
College of the Holy Cross, Fall 2016
Math 136, section 2 – Solutions for Midterm Exam 2 Retest

Tuesday, November 8

I.

A. (15) Integrate by parts:

∫
tan−1(x) dx. (Note there’s really only one choice for u and

hence dv.)

Solution: The only possible choice that leads to anything of value is u = tan−1(x) and
dv = dx, so du = 1

x2+1
dx and v = x. Then∫
tan−1(x) dx = x tan−1(x)−

∫
x

x2 + 1
dx.

This remaining integral can be done via the substitution w = x2 + 1, which takes it to
−1

2

∫
dw
w

= −1
2

ln |x2 + 1|. The full answer is

x tan−1(x)− 1

2
ln |x2 + 1|+ C.

B. (15) Integrate using appropriate trigonometric identities:

∫
sin3(6x) cos4(6x) dx.

Solution: With the odd power of sine, we split off one factor of sin(6x) and use
sin2(6x) = 1− cos2(6x) to convert the rest:∫

sin3(6x) cos4(6x) dx =

∫
sin(6x)(1− cos2(6x)) cos4(6x) dx

=

∫
cos4(6x) sin(6x) dx−

∫
cos6(6x) sin(6x) dx (u = cos(6x))

= −1

6

∫
u4 du+

1

6

∫
u6 du

= − 1

30
u5 +

1

42
u7 + C

= − 1

30
cos5(6x) +

1

42
cos7(6x) + C.

C. (20) Integrate with a trigonometric substitution:

∫ √
25− x2 dx. (Partial credit points

will be given as follows: 5 points for the substitution equation x = . . ., and the
computation of dx, 5 points for the conversion to the trigonometric integral, 5 points
for the integration of the trigonometric integral, 5 points for conversion back to the
equivalent function of x.)
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Solution: Let x = 5 sin(θ), then dx = 5 cos(θ) dθ. The integral substitutes to∫ √
25− 25 sin2(θ) · 5 cos(θ) dθ = 25

∫
cos2(θ) dθ.

For this we use the identity cos2(θ) = 1
2
(1 + cos(2θ)), so the integral becomes

25

∫
1

2
(1 + cos(2θ)) dθ =

25θ

2
+

25

4
sin(2θ) + C,

which can also be rewritten using the double angle formula for the sine:

25θ

2
+

25

2
sin(θ) cos(θ) + C.

Converting back to functions of x, we have x
5

= sin(θ), so θ = sin−1
(
x
5

)
and cos(θ) =

√
25−x2

5
. So after simplifying we get

25

2
sin−1

(x
5

)
+
x

2

√
25− x2 + C.

D. (5) Derive the reduction formula (assume m ≥ 2 – this one is not done by parts):∫
tanm(x) dx =

tanm−1(x)

m− 1
−
∫

tanm−2(x) dx.

Solution: (This same problem appeared on Problem Set 5 part B.) Break off 2 powers
of tan(x) and convert that to sec2(x)− 1:∫

tanm(x) dx =

∫
tanm−2(x)(sec2(x)−1) dx =

∫
tanm−2(x) sec2(x) dx−

∫
tanm−2(x) dx.

The first integral is
∫
um−2du for u = tan(x) so we get

=
tanm−1(x)

m− 1
−
∫

tanm−2(x) dx,

which is what we wanted to show.

E. (5) Use the formula from part D repeatedly to integrate

∫
tan4(x) dx

Solution: Applying the formula from part D twice, with m = 4, then m = 2, we get:∫
tan4(x) dx =

tan3(x)

3
−
∫

tan2(x) dx

=
tan3(x)

3
− tan(x) +

∫
1 dx

=
tan3(x)

3
− tan(x) + x+ C
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II. All parts of this question refer to the region R bounded by y = xe−x (in red), the x-axis,
x = 0 and x = 2.

A. (10) Set up and compute integral(s) to find the area of R.

Solution: The area is

A =

∫ 2

0

xe−x dx.

Integrating by parts (u = x, dv = e−x) we get

−xe−x − e−x
∣∣2
0

= 1− 3e−2 .
= .594

B. (10) The region R is rotated about the x-axis to generate a solid. Set up and compute
an integral to find its volume.

Solution: The volume has disk cross-sections so

V =

∫ 2

0

π(xe−x)2 dx = π

∫ 2

0

x2e−2x dx

So we integrate by parts again (twice this time with u = x2, then u = x). The final
answer is

V =
π

4
(1− 13e−4).

C. (10) A solid has the portion of the region R as base. The cross-sections by planes
perpendicular to the x-axis are equilateral triangles extending from the x-axis up to
the point on the graph y = xe−x. Set up an integral to find the volume. You do not
need to compute this one, but if you do correctly, I will give 10 points Extra Credit.

Solution: The area of an equilateral triangle of side s is s2
√

3
4

, so the integral is∫ 2

0

√
3

4
(xe−x)2 dx.

If you’re clever, you’ll note that this is exactly the same integral as in part C, up to
the constant factor

√
3

4π
. So this volume is equal to

√
3

16
(1− 13e−4)

with no extra computation(!)
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III. (10) The area of a region in the plane is equally distributed about a point called its
centroid. For a region R bounded by y = f(x) ≥ 0, the x-axis, x = a and x = b, take it as
known that the y-coordinate of the centroid is computed by this ratio of two integrals:

y =

∫ b
a

1
2
(f(x))2 dx∫ b
a
f(x) dx

.

Explain how this result shows that The volume of the solid generated by rotating R about
the x-axis is equal to the product of the area of R and the distance traveled by the centroid
as R moves around the x-axis.1

Solution: The centroid travels around a circle of radius y, so the distance it travels is the
circumference, or 2πy. The area of the region is

∫ b
a
f(x) dx. Therefore the product of the

distance traveled by the centroid and the area is:

2πy ·
∫ b

a

f(x) dx

We can substitute from the given formula for y to get

2πy ·
∫ b

a

f(x) dx = 2π

∫ b
a

1
2
(f(x))2 dx∫ b
a
f(x) dx

·
∫ b

a

f(x) dx =

∫ b

a

π(f(x))2 dx.

We know this is the volume of the solid of revolution by Cavalieri’s Principle.

1This is a famous result of the ancient Greek mathematician Pappus of Alexandria who lived ca. 290 -
350 CE. He proved it without integral calculus, which had not yet been invented!
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