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We study the linear stability of the relative equilibrium in the n-body problem
consisting of n equal masses at the vertices of a regular n-gon with an additional
body of mass m at the center. This configuration is shown to be linearly unstable
when n < 6. For n > 7, a value h,, is found such that the configuration is linearly
stable if and only if m > h,,. This value is shown to increase proportionately to n3.

1 Introduction

A relative equilibrium is a special solution of the n-body problem which rotates
rigidly about its center of mass if given the correct initial momentum. In
rotating coordinates these special solutions become fixed points, hence the
name relative equilibria. For example, when n = 3 the only noncollinear
three-body relative equilibrium consists of each body, regardless of its mass,
located at the vertex of an equilateral triangle. This configuration is linearly
stable only when one of the masses dominates the other two.2'? This situation
occurs in our galaxy with Jupiter, the sun, and the Trojan asteroids, where
the sun is the dominant mass.

Moeckel has conjectured that a relative equilibrium can be linearly stable
only if it contains a mass significantly larger than the others.® This is the
case for the equilateral triangle. It is easy to see that the regular n-gon with
a central mass is a relative equilibrium for any value m of the central mass
(including m = 0) and thus it is natural to treat m as a parameter. Maxwell
carried out such an analysis in his study of Saturn’s rings and concluded
that for sufficiently large values of m, the ring is linearly stable.?** Moeckel
provides a thorough analysis of the stability problem in general, making use of
the special properties of the linearized matrix to obtain a factorization of the
characteristic polynomial.” He then proceeds to use his techniques to analyze
some specific, highly symmetric relative equilibria including the regular n-gon
with a central mass, hereafter referred to as the 1 4+ n-gon. (As a correction
to Maxwell’s study, Moeckel reveals that the 1 4+ n-gon is linearly stable for
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sufficiently large m only when n > 7.)

We carry the analysis a step further. We investigate the casesn = 3,4,5,6
to determine if they are linearly stable for any value of m, and for n > 7, we
ask how large the central mass m must be relative to the mass of the bodies
in the n-gon in order for the configuration to be linearly stable. It turns out
that for the cases n = 3,4,5,6, the 1 + n-gon is not linearly stable for any
values of m. For n > 7, the configuration is linearly stable if and only if m
is greater than a certain value h,, and as n increases, h, increases like Tn3,
where 7 & 0.435. In other words, the 1+ n-gon relative equilibrium undergoes
a bifurcation in stability at a value of m proportional to n3.

For a simple application to our results, consider the nearly circular rota-
tion of the moon about the Earth. The Earth’s mass is approximately 81 times
that of the moon’s. Suppose that the moon was suddenly split into n equal
pieces, with each “new” moon landing close to a vertex of a regular n-gon with
the Earth at its center. Then the Earth would be 81n times heavier than any
one of its moons. The question then becomes is the Earth heavy enough to
maintain this configuration? The answer is no, unless n € {7,8,...,13}, as
n? grows faster than 81n.

We would like to point out that similar results were obtained using differ-
ent methods by Elmabsout.! At the time this paper was being completed, we
were unaware of his work. The results here are more precise and presented in
more detail.

2 Determining Linear Stability of Relative Equilibria

2.1 Relative equilibria in the n-body problem

We let the mass and position of the n bodies be given by m; and q; € R?,
i =1,...,n, respectively. Let r;; = ||g; — q;|| be the distance between the
ith and jth bodies and let q = (qi,...,9,) € R2". Using Newton’s law of
motion and the inverse square law for attraction due to gravity, the second-
order equation for the ith body is given by

md = Y mmaima) U

it "ij 0ai

where U(q) is the Newtonian potential function:

U@ =Y. =

i<j K
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We let the momentum of each body be p; = m;q; and let p = (p1,...,Pn) €
R?". The equations of motion can then be written as

OH
4= M 'p = =
q p ap
0H
5 = VU(q) = —— 1
b= VU@ = ~5 (1)
where M is the diagonal mass matrix with diagonal
m1, M1, Mg, Ma, ..., Mp,m, and H(q,p) is the Hamiltonian function:
”pz” I pa1
= -p M —U(q).
E o, (@ = op p-U(q)

coswt sinwt
—sinwt coswt
coordinates that uniformly rotate with period 27 /w, we let x; = e“”q; and
y; = e“’'p;. This is a symplectic change of variables preserving the Hamil-
tonian structure of system (1).> The new system becomes

Next, let J = [_(1] (1]] so that e*’t = [ ] . To introduce

wJt

x = wKx+ My = B_H
dy
y = VU(x)+wKy = —%—Z (2)

where K is a 2n x 2n block diagonal matrix with J on the diagonal and
H(x,y) is the Hamiltonian function:

~ 1 _
H(x,y) = inM ly —U(x) —wx"Ky.

While system (1) has no equilibria, system (2) does. An equilibrium
point in this new system will correspond to a periodic solution in the n-body
problem consisting of a configuration of masses which rotates rigidly about its
center of mass. Using the fact that KM = MK and K? = —I, an equilibrium
(x,y) of system (2) must satisfy y = —wM Kx and

VU(x) + w?Mx =0 (3)

A relative equilibrium of the n-body problem is a configuration x € R?" which
satisfies the algebraic equations in (3) for some value of w.
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2.2 Linear stability

Linearizing system (2) about a relative equilibrium (x,y) yields the matrix

=[] o

where S = DVU(x) is a 2n X 2n symmetric matrix. The characteristic poly-
nomial of A, P(}A), is of degree 4n and is an even polynomial, since A is a
Hamiltonian matrix.> Suppose that v is an eigenvector of A with eigenvalue ),
and write v = (v1,Vva) with vi, vy € C?". The eigenvector equation Av = Av
then reduces to

vy = M(AI —wK)v;
Bvy =0
where
B=M"1S+ (w? =)+ 2\wK. (5)

Therefore, to obtain the eigenvalues of A, one need only take the determinant
of B and find the roots. In other words, P(A) = Det(B).

We will call two vectors v and w M-orthogonal if vI Mw = 0. Direct
calculation shows that M ~1S and K are symmetric and skew-symmetric, re-
spectively, with respect to an M-orthonormal basis. Writing B with respect
to an M-orthonormal basis and taking the transpose will not change its de-
terminant. This gives an alternative argument for showing P(A) = P(-\).
Throughout this work, P(A) will denote the characteristic polynomial for A:

P(X\) =det [M™'S + (w* — X)) +2)wK]. (6)

Moeckel’s idea is to obtain a factorization for P(\) by finding a subspace of

R?" which is invariant for both M ~1S and K.” Suppose that W is a subspace
of R?" such that M~1SW = KW = W. Letting W+ = {ve R : vIMw =
0 Vw € W} be the orthogonal complement of W with respect to M, direct
calculation shows that M~ 1SW+ = KWL = WL. If Ty and T, are M-

orthonormal basis for W and W+ respectively, then the matrix B written
with respect to the basis T'=T7 UT5 is

B; 0
0 B
where B; and B are the restrictions of B to the subspaces W and W with

respect to the basis 77 and T5, respectively. It follows that
det(B) = det(By) - det(B>)

HAMSYS-98: submitted to World Scientific on January 25, 2000 4




or P(A) = P;(A)Py()\). Moreover, since writing M 1S and K with respect
to an M-orthonormal basis yields a symmetric and a skew-symmetric matrix
respectively, the same argument used above to show P was even applies here
to P, and Ps.

Proposition 2.1 Suppose that W C R2" is an invariant subspace for both
M~1S and K. Then the stability polynomial can be factored into two even
polynomials in A, P(A\) = Pi(A\)P2()), each given by equation (6) with the
matrices involved restricted to the subspaces W and W, respectively.

This proposition is not very useful if we can’t “guess” invariant subspaces
for both M~1S and K simultaneously. Moeckel successfully does this with
the collinear, regular polygon, and 1 + n-gon relative equilibria.” Building on
the work of Palmore?®, he utilizes the special structure of the matrix S in these
cases to find two and four-dimensional invariant subspaces. He finds enough
subspaces to calculate all of the eigenvalues and then performs a thorough
analysis to classify their stability. In the next section, we will describe these
subspaces for the 1 4+ n-gon and obtain a factorization of P(A). In Section 4,
we locate the precise value for which the 1 + n-gon becomes linearly stable.
In Section 5, we provide the estimates on this bifurcation value to show it is
asymptotic to Tn3.

3 The 1+ n-Gon

3.1 Invariant subspaces and factoring P(\)

The 1 + n-gon is the relative equilibrium consisting of n equal masses at the
vertices of a regular n-gon with an additional mass at the center. We set
my = 1, for k € {1,...,n} and let mg = m represent the mass of the body
at the center. The position of the kth body is given by x; = (cos by, sin )
where 8y, = 2wk/n for k € {1,...,n} and by x¢ = (0,0). It is easy to check
that x = (xg,x%1,...,X,) satisfies equation (3) for any value of the central
mass m, so it is natural to treat m as a parameter. Recall that r;; represents
the distance between the i-th and j-th bodies. Two frequently used formulas
are

rop =2(1 —cosfy) and 7y = 2sin(rk/n).

As mentioned in Section 2, this configuration begets a periodic solution in
which the bodies rotate uniformly about the central mass with rotation speed
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w = w(m), which in this case is given by

n—1 n—1

2 1 1 Re mk
w" = M+ 50p, on = E — = EE csec —.
Tnk n

k=1 k=1

This formula follows directly from any component of equation (3). Note that
as the mass of the central body increases, the period of the circular orbit
decreases.

Recall that S = DVU (x). Direct computation reveals that
So00 *** Son
s=1:
SnO e Snn
where S;; is the 2 x 2 matrix given by

Sii = ;313 (I —3xix;] if i#]

ij
Sij == Sij

i#]

and x;; = (I is the 2 x 2 identity matrix). Note that each block S;; is

Tij

symmetric and that S;; = Sj;.

Using the fact that the diagonal blocks of S are the negative of the
sum of the blocks in the corresponding rows, it is clear that both v =
(1,0,...,1,0) and Kv = —(0,1,...,0,1) are in the kernel of S. Therefore,
W = span{v, K¥} is a two-dimensional invariant subspace for both M -5
and K. Taking the matrices in equation (6) restricted to W yields the 2 x 2
matrix

w2 =22 —2w)
2wh w? — A2

Taking the determinant of this matrix and applying Proposition 2.1 yields the
quartic factor (A2 4+w?)? and the repeated eigenvalues +wi, +wi. These values
are a result of a drift in the center of mass and are evident in any relative
equilibrium.

Another two-dimensional invariant subspace which is also evident in
any relative equilibrium comes from the configuration itself. Letting W, =
span{x, Kx} and applying Proposition 2.1 yields the 2 x 2 matrix

3w?2 — A2 —2wA
2wA =2
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Here we make use of the fact that x and Kx are eigenvectors of M 1S with
eigenvalues 2w? and —w?, respectively.” Taking the determinant of the ma-
trix above yields the quartic factor A?(\? + w?) with eigenvalues 0,0, +wi.
These values arise because the equilibrium point (x, —wM Kx) of system (2)
is not isolated and has two degenerate directions corresponding to rotation or
scaling.

Since the factorizations we will be considering lead to even polynomials
(Proposition 2.1), we will make the substitution z = A? and call

Q(z) = det [M 1S + (w? — 2)I + 2v/2wK]

the stability polynomial. Tt is standard to call a relative equilibrium nondegen-
erate if the remaining 2n — 2 roots of the stability polynomial are nonzero (or
the remaining 4n — 4 eigenvalues are nonzero). We will call a relative equilib-
rium spectrally stable if the remaining 2n — 2 roots of the stability polynomial
are real and negative, and linearly stable if in addition to being spectrally
stable, the linearized matrix A in (4) for the remaining 4n — 4 eigenvalues is
diagonalizable.

Due to the rotational symmetry of the 1 + n-gon configuration, S has
a particularly nice form. After some computation, one can check that the
space U; = span{u, Ku}, where u = (ug, uy,...,u,) and uy = exixy, (0 =
2mkl/n), form a two-dimensional complex M ~1S-invariant subspace in C?>"+2
for each | € {2,3,...,[n/2]}. When [ = 1, this perturbation does not leave
the central mass fixed at the origin. (This point was overlooked by Maxwell.?)
Instead of (0, 0), the first component of u must be ug = (—n/(2m), —in/(2m)).
Note that choosing | = 0 yields the two real vectors {x, K'x} already accounted
for above.

For | > 2, the restriction of the operator M 1S to the subspace Uj is

P, —-3Q; +2m —iRy 1)
iRy P +3Q;,—m
where
n—1 n—1 n—1 . .

1 — cos By cos by cos By, — cos Oy sin 6y, sin Oy
p=Y Lmeoslicosbu o _ g~ cosbh —cosbu g sinfisinf
,;1 2ri ,; 2riy ; 2riy

When [ = 1, we obtain the matrix
P +2m+n —i(R; —n) (8)
i(Ri+n/2) PL—m—n/2|"

These calculations rely on the fact that a given row of 2 x 2 blocks of S can be
expressed in terms of one block at the end of the row using a rotation matrix.
The reader is encouraged to see Moeckel’s work for the details.”
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Taking real and imaginary parts of u and Ku yields a four-dimensional
real invariant subspace for M 1S and K except when n is even and | = n/2.
In this exceptional case, the vectors u and Ku are each real, so that we
obtain a two-dimensional M ~!S-invariant subspace. We ignore this case for
the moment. Setting u = v + 4w, yields the four real vectors {v,w, Kv, Kw}
where

v = cos Oy (cos Oy, sin )

Wy, = sin g (cos Oy, sin ;)
(Kv)p, = cos b (sin by, — cosby)
(Kw)j, = sin @y (sin 0y, — cos 0y,)

are the components for k¥ € {1,2,...,n} with (0,0) as the first two en-
tries when | # 1 and (—n/(2m),0) and (0, —n/(2m)) as the first two en-
tries for v and w, respectively, when [ = 1. It is easy to check that
these vectors are linearly independent. Letting W; = span{v, Kw, Kv,w}
for I € {1,2,...,[n/2]}, one can check that the invariant subspaces
W, Wo,Wi,..., W,/ are all M-orthogonal. When n is odd, the union of
these spaces has dimension 2 +2+ 4 x (n — 1)/2 = 2n + 2, and for n even,
we obtain a dimension of 2+ 2 +4 x (n —2)/2+4 2 = 2n + 2. Thus we have
completely decomposed R?"*2 into M ~1S- and K-invariant subspaces from
which we can determine all of the eigenvalues for the 1 + n-gon.

Remark:

1. For a given [, the perturbation corresponding to the invariant subspace W,
pushes the kth body in a direction given by the position of the k(I 4+ 1)th
(mod n) body. For example, when [ = 0, the perturbation stretches or
shrinks the configuration, giving us one of the degenerate directions. As
! increases, the perturbation involves more and more twisting requiring
a larger and larger central mass for linear stability. We prove this fact in
Section 4.

2. The fact that the perturbation for I = 1 does not leave the central mass
fixed is a result of Proposition 2.1. Since the space Wis M ~1S-invariant,
S0 too is its M-orthogonal complement. Thus, if v is a vector in a different
invariant subspace, it must belong to the M-orthogonal complement of
W. This means that both the sum of the odd entries of Mv and the even
entries of Mv must vanish. If the first two entries for the case [ = 1 were
zero, then these sums would not vanish. Hence the need for the extra
factor —n/(2m).
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We see from (7) and (8) that the restriction of W; = span{v, Kw, Kv, w}
to the matrices in equation (6) is given by the 4 x 4 matrix

a; +w? — X2 -R —2)w 0
—R; b + w? — \2 0 2 \w (9)
2w 0 b + w? — A2 Ry
0 —2)\w R, a; + w? — X2
for I > 2 where a; = P, — 3Q; + 2m and b; = P, + 3Q; — m, and
a; +w? =X —(R; —n) —2\w 0
—(Ry +n/2) by +w? — N2 0 2w (10)
2w 0 b1 +w? =22 Ry +n/2
0 —2)\w Ri—-n a1+w?-X\

when [ = 1 where a; = P, +2m +n and by = P, — m — n/2. Taking the
determinant of each matrix yields the quartic factor (z = A2)

Gi(2) = (22 + auz + B1)? + dwiclz
where

_[m4o,—2P - 2ifl=1
al(m)_{ m+ o, —2P  ifl#1 (11)

By(m) = 3(PA-5+%)m+nPr+ 4P +n+oy,) ifl=1 (12)
TSP+ 3Qu+ B )m + (P + %) —9Q7 — R if 1 # 1
2R, — Z2ifl=1
Cc] = .
2Rl lfl#].

Here we have used the fact that w?> = m+0,/2. Note that although these
formulas seem complicated, both a;(m) and B;(m) are linear in m.

When n is even and | = n/2, we obtain the two-dimensional invariant
subspace W= = span{u, Ku} whose restriction to the matrices in equation (6)
is given by the 2 x 2 matrix

2 _ 32

az +w”— A —2\w

D by +w?— X2 (13)

Taking the determinant of this matrix yields the quadratic factor (z = A\2)
Fn(z) = 22+ anz+ fz

w}lere an(m) and B2 (m) are given by (11) and (12), respectively, with | =
n/2.
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3.2 Properties of P,,Q; and R;

Before we analyze the polynomials G; and F'z , we state some important facts
and identities about the quantities P, Q; and R;.

(i) R = (Quy1 — Qi-1)/2

(ii) Py1— P+ Qi41— Qi =R+ Ry

(iii) P, and Q) are strictly increasing in [ for 1 <1 < [n/2].

(iv) P =R; >0, Q1:0andR% =0.

(v) P, Qi and R are positive for 1 <1 < [n/2] except for Q1 and Rx.
(vi) P,>Q and P, > R; for 1 <1< [n/2].

The first two items follow from the formulas for the sum and difference of
cosine and sine while the third is proved by Moeckel.” The fourth item follows
straight from the definitions of P, @; and R;. The fact that P, and @; are
positive (except for Q1) follows directly from items three and four. When n
is odd, we have R"T_I = %(QnT-f—l — QnT—3) = %(Qan — QnT—S) by symmetry.
Thus, identity (i) and the fact that Q; is strictly increasing for 1 <1 < [n/2]
implies that Ry is positive for 1 <1 < [(n—1)/2]. Finally, the last item follows
from the calculations:

-1

n—1 n
1—cosf;)(1 —cosb 1—cos@
Pl_Ql:Z( k)( M) _ > R g

3
k=1 2k = A
n—1 . n—1
1 — cos @y, cos Oy — sin 8,04, 1 — cosOr—1)
P-R=Y =~ =2 —gs 20
k=1 nk k=1 nk

Some important summation formulas which can be derived using standard
complex analysis and the formula for summing a finite geometric series are

n—1 . n—1 3 .
E = 2cot — E cosf = cot — — cot —
Tk on’ KTk o2n n
k=1 k=1
and
"E—l cos? Oyr _ 1 cot or _ 1 cot Sm + cot il
e Kk = 9™ on “ 27" 2p 2n’
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These formulas in turn provide convenient expressions for P, ); and R;. For
example, note that

11— cos?dy, w2 1+ cosby
P = o3 T C drpe
k=1 nk k=1 nk
n—1 n—1 n—1
_Z 24 (cosb —1) 1 1 1ZT
= = = — == nk
k=1 Arnk 20 e 814
on, 1
=7 ot 14
2 1%, (14)

4" 4 2 42
Qs = %on ~5 cot %, (16)
Ry = "_iCt ﬂ-—gc 21 and (17)
Pg—gan i tg——% t;—;—; ¢ (18)

3.3  Conditions on Gy and Fz for linear stability

If we fix an n value, the coefficients of the polynomials G; and Fz vary with
m. We are interested in what values of m make the 1 + n-gon linearly stable.
Rather than calculate the roots specifically, it is easier to find necessary and
sufficient conditions on the coefficients which yield real and negative roots.

To simplify notation we will let v; = v;(m) = af — 43;. When n is even
and | = n/2, v is the discriminant for F». Note that the slope of a;(m) is
always one, so that ;(m) is a parabola opening upward. It is easy to show
that F» has real, negative and distinct roots if and only if:

az >0, Pz >0 and 72 >0.

Recall that Gi(z) = (22 + ayz + B1)* + 4w?c}z. If ¢ = 0, then this
polynomial would always have repeated roots. Fortunately, this is never the
case.

Lemma 3.1 The coefficient ¢; is nonzero for 1 <1 <[(n —1)/2].

Proof: For | # 1, ¢ = 2R; which is positive by item (v) of the last
section. (When n is even and [ = n/2 we are only interested in the quadratic
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F% which does not involve c%.) When [ = 1, we use the fact that Ry = P,
and equation (14) to obtain
1 s
=0, — 500‘5% —n/2.

We numerically verified that ¢; is negative for 3 < n < 11 and positive
for 12 < n < 14. We can show that ¢; > 0 for n > 15 using some basic
estimates. Using the symmetry of the n-gon, and the fact that cscz > 1/x
and cotz < 1/z, we have

T 2w T
Op > €SC— +CSsC— + -+ + ¢sc —
n n

n
n 1 1
> —(1 — e —
7r( +2+ +7)
n ™
“a+ 2
>+ )
1
>§cotl+n/2

as desired.

A proof similar to that of Moeckel’s” shows that G; has real, negative and
distinct roots if and only if

a>0, B#0, >0 and § >0

where §; = &;(m) is the discriminant of G divided by the positive term c}w?:

8i(m) = Bi(af —48)? + ctw?ay(af — 3683;) — 27cjw?. (19)

Note that &;(m) is a fifth degree polynomial in m with leading coefficient
identical to the slope of 3;(m).

Recall that Gi(z) has repeated roots if and only if § = 0 and Fz (2) has
repeated roots if and only if 4; = 0. Suppose that one of these polynomials
has a real, negative repeated root and thus the 1+n-gon has a pair of repeated
pure imaginary eigenvalues. In order to have linear stability, we would need a
basis of eigenvectors for the linearized matrix A in (4). However, this is never
the case.

Lemma 3.2 Suppose that F» (2) or Gi(z) has a real, negative repeated root
zo corresponding to one of the nondegenerate invariant subspaces W; described
above. Let B' be the restriction of M—1S + (w? — 2)I + 2y/2wK to W;. Then
the geometric multiplicity of zy for B' is always one and consequently, the
linearized matriz A in (4) is not diagonalizable.
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Proof: Recall that an eigenvector v = (vq,va) of A with eigenvalue
Ao = /zg satisfies the equations

Vo = M(/\()I — wK)v1
BV1 =0

with B given by (5) evaluated at A = Ag. If the geometric multiplicity of zg
for B' is only one, then there is only a single vector v; in the kernel of B, and
hence A will have only one eigenvector for the repeated eigenvalue A\g = /.

For F'n (z), the 2 x 2 matrix in (13) can never have nullity 2 since the off
diagonal terms are always nonzero (w # 0 and g # 0). For G;(z), the 4 x 4
matrices in (9) and (10) will have nullity greater than one if and only if every
3 x 3 sub-matrix has zero determinant. For [ # 1, taking the determinant of
the matrix in (9) with the first row and fourth column deleted gives

—2Xowey (b + w? — A2).

By Lemma 3.1, this quantity vanishes only if A2 = b, + w?. However, A3 =
2o < 0 by assumption and

b+ w? = P+3Q;+0,/2 >0

by item (v) of the last section. A similar argument works for / = 1. This
completes the proof.

The importance of this lemma is that the roots of the polynomials Fx (2)
and Gy(z) must be real, negative and distinct in order to have linear stability.
In other words, if all the roots of these polynomials are real and negative, but
the discriminant vanishes for one of them, then the 1 + n-gon is spectrally
stable, but not linearly stable. We will call a polynomial stable, when its
roots are real and negative, and call it linearly stable, when its roots are real,
negative and distinct.

4 Finding the Bifurcation in Stability

For a fixed n, we will show that as the mass m of the central body increases,
the polynomials G; become linearly stable in succession. In other words, as
m increases first G; becomes linearly stable, then G5 becomes linearly stable,
and so on, until m passes through a bifurcation value h,, where G n1 OF Fn
become linearly stable depending upon the parity of n.

Since we are interested in the values of the central mass m for which
G; and F'z are linearly stable, it is important to know when the relevant
coefficients oy, 8;,vi, and §; are positive. Recall that oy, 8;,v, and §; are
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functions of m of degree 1,1,2 and 5 respectively. We denote m,, and mg, as
the lone roots of a;(m) and B;(m) respectively. Therefore, we have

_f2Pi—o,+2ifl=1
1 2P -0, ifl#1

nPy 4+ %2 (4P +n + op)

- if 1 =1

S 3(P1—%+7") (20)
| _RegrosQi-m
3B +3Qi+ %) ‘

To simplify the notation, we define the following coeflicients:

4 [ 200+8P =53 ifl=1
"7\ 20, +8P, +18Q; if I #1

(2P, — 2)2 — 4o, (2P, +2) if [ =1
B, =
3602 + AR? — 80, P, if# 1.
Then, v;(m) = m? — 24;m + B; and

Tie = A + (/A2 - B (21)

are the two roots of the quadratic v;(m). Since 0;(m) is a fifth degree polyno-
mial, it has at least one real root. We will let A; denote the largest real root
of (5[ (m)

The first logical question is whether the roots of 4;(m) are real or not. A
short computation shows that

2 B 60P2 + 40P, 0,, — 38Pin + 4(0y, — n)? + 2n? ifl=1
177U 64P2 + 40P0, — AR? + 402 + 720,Q + 288Qu(P + Q1) if 1 # 1
(22)

For [ # 1, items (v) and (vi) from Section 3.2 show that A7 — B; is positive.
For the case I = 1, we can numerically verify that A2 — B; > 0 for 3 < n < 10.
To show that A2 — B; > 0 for n > 11, we have

A2 — By > 60P2% + 40P (0, — n) + 4(0y, — n)? + 2n2,

so it suffices to show that 60P2 + 40P, (o, — n) > 0. Dividing by P; and
substituting the expression in (14) for P, this reduces to o, > %n+ 13—4 cot 5-,
which is easily verified by an argument similar to the one used in the proof

of Lemma 3.1. Therefore, A? — B; is always positive and so y;(m) always has
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two real roots m = I'jx. Note that since the leading coefficient of 7;(m) is
one, y;(m) > 0 if and only if m < T;_ or m > T';;. Figure 1 gives a rough
sketch of the lines a;(m), G;(m), the parabola 7;(m) and their corresponding
roots. Later in this section we explain the relationship between these roots.

mg,

— Fl, 1_‘l+

Figure 1. Graph of the coefficients a;(m), 3;(m) and 7;(m).

Lemma 4.1 The slope of B1(m), 3(P1 —n/2 + 0,/2), is positive except for
3<n<6.

Proof: We can numerically verify the claim for 3 <n < 8. Using (14), it
suffices to show that o, > 5 + % cot 5-. An argument similar to the one used
in Lemma, 3.1 yields

T 27 3 47
op > CcsC— 4+ csc— +csc— +csc— forn >9
n n n n
n 1 1 1
14+ =4+ =4+ =
>ZA+g+3+7)
n,m+1
>;( 2 )
>n—|—lcot7r
2 4 2n

as desired.

This result is extremely significant in its own right since §; and §; share
the same leading coefficient. When [ = 1, the discriminant §; (m) is positive
for sufficiently large m only when n > 7. Thus, for 3 < n < 6, in order to
obtain stability we have to hope that in the intervals where d; (m) is positive,
the other necessary coefficients are also positive. However, this is never the
case.

HAMSYS-98: submitted to World Scientific on January 25, 2000 15




Theorem 4.2 Forn = 3,4,5,6, the 1+ n-gon is not spectrally stable for any
value of the central mass m.

Proof: The relevant constants mq,, mg,, 1+ and A; for each value of n
are given in Table 1. (Note that the fourth column gives the mass values for
which the 14 n-gon is degenerate, as §; = 0 implies that zero is an eigenvalue.
These values agree with those listed in Appendix B of Meyer and Schmidt’s®
paper on the configurations which bifurcate from the 1 + n-gon.) We handle
each case individually.

For n = 3, it is necessary that m > m,, = .6334 in order for ay(m) to
be positive. However, by Lemma, 4.1 and from Table 1, we see that ;(m) is
negative for m > Ay &~ .2744. Thus, the polynomial G is never stable for
n =3.

For n = 4, since I';_ is negative, it is necessary that m > I'y{ = 2.1553
in order for 71 (m) to be positive. However, by Lemma 4.1 and from Table 1,
we see that d; (m) is negative for m > A; = 1.0072. Thus, the polynomial Gy
is never stable for n = 4.

For n = 5, G is in fact linearly stable in the interval 7.558 < m < 7.9804
because all the necessary coefficients are positive (including the discriminant).
However, since I's_ is negative, and I'o; = 45.3904, it is necessary that m >
45.3904 for 2 (m) to be positive. Thus, the polynomials G; and G5 are never
stable concurrently.

For n = 6, GGy is in fact linearly stable in the interval 11.5168 < m <
22.9103. However, since I's_ is negative, and I'sy = 70.6461, it is necessary
that m > 70.6461 for y2(m) to be positive. Thus, the polynomials G; and G
are never stable concurrently.

n l Mey, mpg, Fl_ FH_ Al

3 1 0.6334 0.7705 -8.8403 0.7685 0.2744

4 1 0.7929 2.3797 -8.8416 2.1553 1.0072
2 -0.9571 -0.2500 -0.2292 23.7708

) 1 0.9612 6.4782 -8.7580 4.4805 7.9804
2 -0.8507 -0.2442 -0.2361 45.3904 48.4064

6 1 1.1340 20.9068 -8.8320 7.7602 22.9103
2 -0.6160 -0.2201 -0.2179 70.6461 77.5479
3 -0.0774 0.0060 0.0061 86.8392

Table 1. The approximate roots of a;(m),8;(m),~;(m), and the largest root of §;(m) for
the cases n = 3,4,5, and 6.
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The remainder of the paper will be concerned with the case n > 7. Note
that the slope of Bi(m) for | # 1 is 3(F + 3Q: + 04,/2) which is always
positive. This fact, along with Lemma 4.1, implies that the leading coefficients
of the terms oy(m), Bi(m),vi(m) and §;(m) are all positive for all {. Hence for
sufficiently large m, the 1 + n-gon will be linearly stable. We now show that
there is a unique mass value h,, such that m > h,, is a necessary and sufficient
condition for linear stability.

The next lemma explains the order in which the important coefficients
become positive as m is increased. The sequence goes as follows: We start
out with both o; and §; negative and y; positive. As m increases, 3; becomes
positive first, but by the time «a; becomes positive, v; has become negative.
(So we don’t have stability yet.) Then once y; becomes positive again,
is now negative. Finally, once m is larger than A;, all four coefficients are
positive and will remain that way for all m > A; (see Figure 2).

Figure 2. Graph of the coefficients oy (m), 8;(m), v;(m) and 6;(m) illustrating the order of
their roots.

Lemma 4.3 Forn > 8, mg, <Tj1_ <mq, <y <A for1 <1< [n/2).
Proof: We first show that mg, < mg,. For [ =1, we have

n n 1 ™
ma1:2P1+§—0'n:§—§COt% >0
_nP1+%(4P1 +7’L+0’n) <0

3(A—5+%)

where the last inequality follows from Lemma 4.1. For [ > 2, we can verify
that mg, < m,, numerically for n = 8,...,13. For n > 14, we can rewrite

mp, =
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equation (20) as

1 R?

6t 3P, +9Q; + 30,

Using the fact that P, > R; and Q; and o, are nonnegative, we have
mg, < Q1 — %Pl — %Un + %Rl.

Since mq, = 2P, — 0,, it suffices to show that

7 5 1
30> Qi+ gon+ 3R (23)
For the case | = 2, we can use the expressions from (15), (16) and (17) to

obtain

1
mﬂ,=Ql—§PJ—

7 5 1 1 3 m
§P2_Q2_60n_§Rl = Un—icot%—cot% >0
by our usual estimates. To prove inequality (23) for the cases | > 3, it suffices
to show that P, > 50, /6, since P, > Q; and P, > R;. Since for any fixed n, P,
is increasing, it suffices to show that Ps > 50,,/6. Using equation (18), this is
equivalent to

RE TN IS LN D
n 2 50 on T 20 20 T 20 2

which follows for n > 14 from the usual estimates. This finishes the proof
that

Mg, > Mg,. (24)

Recall that the leading coefficients of oy (m), B;(m) and +;(m) are positive
for all [. Simply stated,

ai(m) >0 iff m>myg, (25)
Bi(m) >0 iff m >mg, (26)
yim) >0 ff m<Iim or m>T (27)

(see Figure 1). Therefore, we have

’Yl(maz) = alz(maz) - 4ﬂl(ma1)
= _4/Bl(maz)
<0

where the inequality follows from (24) and (26). Inequality (27) then implies
that I'1_ < mq, < Ii4.
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Next, we have that

" (mﬂl) = C“l2 (m,@l) - 4/8l(mﬁt)
= al2 (mﬁl)
>0

with the strict inequality following from (24) and (25). Therefore, either
mg, < TI'j_ or mg, > I';;. However, the latter inequality implies that mg, >
m, which contradicts (24). Finally, we note that

1(Tit) = Bii + cfwar(m = 326) — 27cjw!
= —32cw’ oy B — 27cfw!

<0

where g, 8; and 4; are evaluated at m = T';;. Thus since §;(m) is of odd
degree with leading coefficient positive, its largest root, A;, must be greater
than I';y. This completes the proof.

Lemma 4.4 For each n > 7 and for each integer I, 1 <1 < n/2, the poly-
nomial Gy is linearly stable if and only if m > A;. If n is even, then Fn is
linearly stable if and only if m > Tz .

Proof: The second statement follows directly from Lemma 4.3. In order
for F'= to be linearly stable, az, 3= and vz must all be positive. This occurs
if and only if m > I'a ;. For the quartic Gy, we first handle the case n = 7
separately. (This is necessary because Lemma 4.3 is not valid when n = 7
and [ = 2.) We list the relevant data in Table 2. It is clear from the data
in all three cases that G is linearly stable when m > A;. To argue this is
also a necessary condition, one can calculate that 6 () < 0 and that A; is
the only root of §(m) larger than T';;. Thus the only way to have all four
coefficients positive is when m > A;. This finishes the case n = 7. Note that
the last column of Table 2 is increasing, and that the 1 4+ 7-gon is linearly
stable if and only if m > 139.8523.

l Ma, mpg, Fl_ FH— Al

1 1.3094 -643.2843 -9.0892 11.8784 15.7260
2 -0.2846 -0.1814 -0.1813 98.8129 110.2791
3 0.9819 0.3242 0.3274 135.5674 139.8523

Table 2. The (approximate) roots of a;(m), B;(m),v;(m), and the largest root of §;(m) for
the case n = 7.
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To do the cases n > 8, Lemma 4.3 shows that it is sufficient for m > A
as then all the relevant coefficients will be positive. For the other direction,
we know that a;, 8;, and 7; are positive concurrently if and only if m > I'j;.
To show it is necessary that m > A;, we need only show that A; is the only
root of §;(m) larger than Iy . Recall that (19)

o o o
o = ﬂn/f + clz(m + Tn)aml —32¢(m + Tn)alﬂl — 27c;1(m + 7”)2

Differentiating this expression with respect to m and evaluating at m = I'j4
yields

61(Tiy) = —24cuf — 36c oy By — 32¢i By — 54¢ip

where oy and f; are evaluated at m = T'j4 and p = T'yy + 0, /2. (Here
we use the fact that of (I;1) = 46;(T14+).) Lemma 4.3 gives a;(T4) > 0
and 5;(T'3+) > 0 so that the above quantity is negative. Thus, not only
is the discriminant negative at m = I'j;, but it is also decreasing. Further
computation and estimation reveals that the third derivative of y; with respect
to m is positive for m > ;4. This in turn implies that d;(m) is concave up
for all m > T4 and therefore &;(m) has exactly one root (4;) larger than T'y.
This completes the proof of the lemma.

As the largest root of the fifth-degree polynomial &;(m), it is unlikely
that an explicit formula for A; exists, not to mention the fact that it would
probably be incomprehensible. Thus it is reasonable to seek an upper bound
for A; which has a useful explicit formula.

Recall that Gi(z) = (22 + ayz + B)? + 4w?c?z. From Lemma 4.3 we
know that when m > T'jy, oy, and v; are positive. This means that the
polynomial 22 + a;z + B; has two real and distinct negative roots r; and ry
with 11 < —ay/2 < ry < 0. Since Gi(r12) = 4w?cr12 < 0 and Gi(z) > 0
for z > 0, the Intermediate Value Theorem tells us that G; has two negative
real roots s; and sp satisfying s; < 11 < —/2 < ra2 < s2 < 0. When
Iy < m < Ay, we know from Lemma 4.3 and from the proof of Lemma 4.4,
that the discriminant of G;(z) is negative. This means that s; and sy are the
only real roots of G;(z). When m = Ay, the discriminant of G; vanishes, and
a negative real, repeated root is born in addition to s; and s;. Finally, as
m increases past A;, Gi(—a;/2) eventually becomes positive and G; has four
distinct negative real roots. That is, G; will be linearly stable (see Figure 3).

Finding a sufficient condition for Gj(—a;/2) > 0 leads to the value m = A,
given by

Ay = A+ 2V2¢| + \/(Al +2v2|¢i|)? = B + 2v2|ci|os -
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Figure 3. Graph of the quartic G;(z) for specific m-values from the regimes I';; < m < Ay,
m = A; and m > Ay, respectively.

It is a straight-forward argument to show that A; is positive for all [ from
which it follows that A; is real and A; > I';. For the rest of the paper we
will only be concerned with the larger root of v;(m) so that I'; is understood
to represent I'j.

Lemma 4.5 Forn > 7, if m > Ay, then Gy is linearly stable. Moreover,
<A <A< Fl+1 f07‘ 1<I< [(n — 1)/2].

Proof: Since A; > I';, the coefficients «;, 8;, and 7; are all positive for
m > A;. So by our arguments above, it suffices to show that m > A; implies
that Gj(—a/2) > 0. We compute that

1 .
Gi(—a/2) = E%z — 2oy,

which is positive if and only if

322w (0, /2 — 2P, — n/2) if 1 =1

2 2 4
v — 32w >{ 32cw (0, /2 — 2P)  if 1 # 1.

It is not difficult to see that the quantities on the right-hand side of the above
inequality are negative. Therefore, to show that G;(—ay/2) > 0, it suffices to
show that 77 — 32¢fw* > 0 or equivalently,

m? — 2(A; + 2V2|ei|)m + By — 2V2|¢t|on > 0.

The largest root of the quadratic in this inequality is m = A;. Thus we have
shown that for m > A;, Gi(—a;/2) > 0 which implies that G is linearly
stable. This proves the first statement of the lemma and shows that A; > A;.

The only inequality left unproven is A; < I';1;. This is significant, as it
relates the stability of G; with that of G;1. To prove this, we make use of
identity (ii) from Section 3.2:

P — P4+ Q1 —Qr = R+ Riqa. (28)
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We explain the case [ > 2 (the case | =1 is similar). Note that |¢| = 2R,
since R; is nonnegative. We have from equation (28) that

Ay =20, + 8P+ 10Q141 + 8Q; + 8(Ry + Riy1)
> 20, + 8P, + 18Q; + 4V2R,
= A +4V2R,

where the middle inequality follows from the fact that R; is nonnegative and
that @ is strictly increasing in [. Next, equation (28) also gives us

A7, = Biy1 > radicand of A

after some computation. Since A;41 > A; + 2\/§|cl| and the radicand of T';;
is greater than the radicand of A;, it follows that ['; 1 > Ay.

Lemma 4.5 not only provides us with an upper bound on the seemingly
elusive quantity A;, it also provides us with the bifurcation value for the
1 + n-gon relative equilibrium. Since A; < I'j41 < Ayyq, it is clear that as
m increases, GG will become linearly stable before Gj4+1 does. This proves
that the polynomials GG become linearly stable in succession. In some sense,
this means that the more the configuration is twisted, the more unstable it
becomes, or conversely, the most stable perturbations involve less rotation of
the n-gon (including the one that moves the central mass). If n is even, then
since A ne2 < 'z, Fz is the last polynomial to become linearly stable and
this happens when m > I'=. If n is odd, then G net is the last polynomial
to become linearly stable and this happens when m > AHT_l. For n even,
we have a precise formula for the bifurcation value while for n odd, we have
explicit expressions bounding the bifurcation value above and below. This
completes the proof of our main result.

Theorem 4.6 For n even, the 1+ n-gon relative equilibrium is linearly stable
if and only if m > T'z. Forn odd, the 1+n-gon relative equilibrium is linearly
stable if and only if m > AnT—l.

5 Estimating the Bifurcation Value

As explained in the last section, we have an explicit formula for the bifurcation
value given by m = I'z for n even. When n is odd, the best we can do is bound
the bifurcation value below by FnT_1 and above by AnT_1. Fortunately, these
two bounds are asymptotic to each other as n approaches infinity. Table 3
lists the bifurcation value h,, for several different values of n. In this section
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hn hp/mn? n hn, hy/Tn®

n
7 139.8523  0.9372 15 1,443.300 0.9830
8 212.2611  0.9530 20 3,446.298 0.9902
9 304.1366  0.9590 50 54,274.97 0.9981
10 420.9930  0.9677 100 434,797.6 0.9995

11 562.1966  0.9709 500 5.43780323 x107 1.0000
12 733.9608  0.9763 1,000 4.350332026 x10% 1.0000
13 934.9493  0.9782 10,000  4.350365372 x10'! 1.0000
14 1,172.075  0.9819 100,000 4.350365691 x 1014 1.0000

Table 3. The bifurcation value hy, where the 1 4+ n-gon becomes linearly stable, for various
values of n and its comparison with the estimate 7n3.

we prove that h, increases asymptotically to 7n®, where 7 is given by the
formula:

T =

134+ 4v/10 < 1
;.z(

273 —~ (2k—1)%

Using a computer, one can calculate that 7 = 0.435036581297 is accurate
to twelve decimal places. Remarkably, Maxwell calculated 7 to be 0.4352 in
his work in 1859.% He achieves this by correctly “guessing” the force (only in
the case with n even) which will produce the most instability, although he
provides no proof for why this is the case. Still, it is a great tribute to his
insight and ability that Maxwell was able to arrive at this result so well ahead
of his time.

We handle the case when n is even first. Calculations show that

11— cosb cos Ok ) _cosl, T2 2cosy
> o 2 T2
_ om ~ 11
To ease on notation, we define the sums (for n even)
L 1l
A similar calculation yields Qz = —0,,/4+&,. Plugging these expressions for
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Pr and Q= into formulas (21) and (22) yields

We will show that &, is order n® while n,, and o, are order nlnn. Hence,

Tz ~ (26 + 8V10)&,.

Lemma 5.1 &, is asymptotic to 7n° where

T k-1
Proof: We will prove the case when n/2 is even. The argument for n/2

odd is virtually identical. Using the symmetry of the n-gon and the fact that
Tnk = 2sin(Z2), we have

1 3 2-1
é‘n —— (CSC3E +CSC3—7T+"‘+CSC3 u) . (29)
4 n n n

We will show that lim &,/n® = 7. Using the fact that cscz > 1/z, it is easy
n—oo
to see that

§n 1 1
S S
> 13 +33 -+ mj2=1)° (30)
Using the Taylor expansion of sin® z yields 2® — 2% < sin® z and therefore
1 1 1
eslr < ——— = — + — (31)

-1z 2 z(2-2?)

provided < v/2. In order to make use of this inequality, we will split the
terms in &, into two groups. Let k, be the largest odd integer less than n/6.
For the terms with & > k,, csc2f ’“T < 2. For any k < k,, we may apply
inequality (31) to obtain

csc (A1) < 1 4 1
n3 k373 kn(2n? — k272)’
Letting f(u) = 1/(um(2n? — u?n?)), it is clear that f(u) is positive and de-

creasing for 1 < u < k,,. Since there are exactly n/4 terms in (29), we have
that

& 1 1 1 1 n 8
IR S I B (FST L
e R WD I Al ll CAC R

1 1 1 n 1
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Letting

L SV S
P 3T mj2—1)32 )"
inequalities (30) and (32) give

n n 1
167(2n2 — w2)  2n2’

-y

3 < Tp+

Letting n go to infinity yields the desired result.

Lemma 5.2 o, and 7, are asymptotic to 2 Inn and 5-1Inn respectively.

Proof: We verify the result for o, first. Again using the symmetry of
the n-gon, we have

n_1
3 nk 1
op = ; csc; + 5

when n is even. Since the function g(u) = csc T* is decreasing for 1 <u < n/2,
we have

n/2
9(2) +9(3) +---+g(n/2) < /1 gw)du < g(1)+g(2) +---+g(n/2-1)

using lower and upper approximating sums. It follows that

n/2 1 n/2
/ g(u) du+§ < op < g(1)+/ g(u) du
1 1
which evaluates to

n T 1 T n T
—ln(cot—)+— < op < csc—+—1n(c0t—).
T 2n 2 n ow 2n

From this inequality it follows that

li In__ _q
nm0 (nlnn)/m
The same argument works for 7, by using h(u) = csc 7 (2u — 1) in place
of g(u) and carrying out the same approximations. The 1/2 factor arises from
the integration of h(u) and is expected since 7, contains half of the terms of
0. This completes the proof of the lemma.

The case when n is odd is slightly more complicated since we do not have
an explicit expression for the bifurcation value and the formulas we do have
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are more involved. We will let ¢ denote the crucial index (n — 1)/2. Recall
that for n odd, T'; < h,, < A.. Since 0. = 7k — wk/n, we have

wk

cosfr. — 4 €08 o k even
ke =\ —cos I k odd

and

sin —sin 7% k even
k =
¢ sin 7€ odd.

Using these formulas, the symmetry of the n-gon, and r,; = 2sin ﬂ, we see

that

4 7rk 7rk
_ 41 Cos == cos TF
k=1 nk nk
C
3 Tk 1)+t ko, 7k 1 ki1, Tk
= - csc cot —cs¢c® — — - -1 cot —
Z , Z —osc? = =2 (=) -

k=1

An argument similar to the one used in the proof of Lemma 5.2 shows that
the last term in the sum above is order nlnn. Likewise, an argument similar
to the one used in the proof of Lemma 5.1 shows that

Z csc? mk " i 1 and
= w3 =~ |3
: E ond o (m1)kH!
Dk tleot TE g2 TE
kz_:l (-=1)" " co csc 3 Z:

It follows that P, is asymptotic to 7n>.
Further computation reveals that

c

PC_QCZ_‘FEZ(—].)IHJCOt%k

Since the right-hand side is order nlnn, it follows that Q. is asymptotic to
P,.. Finally, we have that

c 27rk 7rk
sin £%% gin I£
_ 2 : k+1
Rc - (_1) 3
k= Tk

1 )k wk
= t—
421 0 n
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which means that R, is lower order than P, and ().. Since

Ae = A, +4V2R, +\/(A. + 42R,)? — B, + 4V2R.0,,

we see that ', ~ A.. Using the fact that P, ~ @, equations (21) and (22)
imply that

hy ~ Te ~ (26 +8V10)7n?.
We have proven the following theorem:

Theorem 5.3 The 1+ n-gon relative equilibrium becomes linearly stable at a
central mass value which is asymptotic to T™n> where

134+4V10 «— 1
=) (

3 —_1)3°
2w — (2K 1)
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