## MATH 134-02, Spring 2014 <br> Probability Density Functions (Section 6.8)

This worksheet focuses on a key type of function in the theory of probability, namely the probability density function (PDF). Probability is a subject that focuses on the likelihood or chance that a particular event will occur. Events are described by continuous random variables, such as the income of someone in the United States, or the GPA of a random Holy Cross student.

The notation used for probabilities is fairly straight-forward. $P(a \leq x \leq b)$ means the probability that the variable $x$ (measuring income, height, GPA, etc.) lies between the values $a$ and $b$. For instance, if $x$ represents the yearly income of a typical US citizen, then

$$
P(20,000 \leq x \leq 30,000)=0.24
$$

means the probability that a random US citizen makes between $\$ 20,000$ and $\$ 30,000$ in one year is $24 \%$. The value of a probability is always a percent, that is, a number between 0 and 1 . The statement

$$
P(x \geq 300,000)=0.01
$$

means that $1 \%$ of the US population has an income greater than $\$ 300,000$.

## Probability Density Functions

The primary purpose of a probability density function is to compute probabilities. This is done by evaluating a definite integral.
Definition 0.1. A probability density function $f(x)$ satisfies the following:
(i) $f(x) \geq 0$
(ii) $\int_{-\infty}^{\infty} f(x) d x=1$
(iii) $P(a \leq x \leq b)=\int_{a}^{b} f(x) d x$.

## Notes about PDF's:

- The third item is the real point of the definition. We can compute the probability that $x$ lies between $a$ and $b$ by evaluating the integral of $f$ from $a$ to $b$. In other words, the probability that $x$ lies between $a$ and $b$ is equal to the area under the curve from $a$ to $b$.
- The first item in the definition states that the graph of $f$ cannot lie below the $x$-axis. This means that $\int_{a}^{b} f(x) d x \geq 0$, so that $P(a \leq x \leq b) \geq 0$. This is to be expected because the value of a probability should always be positive or 0 .
- The second item in the definition states that the total area under the graph of $f$ is equal to 1 . Taken with the third item in the definition, this means that $P(-\infty<x<\infty)=1$, which makes logical sense; the probability that a real random variable lies somewhere on the real line is $100 \%$. Moreover, since $f(x) \geq 0$, and the total area under the graph of $f$ is $1, \int_{a}^{b} f(x) d x \leq 1$ always. It follows that

$$
0 \leq \int_{a}^{b} f(x) d x \leq 1 \quad \text { or } \quad 0 \leq P(a \leq x \leq b) \leq 1
$$

which agrees with the fact that probabilities are always percentages between $0 \%$ and $100 \%$.

## Exercises

1. Show that $f(x)=\left\{\begin{array}{cc}0 & \text { if } x<0 \\ k e^{-k x} & \text { if } x \geq 0\end{array}\right.$ is a probability density function for any constant $k>0$. This PDF is known as the exponential density function.
2. Suppose that the probability a telephone call made in the US lasts between $a$ and $b$ minutes is modeled by the exponential PDF with $k=1 / 4$.
a) What is the probability that a call lasts between 2 and 3 minutes?
b) What is the probability that a call lasts over an hour?
c) Find the value of $T$ so that the probability of a call selected at random lasting longer than $T$ minutes is $50 \%$. $T$ is known as the median.

## Mean and Median

There are two important quantities associated to any probability density function, called the mean and the median. Intuitively, the mean measures the average value of $x$ over the long run. It is the average value of our random variable $x$. The median is the value that divides the probability in half. In other words, the probability of $x$ being less than the median equals the probability that $x$ is greater than the median equals $1 / 2$. Geometrically, the median is the value on the $x$-axis that divides the area under $f$ in half. Here are the integral definitions.

Definition 0.2. (i) The mean of $f$, denoted as $\mu$ (pronounced " $m u$ "), is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x
$$

It is the average value of the random variable $x$ over the long run.
(ii) The median of $f$, denoted $m$, is the $x$-value that divides the area under $f$ in half. It is found by solving

$$
\int_{m}^{\infty} f(x) d x=\frac{1}{2} \quad \text { or } \quad \int_{-\infty}^{m} f(x) d x=\frac{1}{2}
$$

for $m$.
3. Show that $f(x)=\left\{\begin{array}{cl}\frac{1}{2 \pi} \sqrt{4-x^{2}} & \text { if }-2 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array} \quad\right.$ is a probability density function, and then calculate its mean and median. Hint: Draw a graph of $f$ and interpret the integrals in terms of area.
4. Find the mean and median of the $\operatorname{PDF} g(x)=\left\{\begin{array}{cl}2 x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise. }\end{array}\right.$
5. Show that the mean of the exponential density function is $1 / k$, and that its median is $\ln (2) / k$.

