Spectral Instability of Relative Equilibria
in the Planar N-Body Problem

Gareth E. Roberts
Mathematics Department
Boston University
111 Cummington Street
Boston, MA 02215

October 16, 1998

Abstract
An inequality is derived which must be satisfied for a relative equilibrium of the n-body
problem to be spectrally stable. This inequality is studied in the equal mass case and using
simple geometric estimates, it is shown that any relative equilibrium of n equal masses is not
spectrally stable for n > 24, 306.
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1 Introduction

Relative equilibria in the Newtonian n-body problem are special planar periodic orbits of masses
which rotate rigidly about their center of mass. Locating a relative equilibrium means finding a
configuration in which the forces due to gravity are perfectly balanced by the centrifugal force [9].
This involves finding the critical points of the Newtonian gradient potential restricted to a mass
ellipsoid by solving a system of highly nonlinear equations (see Section 2.1). The first such examples
were discovered by Euler [3] (the collinear solutions in the 3-body problem) and Lagrange [4] (the
equilateral triangle solutions in the 3-body problem). Other well known examples include the
regular n-gon (n equal masses placed at the vertices of a regular n-gon) and the 1 + n-gon (the
n-gon configuration with a central body of arbitrary mass m). Albouy recently showed that there
are exactly four types of relative equilibria for four equal masses: a collinear solution, a square,
an equilateral triangle with a body at the center and an isosceles triangle with a body on the axis
of symmetry [1]. Surprisingly, there is still little known about relative equilibria in general. For
example, it is unknown whether the number of relative equilibrium equivalence classes for 4 unequal
masses is finite [13].

Given a relative equilibrium, it is natural to investigate its stability as a means of determining the
behavior of nearby solutions. This entails linearizing the differential equation about the equilibrium
and analyzing the associated linear system. Unfortunately, this is a difficult task in practice as it
involves computing the eigenvalues of a complicated 4n by 4n matrix. Since we are dealing with a
Hamiltonian system, the characteristic polynomial is even and consequently, equilibrium points are
never asymptotically stable [8]. In general, an equilibrium is called spectrally stable if its eigenvalues
are all pure imaginary and linearly stable if, in addition, the associated matrix is diagonalizable.

For the equilateral triangle relative equilibrium, Routh derived a stability inequality which
depends on the masses of the three bodies [12]. This inequality is satisfied only if one of the masses



is much larger than the other two, a situation which occurs in our solar system with Jupiter, the
Sun and the Trojan asteroids, the Sun being the dominant mass. Similarly, Moeckel shows in [9]
that when n > 7, the 1 4+ n-gon is linearly stable provided the central mass is large enough. In
contrast, the regular n-gon (with n equal masses) is not spectrally stable for any n [9].

Based on this evidence, Moeckel conjectured that any spectrally (and linearly) stable relative
equilibrium must have a dominant mass. If true, this conjecture implies that any relative equilib-
rium consisting of all equal masses should be unstable. Examining the next to leading coefficient
of the characteristic polynomial for a relative equilibrium, we derive an inequality which must be
satisfied for spectral stability. After applying this inequality to some specific examples, we use it to
prove that any relative equilibrium of n equal masses is not spectrally stable, provided n > 24, 306.
Our proof relies on geometric estimates and counting arguments, succeeding without knowing the
actual location of the bodies.

2 Determining Stability of Relative Equilibria

In this section, we derive the equations for a relative equilibrium and give a precise definition for its
spectral and linear stability. The characteristic polynomial is discussed and a necessary condition
for the spectral stability of a relative equilibrium is derived.

2.1 Relative equilibria in the planar n-body problem

We let the mass and position of the n bodies be given by m; and q; € R?, i = 1,... ,n respectively.
Let 7;; = ||a; — q;|| be the distance between the ith and jth bodies and let q = (qu, ... ,q,) € R*".
Using Newton’s law of motion and the inverse square law for attraction due to gravity, the second-
order equation for the ith body is given by

. m;mi(q; — q; oUu
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where U(q) is the Newtonian potential function:
mim;
Ul@=>, ——*
i<j Y

We let the momenta of each body be p; = m;q; and let p = (p1,-.. ,pn) € R?". The equations of
motion can then be written as

o0H
g = M'p = —
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o0H
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where M is the diagonal mass matrix with diagonal mq,m1,ma, mo, ... ,my, my, and H(q, p) is the

Hamiltonian function:
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Next, let J = so that e“’*' = . . To introduce coordinates that
-1 0 —sinwt coswt
uniformly rotate about the origin with period 27 /w, we let x; = e“’/!q; and y; = e“’!p;. This is



a symplectic change of variables preserving the Hamiltonian structure of system (1) [8]. The new
system becomes

H
x = wKx+Mly = B_
Oy
OH
y = VUK +wKy = ™ (2)
. . . 01 . : .
where K is a 2n x 2n block diagonal matrix with J = [ 10 ] on the diagonal and H(x,y) is

the Hamiltonian function:
N 1
H(x,y) = gyTMfly - U(x) — waKy.

The new term added to the Hamiltonian, x' Ky, is often referred to as the Coriolis force [8].
Using the fact that KM = MK and K? = —I, an equilibrium (x,y) of system (2) must satisfy
y = —wMKx and

VU (x) + w?Mx = 0. (3)

A relative equilibrium of the n-body problem is a configuration x € R?" which satisfies the
algebraic equations in (3) for some value of w (see [8], [9] or [10]). The ith component in (3) is
given by

2 mim;j(Xj — X;)
—w m;x; = . 4
=2 @
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Note that if x = (x1,x2,... ,X,) is a relative equilibrium, then
cx = (ex1,cx9,...,cx,) and

Rx = (Rxi,Rxs,...,Rxy)

are also relative equilibria for any constant ¢ and any R € SO(2). When counting relative equilibria
it is standard to fix the scaling (a unique value of ¢) and identify any configurations which are
rotationally equivalent via the equivalence relation x ~ Rx for R € SO(2). If we sum all the
components of equations (4), then the summation terms on the right-hand sides cancel out and we
have

n
Z m; x; = 0. (5)
=1

In other words, the center of mass of any relative equilibrium is the center of rotation, which in our
set up is the origin.
Let I(x) denote the moment of inertia, that is,

n

1

i=1
We can then write equation (3) as

VU(x) +w? VI(x) = 0 (6)



In other words, relative equilibria are critical points of the function U restricted to the “mass

ellipsoid” defined as the level set I = ¢, where w? plays the role of a Lagrange multiplier. If we take
the dot product of a relative equilibrium x with equation (6) and use the fact that U is homogeneous
of degree —1 and I is homogeneous of degree 2, then we obtain —U(x) + 2w?I(x) = 0 or

w? = : (7)
This expression will be useful later.

2.2 Spectral and linear stability

Linearizing system (2) about the relative equilibrium (x,y) yields the matrix

SEE g

where S = DVU(x) is a 2n X 2n symmetric matrix. We will let P(\) denote the characteristic
polynomial of A. P(]) is of degree 4n and is an even polynomial, since A is a Hamiltonian matrix [8].

There are two identifiable subspaces which are invariant under A, arising from the degeneracies
and integrals of the problem [10]. The subspace Wy of C** spanned by the four vectors

(x,0), (0, Mx), (Kx,0), (0, KMx)

is invariant under A with eigenvalues 0,0, +wi corresponding to the two degenerate directions
resulting from scaling and rotating any relative equilibrium x. The subspace W of C*" spanned
by the four vectors

(u,0), (0, Mu), (v,0), (0, Mv)

where u = (1,0,1,0,...) and v = (0,1,0,1,...) is also invariant under A with eigenvalues +wi, +wi
corresponding to the drift in the center of mass. The matrix A restricted to W is not diagonalizable.
In the classical sense then, any relative equilibrium is degenerate and not linearly stable.

We will follow Moeckel’s approach in [10] and define linear stability by restricting A to the
skew-orthogonal complement of these subspaces. See [10] for details.

Definition: A relative equilibrium x always has the eigenvalues 0,0, +wi, twi, twi. We will
say that x is nondegenerate if the remaining 4n — 8 eigenvalues are nonzero. It is spectrally stable if
the eigenvalues are pure imaginary and is linearly stable if in addition, the restriction of the matrix
A to the skew-orthogonal complement of W7 U W is diagonalizable.

2.3 The Characteristic Polynomial

Suppose that v is an eigenvector of A with eigenvalue )\, and write v = (v, vs) with v, vy € C?".
The eigenvector equation Av = Av then reduces to

vy = M(AI—wK)vy
BV1 =0

where

B=M"18+ (w? — X\)I + 2)wK. (9)



Therefore, to obtain the eigenvalues of A, one need only take the determinant of B and find the
roots in A. In other words, P()\) = det(B).
A closer examination of the structure of B provides some insight into P(A). The 2 x 2 blocks
on the diagonal of B are given by
di; + w? — N2 diit1 + 2w

dig1i — 22w dig1ip1 +w? — A2 (10)

where d;; is the ij-th entry of M ~1S (so i is odd in the above expression). Note that the only
entries in B which contain A\ are on the diagonal blocks. The determinant of matrix (10) is
X+ (207 — dii — digrin) X + (dii + @*) (dig1it1 +w?)
using the fact that d;; 11 = d;+1;. We then can conclude that
P(\) = M 4+ 2nw? —tr(M1S) X2 4 ...

since the only terms which contribute to the coefficient of A**~2 are on one of the n diagonal blocks.
Since P(]) is even, we now have a formula for the sum of the squares of the eigenvalues:

1 4n
3 Z M o= tr(M1S) — 2nw?
i=1
where ); is an eigenvalue of A.
Direct computation reveals that
S11 S
S=| : :
Snl T Snn
where §;; is the 2 x 2 matrix given by
Si; = ;3 21— 3xijx;l;-] if 1#7
(4]
Si = —> Sy
1#]

xJ X;

and x;; = I is the 2 x 2 identity matrix, x; is the position of the ¢-th body and r;; is the
J y b y ¥l

distance between the i-th and j-th bodies). From this we calculate

n

w(Mls) = 3 T
i<j 1j

Theorem 2.1 Let x be a relative equilibrium with rotation speed w given by formula (7). Then
one-half of the sum of the squares of the eigenvalues of x is

3 M o (11)
i<j T



For example, consider the simple case n = 2. We know that any relative equilibrium has the
eight eigenvalues 0, 0, +wi, +wi, +wi. Since there are only eight eigenvalues when n = 2, one-half
the sum of the squares of the eigenvalues is —3w?. Using equations (4) and (5), any two-body
relative equilibrium satisfies

mz(—%xl - Xl)

3
T12

—|—(4)2X1 =0

or w? = (my + myg)/r3,. Formula (11) then yields —3w?, as desired.

If a relative equilibrium x is to be spectrally stable, then the sum of the squares of the eigenvalues
must be negative. Using this, in addition to the eight eigenvalues we already know, we have the
following result:

Corollary 2.1 A necessary condition for a relative equilibrium x to be spectrally stable is

> L:;m] < (2n—3) Z((’;)) (12)

Our necessary condition for spectral stability is useful for a heuristic understanding of why many
relative equilibria are unstable. If we fix the scaling of a relative equilibrium x so that 21(x) = 1,
then inequality (12) reduces to

> % < (n-3) ) m#:"” (13)
1<j J 1<j
As n gets larger, the bodies on the mass ellipsoid determined by 2I(x) = 1 must be getting closer
and closer. This means that the (m; + m;)/ rf’j terms begin to dominate the m;m;/r;; terms, and
consequently, the left-hand side of inequality (13) becomes larger than the right-hand side, and the
configuration is unstable. We use this line of reasoning in Section 4 to show that the equal mass

relative equilibria are unstable for n sufficiently large.

3 Applications

Before considering the equal mass case, we demonstrate the usefulness (and simplicity) of inequal-
ity (12) with two well-known relative equilibria.

3.1 Regular n-gon

Consider the relative equilibrium consisting of n equal masses at the vertices of a regular n-gon.
Moeckel shows that this configuration is not spectrally stable for any n in [9]. Here we show that
our condition gives a simple proof of the instability of the regular n-gon for n > 7.

We set m; = 1, for j € {1,...,n} and let the position of the jth body be given by x; =
(cos @;,sin ;) where 0; = 2mj/n. Recall that r;; represents the distance between the i-th and j-th
bodies. We will make use of the formula

Tnj = 2sin(mj/n). (14)

Note that by symmetry, r;;1; = r,; with the indices taken mod n. Since I = n/2 for this
configuration, using w? = U/(2I), inequality (12) becomes

1 3 1
— 1—— —.
Z r3 < ( Zn) .

i<j i<j



Using the symmetry of the configuration, this reduces to

3 TJ 6 7
Y ese? 4— yese ™. 1
), csc < ( n)CSC - (15)

Lemma 3.1 Inequality (15) is only satisfied for 3 < n < 6. Consequently, the regular n-gon is not
spectrally stable for n > 7.

Proof: We can numerically evaluate inequality (15) for 3 < n < 16. For n > 17, we make the
rough estimates

n—1 . n—1 .

T T us T
E csc3 17 > 2cscd — and E csc T < (n—1)csc —,
, n n ‘ n n
j=1 J=1

which then yields

n—1 . .
6 6
E cscsﬁ—J—(4——)cscﬂ > cscz(2csc23—(4——)(n—1)).
= n n n n n n
Using cscz > 1/z, we have
6 2n2 6
QCSC2E—(4——)(’I’L—1) > %—4714—10——
n n s n

which is positive for n > 17. This completes the proof.

The regular n-gon for 3 < n < 6 is thus an example of a relative equilibrium where the sum
of the eigenvalues squared is negative (because inequality (12) is satisfied) yet the configuration is
known to be unstable. Not surprisingly, this means that our condition (12) is necessary for spectral
stability but certainly not sufficient.

3.2 1+mn-gon

By adding a body of mass m at the center of the regular n-gon configuration, we obtain a family
of relative equilibria for the (n + 1)-body problem, with m serving as a parameter. The British
scientist James Clerk Maxwell first studied this family in his paper on the stability of Saturn’s rings,
written for the 1856 Adams Prize Essay [5, 6]. He concluded that the ring was stable, provided the
central mass was sufficiently large. As a slight correction to this, Moeckel proves in [9] and in [10],
that the 1 4+ n-gon is linearly stable for sufficiently large m, only when n > 7. Here we show that
inequality (12) is satisfied for m sufficiently large.

We will keep the same set up as we used in the regular n-gon. In addition, let m,; = m and
xn+1 = (0,0). Note that I = n/2 for this configuration also. Inequality (12) reduces to

n

Z %—I—n(l—l—m) < (2—1) Z %+nm

2. n T
i<j i i<j Y



or
1 1 1 m n
— < (1-— PR
ZT3-<( 2n)Z ”—}—2(n ) 2
i<y Y 1<j
[Note that we replace n with n + 1 in inequality (12).] Again, using the symmetry of the n-gon,
this reduces to

n v o1 1. n2 1 m n
) SRR E S S
3 )
2 31 g 2n” 2 0T 2 2
which is satisfied when
n (21 -1 1
n — = Thi n Tnj

While this does not reveal the instability of the 1 4+ n-gon for 3 < n < 6, it does provide a lower
bound for the size of the central mass in order to achieve stability for n > 7. In fact, a little
calculation shows that the term on the right-hand side of (16) is asymptotic to 7n® where

1 1
= 13 Z 7~ 0.009692.

(By asymptotic we mean that the limit as n goes to infinity of the ratio between n® and the right-
hand side of (16) is 7.) The actual asymptotic value of the central mass for which the 1 + n-gon
becomes linearly stable, as derived in [11], is approximately .435n3 (a similar result is obtained
in [2]). Thus, our simple inequality reveals the correct order of the central mass necessary for
stability.

4 Relative Equilibria with Equal Masses
Theorem 4.1 Any relative equilibrium of n equal masses is not spectrally stable for n > 24, 306.

We show that in the equal mass case, inequality (12) is not satisfied for n > 24,306. This
argument holds for all equal mass relative equilibria. Indeed, for large n, there are a tremendous
number of relative equilibria [7]. However, we can estimate inequality (12) for all of them without
knowing their exact positions.

We first provide the motivation and details behind the proof. We perform several calculations
which may seem careless (ignoring greatest integer signs for example) but are intended only to
obtain expressions explaining where the actual parameter values come from for the proof at the
end of this section.

The goal is to show that

Z Lz;m] —2nw? > 0

i<j ij
(we choose 2n as opposed to 2n — 3 to simplify the calculations). Setting m; = 1 for each ¢ and
recalling formula (7) for w?, this reduces to showing
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Figure 1: Graph of the function f.(r) = 1/r® —1/(cr).

This motivates fixing 21 = ¢n or
n
Z ||xz||2 = cn,
i=1

with the constant ¢ > 0 to be chosen later. It then suffices to show that

1o a

T, C T4
i<j W v

Fixing 21 = cn sets a bound on the distances bodies can be from the origin. We will assume
that ¢ < 1. Then we are guaranteed at least [n(1 — ¢)] bodies inside the unit disk D, where [ |
denotes the greatest integer. Otherwise, we would have n — [n(1 — ¢)] bodies outside or on D, and
the value of 21 would be larger than cn, a contradiction. As n gets larger, although the bound
grows in size, more and more bodies must be inside D and in particular, closer to each other so
that the 1/r}; terms start to dominate the 1/r;; terms.

Let fo(r) =1/r® —1/(cr) for r > 0. Tt is easy to check that f.(r) > 0 for 0 <r < +/c, fo(r) <0
for r > \/c, and that f, has a global minimum of —y, = —2(3¢)~3/2 (see Figure 1). We wish to
cover D with regions such that any two bodies in a region are within € of each other, where € is a
small parameter with e < y/c. Let K, be the number of regions of diameter € needed to cover D.

Next, let
N, - [l

be the approximate number of bodies in each e-region (if they were to be evenly distributed). If
€ is chosen small enough, and N, is large enough, then we will have lots of bodies close to each
other helping us verify inequality (17). In fact, we claim that

1 1 1 Nc,e B n
Zr_g_za >fc(e)'K€( 9 ) '70(2)- (18)
<j Y

To justify this claim, we make the following argument. Suppose that ¢ represents a distribution
of n balls into K numbered baskets (n > 2K) and let ® represent the set of all possible distributions.

For a given distribution ¢, let
K
N
Ry=Y" ( K )

i=1

where n; is the number of balls in the i-th basket. We have the following fact:



Lemma 4.2 Let N = [n/K]|. Then K< J;f ) < glig Ry
€

Proof: The proof is a counting argument. Putting exactly N balls in each of the K baskets

(forgetting any leftovers) yields K ( N ) as a value for Ry. Also, if n; and n; are positive integers

2
such that n; > n;, we have

(5)(3) < ("3 ()

This inequality means that if we move a ball from one basket into another basket with fewer balls,
the value Ry decreases. The result now follows.

This lemma allows us to conclude that a lower bound on the number of “small” distances is
obtained through an equal distribution of bodies in the K, e-regions. For every pair of bodies in
an e-region, we know that at least f.(€) is contributed positively to the sum on the left-hand side
of inequality (18).

The worst or most negative a term in inequality (18) can be is —y.. We seek an upper bound
on the number of “big” distances which contribute negatively to the sum on the left-hand side of
inequality (18). In other words, we would like to find as many bodies as possible within /c of each
other. While these bodies may not contribute as much as f.(e) to the sum, at least they are a
positive contribution, and therefore should not be counted with the ~y, terms.

Following the arguments presented above, we let D, be the circle of radius /& centered at the
origin and K ,; , be the number of regions of diameter V¢ needed to cover D, (« is a parameter
to be determined). By fixing 2] = cn, we are guaranteed [n(1 — c¢/a)] bodies inside D,. For this
to make sense, we will assume that a > c¢. We let

_ [[n(A=c/a)]
=

be the approximate number of bodies in each \/c-region if they were to be evenly distributed. Then
Lemma 4.2 assures us that we have at least

N,
Pc’a = K\/Eaa ( g,a )

“big” distances which contribute positively to the sum on the left-hand side of inequality (18).

We wish to find a value of o that maximizes P, ,. Since D, has area ma and a circle of diameter
V¢ has area mc/4, we will assume that K , , = h(4a/c) where h is some proportionality constant
between 1 and 2. We then compute

P = n(l — c/a) ' (n(Al —c/a) B 1)
’ 2 h(4a/c)

(we drop the greatest integer for the moment to simplify the calculations). This motivates setting
z = ¢/a and considering the function

_n(l-2) (nz(l—=z) o .
gn(z) = —— ( 7 1) for 0 <z < 1.

10



The function g, has a maximum on the interval (0, 1) at the value

\/1—12h/n

which we will approximate by 1/3 since we expect n to be large. Thus, setting o = 3¢, we obtain

Lol =

2
.’L'n:g—

an approximate maximum for P, , by

n2 n

P.3 = 1/3) = — — -
¢3¢ gn(1/3) 547, 3
Therefore, we are guaranteed at least P, 3. mutual distances which are less than /c. We now have
a slightly improved estimate from (18):

oa|'—‘
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i<j i "ij
N, 1 1 n
= Je - K e — Ye\\5 — B 2— =
405 (75 ) = e 5 -5)
= Ac,e n2+Bc,en
where
A 9,/ (1 —¢)%(c — €2) — 83 he (1 —1/27h)
o T2h e c3/2 ’
B - 23 €3 —27/c(1 —¢)(c — €)
o 54e3c3/? )

Here again, we have disregarded the greatest integer for N, . and assumed that K, = h(4/€?) with
h some proportionality constant between 1 and 2.

Note that A.. is positive for e sufficiently small. This means that A., n? + B ¢n is simply a
parabola in n opening upwards. Thus, for n sufficiently large, inequality (17) will hold.

A simple estimate shows that A.. > 0 implies B, < 0. Indeed, since € and c are chosen so
that € < y/c and ¢ < 1, we have

27v/c (1 — ¢)(c — €%) 27v/c (1 — ¢)?(c — €%)

24v/3 he(1 — 1/27h)
24/3 €3(26/27)
23 é3.

Here we have used the assumption that h and h are larger than one. It follows that when A, > 0,
the root —B, /A, is positive. We need to choose ¢ and € such that:

V V. V V

1. Acc >0, and
2. —B/Ace is as small as possible.

Once this is achieved, we will have shown that inequality (17) is satisfied for n > —B, (/A...
Before we can find optimal values of ¢ and ¢, we need to decide upon values for h and h. Recall
that we “covered” D, with K /., = h(4a/c) regions, such that any two bodies in a region were

11



Figure 2: Covering a circle of radius v/3c with 19 circles of radius /c/2.

at most /c apart. We also decided to set @ = 3c. A value of h = 1, implies that we could cover
D3, with 12 circles of radius y/c/2. But this is obviously impossible. We can cover a circle of
radius /3¢ with 19 circles of radius /c/2 (see Figure 2). This gives us a proportionality constant
of h =19/12 = 1.583.

Finding a value for h is slightly different. We want to cover the unit disc D with regions of
diameter e. We would need to use at least 4/€® circles. To make sure that we cover D completely,
we will use hexagons instead of circles. A regular hexagon with side length €/2 has area 3v/3 €2/8.
Thus, we would need at least 87/(3v/3 €2) hexagons to cover D. For good measure, we also include
enough hexagons to cover the circumference of D. This gives us a value of

_8r L Ar
3v/3 €2 €

4 ( 8 n )
= — TE
2 \12V/3
which means h ~ 1.2092 + 7e.

Plugging these values of h and h into A. ¢ and then using a computer to find the minimum of
—Bec/Ac yields the values € = 0.029255, ¢ = 0.370093 and [—Be/Ac.| = 26,975.

K. =

Proof of Theorem 4.1:
We set € = 0.029255, ¢ = 0.370093 and « = 3c. We cover D with K, = [4h/e?] + 1 = 6,081 regions
of diameter € and cover D, with 19 regions of diameter y/c. For any n > 24, 306, define the natural
numbers g and r < K, by

[n(l—¢)]=q-Kc+r

and similarly, § and # < 19 by
[n(2/3)] =q-19 + 7.

Then, for any relative equilibrium of n equal masses, we have

ST (meon (1) e (75)-

o
i<j Y K

12



Here we have used a variation of Lemma 4.2 to obtain a minimum distribution with ¢ bodies in
some regions and g + 1 bodies in the rest. A simple computer program was written to show that
the right-hand side of the previous expression is positive for 24,306 < n < 26,975. For the case
n > 26,976, we have

T o (w-n (5 )+ (737)) -
o((8) —eoon(2) -+ ("31))
((3) e )

> 0.465215916 1% — 12,549.63 n

which is positive for n > 26,976. We have shown that inequality (12) does not hold for any relative
equilibrium of n equal masses for n > 24,306. This completes the proof.

Remarks:

1. Using the same arguments as above, it is possible to show that any collinear equal mass
relative equilibrium is spectrally unstable for n > 22. (It is known that all collinear relative
equilibria are spectrally unstable [9].)

2. The optimal result would be that for any n, the equal mass relative equilibria are all spectrally
unstable. The main purpose of our argument here is to demonstrate how inequality (12) can
be of use for n sufficiently large. We do not expect inequality (12) to be helpful for small n
because there are several relative equilibria which satisfy it but are not stable (for example,
the regular n-gon of Section 3.1). While it may be possible to improve the above estimates,
a different method is required to prove that all equal mass relative equilibria are unstable.

3. Attempts were made to improve the estimates above by considering more “small” distances
(for example, bodies in adjacent regions would be within 2¢ of each other). However, this is
complicated because the equivalent to Lemma 4.2 does not exist. It is not clear what the
minimum distribution is when considering more than just distances within regions.

4. Another approach to improving the estimate is to replace the unit disk D with a disk of
arbitrary radius v/& and then continue as above, searching for the best possible values of the
parameters €,c, and §. However, the introduction of § turns out to be superfluous as this
method reduces to searching for the best possible values of the parameters ¢/+v/d and c/4.
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