
MATH 134 Calculus 2 with FUNdamentals

Section 9.1: Solving Differential Equations

This sections kicks off a short chapter on differential equations, a very important subject in its own
right. Differential equations are used to model and understand quantities that change over time, and
can be found in a wide variety of fields ranging from physics to medicine to economics to climate
science.

Examples of Differential Equations

A differential equation is an equation involving an unknown function and its derivative(s). Below
are four examples of some well-known differential equations:
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Equation (1) models the amount of money y(t) in an account where interest is compounded con-
tinuously at an annual rate of r%. It also describes a population y(t) that grows exponentially with
growth rate r. Equation (2) is known as the Logistic Population Model, where the population
P (t) levels off at the value K over time (K is known as the carrying capacity). In Equation (3) we
have the Newtonian n-body problem. Here qi is the position of the ith celestial body (e.g., the Sun, a
planet, a comet, or a spaceship) and mi represents the mass of the ith body. The force between each
pair of bodies is given by Newton’s inverse square law. This is actually a system of n differential equa-
tions, each in three dimensions, and is essentially impossible to solve without the help of a computer.
The final equation models the average annual temperature T (y, t) of a planet at latitude y = sin θ. In
all of the above models, t represents time.

We will be focusing on ordinary differential equations (ODE’s), which means the derivatives
involved are always with respect to one quantity (usually time t). Given a differential equation, the
basic aim is to find a function that satisfies the equation. Unlike an algebraic equation, here the goal
is to find a function, rather than a number, that makes the equation true. For example, consider the
differential equation

dy

dt
= −3y .

The function y(t) = e−3t satisfies the ODE, as can be checked by plugging it into both sides of the
equation. We have

dy

dt
= −3e−3t on the left and − 3y = −3e−3t on the right.

Since these are equivalent, y(t) = e−3t is a solution to the ODE. Note that y = 6e−3t is also a solution
because it too satisfies the ODE. In fact, y = ce−3t is a solution for any constant c because

dy

dt
= c · −3e−3t = −3ce−3t = −3y.
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We say that the general solution to the differential equation is y = ce−3t. This is a very important
aspect of the subject: a differential equation has an infinite number of solutions (one for each value
of c).

Exercise 1: Check that y = A sin 2t + B cos 2t satisfies the ODE y′′ + 4y = 0 for any constants A
and B. Here y′′ is the second derivative of y with respect to t.

Separation of Variables

We now explain a simple technique for finding the solution to a differential equation of the form

dy

dt
= f(y) · g(t) .

The idea is to separate the variables onto different sides of the equation and then integrate each
side with respect to the given variable. Then we solve for the dependent variable (in this case y) to
obtain the general solution. Here is a worked out example.

Example 1: Find the general solution to the ODE
dy

dt
= −3t2y using the Separation of Variables

technique (i.e., separate and integrate). Then find the particular solution satisfying the initial condition
y(0) = 5.

Answer: We begin by moving the terms with y to the left-hand side of the equation and those with t
to the right:

dy

dt
= −3t2y =⇒ 1

y
dy = −3t2 dt .

Next we integrate both sides, integrating on the left-hand side with respect to y and integrating on
the right-hand side with respect to t. This gives∫

1

y
dy =

∫
−3t2 dt =⇒ ln |y| = −t3 + c .

Notice that we only have one integration constant c on the right-hand side. If we had a constant on
the left-hand side as well (say d), we would have moved it over to the right-hand side and combined
it with c (replacing c− d with just c). Now we solve for y by raising both sides to the base e:

eln |y| = e−t
3+c = e−t

3 · ec = ce−t
3

=⇒ |y| = ce−t
3

,

where we have replaced the constant ec with just c (they are both arbitrary constants so we opt for
the simplest choice c). Thus, y = ±ce−t3 , which can be condensed to just y = ce−t

3
, with c ∈ R an

arbitrary constant. The general solution is y = ce−t
3

(check that it satisfies the ODE).
To find the particular solution satisfying y(0) = 5, we plug in t = 0 and y = 5 into the general

solution we just found and solve for the constant c. This gives

5 = ce0 =⇒ c = 5 .

Therefore, the particular solution we seek is y = 5e−t
3
.
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Exercises:

2. Use the Separation of Variables technique to find the general solution to
dy

dt
= ry, where r is a

constant. Where have we seen this formula before?

3. Use the Separation of Variables technique to find the general solution to y′ = y2 sin(4x). Then
find the particular solution satisfying y(0) = 1.

4. Find the solution to y′ = (1− t2)(1 + y2) satisfying the initial condition y(0) = −1.

5. Find the solution to
√

1− x2 y′ = 2x
√
y , y(0) = 9.

6. Find the solution to y′ = (y − 2)eπ sec2(y3)+t4 cos(5t), y(1) = 2.

Hint: Don’t separate and integrate; look for a simple function that satisfies both the ODE and
initial condition.
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