
MATH 305 Complex Analysis, Spring 2016

Using Residues to Evaluate Improper Integrals

Worksheet for Sections 78 and 79

One of the interesting applications of Cauchy’s Residue Theorem is to find exact values of real
improper integrals. The idea is to integrate a complex rational function around a closed contour C
that can be arbitrarily large. As the size of the contour becomes infinite, the piece in the complex
plane (typically an arc of a circle) contributes 0 to the integral, while the part remaining covers the
entire real axis (e.g., an improper integral from −∞ to ∞).

An Example
Let us use residues to derive the formula∫ ∞

0

x2

x4 + 1
dx =

√
2π

4
. (1)

Note the somewhat surprising appearance of π for the value of this integral.

First, let f(z) =
z2

z4 + 1
and let C = LR + CR be the contour that consists of the line segment LR

on the real axis from −R to R, followed by the semi-circle CR of radius R traversed CCW (see figure
below). Note that C is a positively oriented, simple, closed contour. We will assume that R > 1.

Next, notice that f(z) has two singular points (simple poles) inside C. Call them z0 and z1, as
shown in the figure. By Cauchy’s Residue Theorem. we have∮

C

f(z) dz = 2πi

(
Res
z=z0

f(z) + Res
z=z1

f(z)

)
On the other hand, we can parametrize the line segment LR by z = x,−R ≤ x ≤ R, so that∮

C

f(z) dz =

∫ R

−R

x2

x4 + 1
dx +

∫
CR

z2

z4 + 1
dz,

since C = LR +CR. Moreover, since f is an even function, the middle integral in the above expression

can be written as 2

∫ R

0

x2

x4 + 1
dx. Putting this all together, we find that
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2πi

(
Res
z=z0

f(z) + Res
z=z1

f(z)

)
= 2

∫ R

0

x2

x4 + 1
dx +

∫
CR

z2

z4 + 1
dz. (2)

Equation (2) is valid for any R > 1. Thus, we can take the limit as R → ∞ of both sides. Using
the “ML-Theorem,” it is possible to show that the integral over the semi-circle goes to 0 as R → ∞.
Consequently, ∫ ∞

0

x2

x4 + 1
dx = πi

(
Res
z=z0

f(z) + Res
z=z1

f(z)

)
. (3)

All that remains is to find the residues of f at z0 and z1.
There is a neat trick that can be used to find the residue of a simple pole. Suppose that f(z) =

p(z)/q(z) is the ratio of two polynomials p and q, and that α is a simple root of q. This means that
q(α) = 0, but q′(α) 6= 0. Since α is a root of q, we can write q(z) = (z−α)S(z), where S is a remainder
polynomial of degree one less than q. Using the product rule, we have

q′(z) = S(z) + (z − α)S ′(z) =⇒ q′(α) = S(α).

To find the residue of f at the simple pole z = α, we use the theorem from Section 73. Since

f(z) =
p(z)

q(z)
=

p(z)

(z − α)S(z)
,

we see that φ(z) = p(z)/S(z) is the analytic portion of f(z) that does not contain the pole α. Conse-
quently,

Res
z=α

f(z) = Res
z=α

p(z)

q(z)
=

p(α)

S(α)
=

p(α)

q′(α)
. (4)

In other words, the residue may be found by evaluating the numerator at the pole divided by the
derivative of the denominator at the pole. This is typically easier than doing a partial fraction decom-
position, but it only works for poles of order 1.

Exercises:

1. (a) Find the precise values of the two singular points z0 and z1 for f(z) =
z2

z4 + 1
.

(b) Use the “ML-Theorem” and the triangle inequality to show that∣∣∣∣∫
CR

z2

z4 + 1
dz

∣∣∣∣ ≤ πR3

R4 − 1
.

Conclude that the integral of f(z) over the semi-circle CR goes to 0 as R→∞.
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(c) Use formula (4) to compute the residues of f(z) at z0 and z1. Plug these values into
equation (3) to finish the derivation of formula (1).

2. Using the same approach as the previous example, find the value (with proof) of∫ ∞
0

1

(x2 + 1)2
dx.

3. Extra Credit: Show that ∫ ∞
0

1

x3 + 1
dx =

2π

3
√

3
.

Note: See Figure 95 on p. 268 of the text for the right contour to use.

3


