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Figure: Julie Kulevich – Second place finisher in the HC Iron Chef
competition (Worcester T & G, 4/16/08)
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The Planar n-Body Problem

mi = mass of the i-th body
qi = position of the i-th body in R2

pi = mi q̇i (momentum)
rij = ||qi − qj || (mutual distance)

q = (q1, . . . , qn) ∈ R2n

p = (p1, . . . , pn) ∈ R2n

M = diag {m1, m1, m2, m2, . . . , mn, mn}

Newtonian potential function:

U(q) =
n∑

i<j

mimj

rij
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Equations of motion:

mi q̈i =
∂U
∂qi

, i ∈ {1, 2, . . . n}

=
n∑

j 6=i

mimj(qj − qi)

r3
ij

Hamiltonian system:

q̇ = M−1p =
∂H
∂p

ṗ = ∇U(q) = −∂H
∂q

H(q, p) = K (p)− U(q)

K (p) =
n∑

i=1

||pi ||2

2mi
Kinetic Energy
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Equilibria?

For (q, 0) to be an equilibrium point, ∇U(q) = 0.

U(q) =
n∑

i<j

mimj

rij

But, U is a homogeneous potential of degree -1

∇U(q) · q = −U(q) < 0

Therefore, there are no equilibrium points.
Physically, this is to be expected.
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Periodic Solutions

Complexify and guess a solution of the form

q(t) = φ(t) x with φ(t) : R 7→ C, x ∈ Cn

This leads to
φ̈ = −µ|φ|

φ3 2d Kepler problem

and
∇U(x) + µ Mx = 0. (1)

A vector x satisfying equation (1) is called a planar central
configuration (c.c.). Attaching a particular solution of the Kepler
problem to each body in a planar c.c. yields a solution to the full
n-body problem.

Rigid rotations (same shape and size)
Elliptical periodic orbits (same shape, oscillating size)
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Definition
A relative equilibrium for the n-body problem is a solution of the form

q(t) = R(ωt)x

(a rigid rotation) where

R(t) =

[
cos t − sin t
sin t cos t

]
and

R(t)q = (R(t)q1, R(t)q2, . . . , R(t)qn).

In order to have a relative equilibrium:
x must be a planar cc, that is, ∇U(x) + µ Mx = 0

ω2 = µ = U(x)P
mi ||xi ||2

(rotation speed determined by x)
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3-Body Collinear Configuration (Euler 1767)
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Equilateral Triangle (Lagrange 1772)
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Regular n-gon (equal mass required for n ≥ 4)
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1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize)
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Degeneracies∑
j 6=i

mimj(xj − xi)

r3
ij

+ ω2 mixi = 0, i = {1, 2, . . . , n} (2)

x = (x1, x2, . . . , xn) is a relative equilibrium implies that

cx = (cx1, cx2, . . . , cxn) and

Rx = (Rx1, Rx2, . . . , Rxn)

are relative equilibria where c is a constant and R ∈ SO(2).

The moment of inertia I(x) is defined as

I(x) =
1
2

n∑
i=1

mi‖xi‖2

Equation (2) for a relative equilibrium can be viewed as a Lagrange
multiplier problem: (I(x) = k )

∇U(x) + ω2∇I(x) = 0.
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A Topological Viewpoint

Let S be the ellipsoid defined by 2I = 1 (fixes scaling). Define an
equivalence relation via x ∼ Rx, R ∈ SO(2) (identify rotationally
equivalent relative equilibria).

Critical points of U([x]) on S/ ∼ are relative equilibria.

Smale/Wintner/Chazy Question: Is the number of relative equilibria
equivalence classes finite? (Smale’s 6th problem for the 21st century)

n = 3 Euler, Lagrange
n!
2 Collinear CC’s Moulton
4 Equal masses Albouy (1995)
n = 4 Hampton and Moeckel (2006) (BKK Theory)
n ≥ 5 Open problem!
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Another Finiteness Question

Saari’s Conjecture (1970) Every solution of the Newtonian n-body
problem that has a constant moment of inertia (constant size) is a
relative equilibrium (rigid rotation).

Results on Saari’s Conjecture

Newtonian 3-body problem, equal mass case: Saari’s conjecture
is true (McCord 2004)
Newtonian 3-body problem, any choice of masses, any dimension:
Saari’s conjecture is true (Moeckel 2005)
Mutual distance potentials, collinear case: Generalized Saari’s
conjecture is true (Diacu, Pérez-Chavela, Santoprete 2004)
5-body problem for certain potentials, and a negative mass:
Generalized Saari’s conjecture is false (GR 2006)
Inverse Square potential: Generalized Saari’s conjecture is
decidedly false
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Mutual Distances Make Great Coordinates

Recall:

U(q) =
n∑

i<j

mimj

rij

Alternative formula for I in terms of mutual distances: (center of mass
at origin)

I(q) =
1

2M̃

n∑
i<j

mimj r2
ij

Fact: Constant inertia ⇒ constant potential ( Ï = U + 2h)
⇒ constant kinetic energy (h = K − U)

Key Observation: Both the Smale/Wintner/Chazy question and Saari’s
conjecture can be formulated using the mutual distances as
coordinates. These open questions can be reduced to showing a
system of polynomial equations has a finite number of solutions.
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The Planar, Circular, Restricted 3-Body Problem (PCR3BP)

q1 = (1− µ, 0), m1 = µ and q2 = (−µ, 0), m2 = 1− µ (0 < µ ≤ 1/2)

Let a =
√

(x − 1 + µ)2 + y2, b =
√

(x + µ)2 + y2.

Equations of motion:

ẋ = u
ẏ = v
u̇ = Vx + 2v
v̇ = Vy − 2u

where
V (x , y) =

1
2
(x2 + y2) +

µ

a
+

1− µ

b
+

1
2
µ(1− µ)

is the amended potential.

Jacobi integral: E = 1
2(u2 + v2)− V =⇒ V (x , y) ≥ −E
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Figure: The five libration points (Lagrange points) in the Sun-Earth system
(not drawn to scale).
http://map.gsfc.nasa.gov/mission/observatory_l2.html

Roberts, Kulevich, Smith (Holy Cross) The PCR4BP HC Research Seminar 17 / 47



Figure: The level curves for the amended potential and the libration points.
http://map.gsfc.nasa.gov/mission/observatory_l2.html
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Figure: Level curves of V for µ = 1/2 (equal mass) in the PCR3BP.
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Figure: Level curves of V for µ = 0.1 in the PCR3BP.
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Saari’s Conjecture Amended to the PCR3BP

Recall: In the full n-body problem, I constant implies both the potential
and kinetic energy are also constant.

Theorem
(GR, Melanson 2007) The only solutions to the planar, circular,
restricted three-body problem with a constant value of the amended
potential V are equilibria (libration points).

Corollary
(GR, Melanson 2007) It is not possible for a solution to the PCR3BP to
travel with constant speed without being fixed at one of the libration
points.

Proof of Corollary: Due to the Jacobi integral, constant speed implies
constant potential V . �
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The Equilateral Triangle Solution of Lagrange

Lagrange (1772): Place three bodies, of any masses, at the vertices
of an equilateral triangle and apply the appropriate velocities to obtain
a relative equilibrium. Each body traces out a circle centered at the
center of mass of the triangle. The shape and size of the configuration
is preserved during the motion.

Figure: Lagrange’s equilateral triangle solution in the three-body problem.
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The Planar, Circular, Restricted Four-Body Problem (PCR4BP)

Insert a fourth infinitesimal mass that has no influence on the circular
orbits of the three larger masses ("primaries"). Change to a rotating
coordinate system in a frame where the primaries are fixed. Let (x , y)
be coordinates for the infinitesimal mass in this new frame.

Equations of motion: (assume m1 + m2 + m3 = 1)

ẍ = 2ẏ + Vx

ÿ = −2ẋ + Vy

where

V (x , y) =
1
2

(
(x − cx)2 + (y − cy )2

)
+

m1

a
+

m2

b
+

m3

c

is the amended potential, (cx , cy ) is the center of mass of the
primaries and a, b, c represent the respective distances of the
infinitesimal mass from each of the three primaries.
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Figure: Setup for the planar, circular, restricted four-body problem.
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Two Finiteness Questions

V (x , y) =
1
2

(
(x − cx)2 + (y − cy )2

)
+

m1

a
+

m2

b
+

m3

c

ẍ = 2ẏ + Vx

ÿ = −2ẋ + Vy

Let ẋ = u, ẏ = v . Integral of motion:

E =
1
2
(u2 + v2)− V (Jacobi)

Note: Critical points of V are equilibrium points of the PCR4BP
("parking spaces").

1 How do the location and number of critical points change as the
masses of the primaries are varied? Are there a finite number of
critical points for all choices of m1, m2 and m3?

2 Is it possible for a solution to the above equations to travel along a
level curve of V? (Saari’s Conjecture)
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Figure: The amended potential V for the case of three equal masses.
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Figure: Level curves of the amended potential V for the case of three equal
masses. There are 10 critical points — 6 saddles and 4 minima.
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Using Distance Coordinates

Treat the distances a, b, c as variables:

x =

√
3

6

(
b2 + c2 − 2a2

)
y =

1
2

(
c2 − b2

)
subject to the constraint

F = a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) = −1

(Cayley-Menger Determinant). In these new coordinates, the amended

potential function becomes

V =
1
2

(
m1a2 + m2b2 + m3c2

)
+

m1

a
+

m2

b
+

m3

c
+ constant.
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Equations for the Critical Points

m1(1−
1
a3 ) + 2λ(2a2 − b2 − c2 − 1) = 0 (3)

m2(1−
1
b3 ) + 2λ(2b2 − a2 − c2 − 1) = 0 (4)

m3(1−
1
c3 ) + 2λ(2c2 − a2 − b2 − 1) = 0 (5)

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) = −1

Summing equations (1), (2) and (3) yields

λ =
1
6

(
1− m1

a3 −
m2

b3 −
m3

c3

)
.
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Eliminating λ

2a5b3c3 − 2m3a5b3 − 2m2a5c3 − a3b5c3 + m3a3b5 − a3b3c5

+(3m1 − 1)a3b3c3 + m3a3b3c2 + m3a3b3 + m2a3b2c3 + m2a3c5

+m2a3c3 − 2m1a2b3c3 + m1b5c3 + m1b3c5 − 2m1b3c3 = 0

2a3b5c3 − 2m3a3b5 − 2m1b5c3 − a5b3c3 + m3a5b3 − a3b3c5

+(3m2 − 1)a3b3c3 + m3a3b3c2 + m3a3b3 + m1a2b3c3 + m1b3c5

+m1b3c3 − 2m2a3b2c3 + m2a5c3 + m2a3c5 − 2m2a3c3 = 0

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) + 1 = 0

Symmetry: a ↔ b, m1 ↔ m2
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Equal Mass Case

Theorem
(GR, JK, CS 2007) The number of critical points in the PCR4BP for
equal masses is exactly 10.

Proof: Due to the equal masses, it is possible to show that all critical
points must lie on an altitude of the equilateral triangle (a = b, a = c or
b = c). This reduces the problem down to two equations in two
unknowns. Using Gröbner bases (or resultants), we obtain a 22
degree polynomial that contains 5 positive real roots. Of these 5, three
correspond to physically relevant solutions of the original equations.
By symmetry, this gives a total of 9 critical points. The 10th is found at
the origin, where all three altitudes intersect.

Remark: This result is subsumed by numerical and analytic work of
Pedersen (1944), Simó (1978), Arenstorf (1982) and Leandro (2006).

Roberts, Kulevich, Smith (Holy Cross) The PCR4BP HC Research Seminar 31 / 47



Figure: The 10 equilibria for the PCR4BP in the case of equal masses. Note
the symmetry with respect to the equilateral triangle of the primaries.
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Figure: Equilibria with two equal masses just before a bifurcation.
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Figure: Equilibria with two equal masses just after a bifurcation.

Roberts, Kulevich, Smith (Holy Cross) The PCR4BP HC Research Seminar 34 / 47



Theorem
(GR, JK, CS 2007) The number of critical points in the PCR4BP is
finite for any choice of masses. In particular, there are less than 268
critical points.

Remark: Our result showing finiteness appears to be new. The upper
bound of 268 is not optimal as the work of Pedersen (1944), Simó
(1978), Arenstorf (1982) and Leandro (2006) suggests the actual
number varies between 8 and 10. It is a surprisingly complicated
problem to study the bifurcation curve in the mass parameter space for
which there are precisely 9 critical points.
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BKK Theory

Bernstein, D. N., The Number of Roots of a System of Equations,
Functional Analysis and its Applications, 9, no. 3, 183-185, 1975.

Given f ∈ C[z1, . . . zn], f =
∑

ckzk , k = (k1, k2, . . . , kn), the Newton
polytope of f , denoted N(f ), is the convex hull in Rn of the set of all
exponent vectors occurring for f .

Ex. The constraint equation:

a4 + b4 + c4 − (a2b2 + a2c2 + b2c2)− (a2 + b2 + c2) + 1 = 0

Exponent vectors: (4, 0, 0), (0, 4, 0), (0, 0, 4), (2, 2, 0), (2, 0, 2), (0, 2, 2)
(2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 0, 0)

Only need the first three and the last one to describe the convex hull.
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Figure: The Newton polytope for the constraint equation.
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Figure: The Newton polytope for the equation V = k involving the amended
potential V .

Roberts, Kulevich, Smith (Holy Cross) The PCR4BP HC Research Seminar 38 / 47



Reduced Equations

Given α = (α1, . . . , αn) with αi ∈ Q, the reduced polynomial fα is the
sum of all terms of f whose exponent vectors k satisfy

α · k = min
l∈N(f )

α · l .

This equation defines a face of the polytope N(f ) with inward pointing
normal α.

Let T = (C∗)n where C∗ = C− {0}. Since our variables represent
distances, we are only concerned with those solutions in T.
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Theorem
(Bernstein, 1975) Suppose that system (6) has infinitely many
solutions in T. Then there exists a vector α = (α1, . . . , αn) with αi ∈ Q
and αj = 1 for some j, such that the system of reduced equations (7)
also has a solution in T (all components nonzero).

f1(z1, . . . , zn) = 0
f2(z1, . . . , zn) = 0

... (6)
fm(z1, . . . , zn) = 0,

f1α(z1, . . . , zn) = 0
f2α(z1, . . . , zn) = 0

... (7)
fmα(z1, . . . , zn) = 0.
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The "big Minkowski"

Key Fact: Bernstein argues that it is sufficient to check a finite number
of vectors α since different vectors can induce the same reduced
equations. Using the Minkowski sum polytope

N(f1) + N(f2) + · · ·+ N(fm) = {v ∈ Rn : v = v1 + · · ·+ vm, vi ∈ N(fi)},

only the inward normals of each facet of this "big Minkowski" need be
considered. We must also examine the reduced equations for "faces"
of codimension greater than one. If all such α’s fail to yield a nontrivial
solution (all components nonzero), then Bernstein’s theorem shows
that the number of solutions to the system is finite.
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Figure: The Minkowski sum polytope corresponding to the three equations for
the critical points of V .
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Good Example

Choose α =< 0, 1, 1 >

Reduced equations:

−2m3a5b3 − 2m2a5c3 + m3a3b3 + m2a3c3 = 0
m3a5b3 + m2a5c3 + m3a3b3 − 2m2a3c3 = 0

a4 − a2 + 1 = 0

Gröbner basis: {a4 − a2 + 1, m3b3, m2c3}

No solutions in T means this α is excluded. Yay!
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Difficult Example

Choose α =< 1, 0, 0 >

Reduced equations:

m1b5c3 + m1b3c5 − 2m1b3c3 = 0

−2m1b5c3 + m1b3c5 + m1b3c3 = 0

b4 + c4 − b2c2 − b2 − c2 + 1 = 0

Problem: b = ±1, c = ±1 and a 6= 0 is a nontrivial solution to the
reduced equations. Boo! Bernstein’s Theorem doesn’t help.
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Puiseux Series

Hampton, M. and Moeckel, R., Finiteness of relative equilibria of the
four-body problem, Inventiones mathematicae 163, 289-312, 2006.

Puiseux series (complex) :

x(t) =
∞∑

i=i0

ai t
i
q , q ∈ N, i0 ∈ Z

If a system of n polynomial equations has an infinite variety in T, then
there exists a convergent Puiseux series solution xj(t), j = 1, . . . n with
order α. Moreover, one of the variables is simply xl(t) = t .

The order of the Puiseux series solution is the vector of rationals
arising from the fractional exponent of the first term in each series.
This vector α is precisely the same α of Bernstein’s theorem.
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Good News

Minkowski sum polytope for our system has 14 facets, 12 vertices
and 24 edges.

Using symmetry and ignoring those inward normals with all
coordinates non-positive, only two inward normals remain that
have reduced equations with nontrivial solutions: α1 =< 1, 0, 0 >
and α2 =< 0, 0, 1 >.
For each "bad" α, we can substitute Puiseux series in t into the
original equations (a = t for α1 and c = t for α2), and show that no
such series solution can exist by examining higher order terms in t
(Implicit Function Theorem).
Of the 15 edges that need to be examined, most have reduced
equations with either no solution or a trivial solution. The others
can be eliminated using symmetry.
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equations with either no solution or a trivial solution. The others
can be eliminated using symmetry.
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Final Remarks and Future Work

The vertices of the Minkowski sum polytope (faces of codimension
3) are quickly eliminated since they yield at least one reduced
equation with a single monomial, and thereby a trivial solution.
This completes the proof of finiteness.

The lower bound of 268 for the number of critical points is
obtained by computing the mixed volume of the polytopes
corresponding to our system of equations (Bernstein).
What about solutions traveling on level curves? Hopefully similar
techniques will show this is impossible, but polynomials are much,
much larger (over 10,000 terms).
Additional problem: PCRnBP with equal mass primaries on a
regular n-gon. Applications to the charged n-body problem?
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