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Computer Project #3: Observations

Modeling is an iterative process. Sometimes the results are poor
or counter-intuitive. Adjust your model.

Units are important (e.g., working in kelvin or Celsius, metric
system or not).

There are typically lots of parameters (σ,Q, α, ε) and the outcome
of a model can vary greatly even for a small change in the value of
a parameter—bifurcations.

Tuning: Sometimes we adjust the parameters to make our model
agree with known data. This looks good, but can also be
misleading to those evaluating the model.

Example: Climate Model #3 introduced ε to model the greenhouse
effect and obtain the current average temperature of the Earth. No
physics used at all: Q(1 − α) = εσT 4
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Climate Model #5

C
dT
dt

= Ein − Eout

= (1 − α(T ))Q − εσT 4

where

T = global average surface temperature, in K

α(T ) = 0.7 − 0.4
e(T−265)/5

1 + e(T−265)/5 (albedo)

Q = 1/4 of the solar constant S, 342 W/m2

σ = 5.67 · 10−8 W/(m2 · K4)

ε = greenhouse effect parameter
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Figure: The bifurcation that arises when decreasing ε below εh ≈ 0.4900676.
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Climate Model #5: Bifurcation #1

Bifurcation value: εh ≈ 0.4900676

For ε > εh, there are three equilibrium temperatures. The largest
(warm, current climate) and the smallest (frigid, snowball state)
are stable (sinks).

At ε = εh (a saddle-node bifurcation), the two smaller equilibria
merge into one, forming a node. The larger equilibrium point has
increased in value (to approximately 305 K).

For ε < εh, there is only one equilibrium temperature
corresponding to a very warm planet (a hothouse over 305 K
≈ 32◦ C). The greenhouse effect is so strong (because ε is small),
that no ice can form on the planet.
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Figure: The bifurcation that arises when increasing ε above εsb ≈ 0.6884214.
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Climate Model #5: Bifurcation #2

Bifurcation value: εsb ≈ 0.6884214

For ε < εsb, there are three equilibrium temperatures. The largest
(warm, current climate) and the smallest (frigid, snowball state)
are stable (sinks).

At ε = εsb (a saddle-node bifurcation), the two larger equilibria
merge into one, forming a node. The smaller equilibrium point has
decreased in value (to approximately 225 K).

For ε > εsb, there is only one equilibrium temperature
corresponding to a very frigid planet (Snowball Earth, less than
225 K ≈ −48◦ C). Here, the greenhouse effect is so weak
(because ε is too big), that ice envelopes the planet.

Amazingly, there is evidence that Earth was in this state about 630
Mya (million years ago) and 715 Mya.
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Bifurcation Diagram for Exercise #7

Figure: The bifurcation diagram for climate model #5 as ε varies. Two
saddle-node bifurcations occur at ε = εh ≈ 0.49 and ε = εsb ≈ 0.69 (tipping
points), demonstrating the phenomenon of hysteresis. The bifurcations
suggest a mechanism for the climate to suddenly shift between vastly different
steady states (e.g., from a warm, stable climate to a frigid Snowball Earth.
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