Homework should be turned in at the BEGINNING OF CLASS. All problem numbers refer to the primary course text by Robert Devaney. Unless otherwise indicated, all parts of a problem (a), (b), etc. should be completed. You should write up solutions neatly to all problems, making sure to show your work. A nonempty subset will be graded. You are encouraged to work on these problems with other classmates, and it is ok to use internet sources for help if it's absolutely necessary; however, the solutions you turn in should be YOUR OWN WORK and written in YOUR OWN WORDS.
Note: Please list the names of any students or faculty who you worked with on the assignment.
The Butterfly Effect
Read The Butterfly Effect, the first chapter of
Gleick's book on Chaos. Answer the following questions, making sure to write in
COMPLETE SENTENCES.
Chapter 1 (pp. 1 - 8)
Read Chapter 1 of Devaney's textbook, making sure to check out the wonderful figures.
(Side note: my former research student Trevor O'Brien, HC '05, created
pictures similar to Plates 36-38 in his honors thesis work while Gabe Weaver,
HC '04, found figures similar to Plate 39 while working with me one summer as part of the
HC Summer Research program. A figure created by each student is visible at the top of the
course webpage.)
Chapter 3 (pp. 26 - 28)
Problems: 3, 7 (b, c, e, h), 11, 12, 13, 14
Note: For problem #12, you should give explicit formulas for D2(x) and
D3(x) as piecewise functions.
Additional Problem: Let f(x) be a continuous function whose domain and range is all real numbers. Suppose that the orbit of x0 under f converges to the point a, that is, x0 is on an asymptotic orbit. Using the definition of continuity, prove that a is a fixed point of f.