
MATH 241-02, Multivariable Calculus, Spring 2019

Section 11.4: Tangent Planes and Linear Approximations

The goal of this section is to generalize the idea of the tangent line for functions of one variable to the
tangent plane for functions of two variables. The tangent plane is the best linear approximation to a
function.

Tangent Planes

Recall from Calc 1 that the equation of the tangent line to the function y = f(x) at the point
(x0, y0) is given by

y − y0 = f ′(x0)(x− x0) .

This is the point-slope form of a line with slope m = f ′(x0), passing through the point (x0, y0). If f
is differentiable at x0, then as we zoom in on the graph of f near (x0, y0), the graph looks more and
more like the tangent line.

We now generalize this same idea to a function of two variables, z = f(x, y). Suppose that
(x0, y0, z0) is a point on the graph of f , that is, z0 = f(x0, y0), and suppose that both first partial
derivatives fx and fy exist and are continuous at (x0, y0). Then the tangent plane to the graph of f
at (x0, y0, z0) is given by

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) . (1)

The idea here is to capture the change in the function f in both the x-direction, through the term
fx(x0, y0)(x − x0), and the y-direction, via the term fy(x0, y0)(y − y0). Notice that equation (1) is of
the form ax + by + cz = d, so that it represents the equation of a plane, and that (x0, y0, z0) satisfies
the equation, so that it is a point on the plane.

Exercise 1: Use equation (1) to find the equation of the tangent planes to f(x, y) = 1 − x2 − y2 at
the points (a) (0, 0, 1) and (b) (−2, 1,−4). Give a graphical explanation for your answer to (a).

An Alternative Formula for the Tangent Plane:

Equation (1) can be rewritten as

fx(x0, y0)x + fy(x0, y0) y − z = d , (2)

where d is a constant chosen so that (x0, y0, z0) satisfies the equation. In other words, the tangent
plane is the plane with normal vector n =< fx, fy,−1 > (evaluated at (x0, y0)) passing through the
point (x0, y0, z0). Formula (2) is a little easier to remember than equation (1). We will learn why the
vector n is truly perpendicular to the graph of the function in Section 11.6.
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Linear Approximation to f(x, y) at (x0, y0)

One of the key ideas in Calc 1 is that the tangent line is the best linear approximation to a function.
The same result holds for functions of two or more variables: the tangent plane is the best linear
approximation to a function. The linearization is obtained by solving equation (1) for z and
recalling that z0 = f(x0, y0). This gives

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) . (3)

L(x, y) is called the linearization or linear approximation of f at (x0, y0). Note that it is a linear
function in the variables x and y, that is, L is of the form L(x, y) = ax + by + c for some constants
a, b, and c.

Exercise 2: Find the linearization for f(x, y) = sin(xy2) +
√

4x + y about the point (0, 1). Use it to
estimate f(−0.1, 1.05). Compare your estimate with the actual function value.

Differentiability

Recall from Calc 1 that a function f(x) is differentiable at x0 if f ′(x0) exists. The definition of
differentiability is more complicated for functions of two or more variables, but intuitively, we say that
z = f(x, y) is differentiable at (x0, y0) if the linear approximation is a good approximation for points
near (x0, y0). In other words, differentiable functions are ones where the tangent plane approximates
the function very well.

Example 1: Consider the functions f(x, y) = x2 + y2 and g(x, y) =
√

x2 + y2 near the origin (0, 0).
Both functions have global minima at (0, 0, 0) (see Figure 1). The tangent plane for f at (0, 0) is

Figure 1: The graph of f(x, y) = x2 + y2 and g(x, y) =
√

x2 + y2 along with the plane z = 0.
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simply z = 0 because fx(0, 0) = 0 and fy(0, 0) = 0. As we zoom in on the graph of f near the origin,
it becomes flatter and flatter, and is well-approximated by its tangent plane. Thus f is differentiable
at the origin.

On the other hand, the first partial derivatives of g do not exist at the origin. If we set y = 0,
we have g(x, 0) =

√
x2 = |x|. Since |x| is not differentiable at x = 0 (corner), gx(0, 0) does not exist.

A similar argument applies to gy(0, 0). These facts are apparent in the graph of g near the vertex
of the cone. No matter how much we zoom into the graph of g, there will always be a cone point;
consequently, g is not well-approximated by the tangent plane z = 0, and is thus not differentiable at
the origin.

The following fact is useful for determining whether a function is differentiable or not at a given
point:

Useful Fact: If fx and fy exist and are continuous at (x0, y0), then f is differentiable at (x0, y0).

Exercise 3: Consider the function

f(x, y) =


xy

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Use the limit definition of the partial derivative to show that fx(0, 0) = fy(0, 0) = 0. Conclude that
the tangent plane for f at (0, 0) is z = 0. Is the function differentiable at (0, 0)? Is it continuous at
(0, 0)?
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