cup of coffee satisfies

$$
\frac{d T}{d t}=k(T-23)
$$

This separable:

$$
\int \frac{d T}{T-23}=\int k d t
$$

so

$$
\ln |T-23|=k t+C
$$

and

$$
T=23+D e^{k t}
$$

for some positive or negative constant $D= \pm e^{C}$. When $t=0$ we know $T=80$, so $80=23+D e^{k \cdot 0}=23+D$. Hence $D=57$. Then when $t=5$, we have $70=23+57 e^{5 k}$, so $e^{5 k}=\frac{47}{57}$ and $k=\frac{\ln (47 / 57)}{5} \doteq-.0386$. Finally we need to solve the equation

$$
40=23+57 e^{(-.0386) t}
$$

for t. The solution is

$$
t=\frac{\ln (17 / 57)}{-.0386} \doteq 31.4 \text { minutes }
$$

