MATH 134 Calculus 2 with FUNdamentals

Section 7.7: Improper Integrals
Solutions

Exercises: Determine whether each integral converges or diverges. If the integral converges, find the
value of the integral.
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converges to /4.
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Answer: The integral diverges.

x goes to m/2 as * — oo (horizontal asymptote). Thus the integral
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because the graph of — cost oscillates forever as ¢ — oco. Thus the integral diverges.
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Answer: The integral converges to 1/16.

To compute the integral, use integration by parts with u = z and dv = e ** dx. Then du = 1dx

and v = —}16*4’”. Recall that [ e dx = %ekm + c and blim e = 0 whenever k > 0 (exponential
—00

decay; the graph of e * has a horizontal asymptote at y = 0). We have
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The first limit can be computed using L’Hopital’s Rule:
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Answer: The integral diverges.
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because the graph of Inz has a vertical asymptote at * = 0 since lim Inz = —oo. Therefore
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the integral diverges (area under the curve is infinite in the y-direction).
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This integral can be computed using partial fractions. Notice that the denominator factors as
72 —1 = (z + 1)(x — 1). To compute the partial fraction decomposition, we seek constants A

and B such that
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Multiply both sides by the least common denominator (z 4 1)(z — 1):

($+1)(m—1)( ! 1) :(:E+1)(x—1)( 4 B )
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After cancelling, this gives
1 = A(z—1)+ B(z +1).

To find A and B, plug in the roots of the original denominator: z = 1 and z = —1. Plugging in
x = 1gives 1 = A-0+ B-2, which implies B = 1/2. Plugginginz = —1 gives 1 = A-(—2)+ B-0,
which implies A = —1/2.

To compute the integral, we break the fraction into two pieces:
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The last step above, which follows from the property Ina — Inb = In(a/b), is crucial for what
comes next.
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since Ina’® = blna and 1/2 = 271, The limit above equals %lnl = 0 using L’Hopital’s Rule
(focus on the limit inside the In function). Thus the integral converges to %ln 2.
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Answer: The integral converges to /2.

Notice that the “bad” point is x = 4 since at this value, the denominator of the integrand
becomes 0. The integral can be computed using the trig substitution x = 4sinf. Then dx =



4cosf df and 16 — 22 = 16 — 16sin? @ = 16(1 — sin?#) = 16 cos? §. We find
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