MATH 241-02, Multivariable Calculus, Spring 2019
Section 11.7: Maximum and Minimum Values

In this section we learn how to find extrema (min’s and max’s) of a function of several variables. We
also discuss the second derivative test for determining the type of critical point. The big change from
functions of a single variable is the addition of a new kind of critical point, a saddle point.

Local min’s and max’s

Recall from Calc 1 that a function f(z) has a local maximum at z = a if the function values in
a neighborhood of a are all smaller than f(a). Likewise, f(x) has a local minimum at x = a if the
function values in a neighborhood of a are all larger than f(a). An absolute or global min or max is
where the function has its lowest or highest value over the entire domain. It is important to remember
that a function may have its global max or min at an endpoint (on the boundary of the domain).

All of the above theory transfers to functions of more than one variable.

Definition: f(z,y) has a local maximum at (a, b) if f(a,b) > f(x,y) for all (z,y) in a neighborhood
of (a,b). f(z,y) has a local minimum at (a, b) if f(a,b) < f(z,y) for all (z,y) in a neighborhood of
(a,b).

For functions of two variables, a neighborhood of a point is an open disk about the point (open
means not including the boundary). In three variables a neighborhood is an open sphere; in higher
dimensions, it is an open ball. When we are talking about local extrema, we always mean nearby, not
over the entire domain.

Example 1: f(z,y) = 2* + y*

Recall that the graph of f is a bowl opening upwards with bottom resting at the origin (see
Figure 1). Thus, f has a local minimum at (0,0). For any other point, there is always a direction
which will decrease the value of f (follow —V f = —2 <z, y > toward the origin). In fact, f has an
absolute minimum of 0 at the point (0,0) because

f(Oa()) =0 S f(xay) = $2+y2 is true \V/(l’,y) ERQ'

There are no local or absolute max’s for f on R2.
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Figure 1: The function f(z,y) = x? 4+ y* has an absolute minimum of 0 at the oirgin.



Example 2: g(z,y) =1 — 2? — ¢

In this case, the graph of ¢ is a bowl opening downwards (see Figure 2). Here g has a local and
absolute maximum of 1 at the point (0,0). For any other point, there is always a direction which will
increase the value of g (follow Vg = —2 < x,y > toward the origin). There are no local or absolute
min’s for g on R%.

Figure 2: The function g(z,y) = 1 — 2? — 3 has an absolute maximum of 1 at the origin. Notice the
colors in the contour plot are reversed from those of Figure 1.

Finding Local Max’s and Min’s

Recall that the gradient vector V f points in the direction of greatest increase. If a function has
a local maximum at the point (a,b), then there is no direction of greatest increase at (a,b) because
the function is already at a maximum. Thus, we must have V f(a,b) = 0. Similarly, if f has a local
minimum at (a,b), then there is no direction that will decrease the function. Hence —V f(a, b), which
points in the direction of greatest decrease, must vanish. This motivates the following definition.

Definition: A point (a,b) is called a critical point for f(z,y) if Vf(a,b) = 0 or if Vf(a,b) is
undefined. A local max or min must always be a critical point.

Note that this generalizes the definition of a critical point for a function of one variable. To find a
critical point of f(x,y), we must solve the equations f, = 0 and f, = 0 simultaneously. For example,
the function f(x,y) = 2® + y? has f, = 2z and f, = 2y. Solving 2z = 0 and 2y = 0 simultaneously
gives x = 0 and y = 0. Thus (z,y) = (0,0) is the only critical point for f, as expected.

Exercise 1: Find the critical points of f(z,y) = y/22 + y?. Classify each one as a local or absolute
min or max.



Example 3: h(z,y) = 22 — y?

The graph of h is a saddle and the only critical point is at the origin since Vh =<2z, -2y >= 0
holds only if z = y = 0. However, the origin is neither a local min nor a local max because there are
points arbitrarily close to the origin with function values greater than h(0,0) = 0 and other points
with function values less than 0 (notice the different colors in the contour plot in Figure 3 near the
origin). A critical point with this property is called a saddle point.

Definition: The point (a,b) is called a saddle point if it is a critical point and if there are points
(x1,y1) and (x2,y2) arbitrarily close to (a,b) such that f(z1,1y1) < f(a,b) < f(z2,y2).

Figure 3: The function h(z,y) = 2*—y? has a saddle point at the origin because (0, 0) is a critical point
and any neighborhood of the origin contains points with function values above and below h(0,0) = 0.

Important Fact: Notice the difference between the contour plot about a local max or min (elliptical
contours), and the contour plot near a saddle point (hyperbolic contours with an X through the saddle
point). These contour plots are typical for these types of critical points.

The Second Derivative Test

We now learn the analog of the second derivative test used to determine the type of critical point.

Second Derivative Test: Let (a,b) be a critical point of f(x,y). The matrix of second partials
[fmz fxy

i ] evaluated at (a, ) is called the Hessian matrix. Let D = f. f,, — fz, be the determinant
vz Jyy

of this matrix. Then we have
(i) if D > 0 and f,, > 0, then (a,b) is a local minimum;
(i) if D > 0 and f,, <0, then (a,b) is a local maximum;
(iii) if D < 0, then (a,b) is a saddle point;

(iv) if D =0, the test is inconclusive.




Exercise 2: Using the second derivative test, check that the origin is a local minimum for f(z,y) =
22 4+ 2, a local maximum for g(z,y) = 1 — 22 — y?, and a saddle point for h(z,y) = 2% — 3°.

Note that if f,, > 0 and f,,, > 0 (so f is concave up in the z- and y-directions), it does not
necessarily follow that the critical point is a local minimum. This is demonstrated by the next exercise.

Exercise 3: Check that the origin is a saddle point for f(z,y) = 2% — 3zy + 42, even though f,, and
fyy are both positive.

Exercise 4: Consider the function g(z,y) = y> — 12y + 22% + 4z + 4 from computer project #1. Find
the critical points of g and classify them as local min’s, max’s or saddle points.

Exercise 5: Find the shortest distance from the point P(2,—1,0) to the plane 2z +y + z = 9.
Hint: Let (x,y,2) be a point ) on the plane and let d be the distance between ) and P. Write
d = d(z,y) as a function of two variables and find the minimum of d.



Absolute Max’s and Min’s

One important fact about continuous functions is that they attain an absolute max and an absolute
min on a closed and bounded region of R™. A set is closed if it contains all of its limit points (e.g.,
the boundary is included in the set). A set is bounded if it is contained in a disk, that is, the set
does not head off toward infinity in any direction. To find the absolute max or min of a function on
a closed and bounded set S, first locate all the critical points in .S. Then search for extrema on the
boundary of S by substituting the boundary expression(s) into the function. Compare the function
values of all the points located to find the absolute max and min.

Exercise 6: Find the absolute maximum and absolute minimum for f(x,y) =4 — 2? —y* + %yQ over
the solid unit disk D = {(z,y) : 2* + y* < 1}.

Hint: First look for critical points in the interior of D. Then solve 22 + 32 = 1 for one of the variables
and substitute into f to obtain a function of one variable. Find the extrema of this new, reduced
function and compare their function values with those of the critical points in the interior.



