
MATH 133 Calculus 1 with FUNdamentals

Worksheet for Sections 2.1 and 2.2

Section 2.1: Limits, Rates of Change, and Tangent Lines

Velocity

Sir Isaac Newton (1643–1727), one of the co-founders of Calculus, basically invented the subject to
verify Kepler’s laws of planetary motion (e.g., a planet travels around the sun in an elliptical path).
In order to begin, Newton needed to understand the mechanics of motion, in particular, the velocity
of an object (in his case it was a celestial body such as a planet). This section is concerned with
distinguishing between the average velocity and instantaneous velocity of an object. The ideas
apply to other functions that change (e.g., population growth, temperature, or the value of a stock),
but we will focus on velocity because it is one of the most familiar rates of change.

It is traditional to use the variable s to represent the position of an object and use t for time.
Suppose we have a function s(t) that describes the position of an object at time t. The input variable
is time and the output variable provides the position. The average velocity of the object is given by
the ratio of the change in position to the change in time. Recall that ∆ =“Delta” means change.

average velocity =
∆s

∆t
=

change in position

change in time
.

You should be familiar with velocity from traveling in a car. An average velocity of 70 miles/hour
means you travel approximately 70 miles every hour. In terms of s(t), the average velocity over the
interval between two different times t1 and t2 is given by

average velocity over t1 ≤ t ≤ t2 =
∆s

∆t
=

s(t2)− s(t1)
t2 − t1

= slope of secant line.

Figure 1: The average velocity over the time interval [t1, t2] is equal to the slope of the line between
the two points on the graph of s(t) at t = t1 and t = t2. This line is called the secant line.
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To find the instantaneous velocity at time t = t1, we compute the average velocity over smaller and
smaller time intervals around t1. In theory, the values of the average velocities will begin to limit on
a specific value, and this will be called the instantaneous velocity. Graphically, this is best visualized
by sliding the point at t = t2 down the curve s(t) toward the point at t = t1. As we slide, we compute
the slope of the secant line at each step. The limiting value of these slopes (assuming this limit exists)
is defined to be the slope of the tangent line. This is the fundamental idea behind all of Calculus 1:

average velocity = slope of secant line = msec

instantaneous velocity = slope of tangent line = mtan,

where
mtan = lim

t2→t1
msec .

The notation “lim” stands for limit and t2 → t1 means to evaluate the given quantity (in this case,
the slope of the secant line) repeatedly as t2 approaches t1. If the limit exists, then the values will
approach some specific number, and this number is known as the limit. Limits are at the heart of
calculus and are the main focus of Chapter 2.

Exercise 1: Suppose that s(t) = t2 + 4t+ 3 describes the position of an object (in feet) at time t (in
seconds). Compute the average velocity over each of the following time intervals:

(a) [1, 2]

(b) [1, 1.1]

(c) [0.99, 1]

(d) [0.999, 1]

(e) Based on the results above, what is the instantaneous velocity at time t = 1? In other words,

find the value of lim
t→1

s(t)− s(1)

t− 1
.
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Section 2.2: Limits: A Numerical and Graphical Approach

For the previous problem, we computed that

lim
t→1

t2 + 4t− 5

t− 1
= 6.

If we define the function f(t) = t2+4t−5
t−1 , then we write lim

t→1
f(t) = 6. Mathematically speaking, this

is read, “As t approaches 1, the limit of f(t) approaches 6.” Simply put, as t (the input) gets really,
really close to 1, f(t) (the output) gets really, really close to 6.

It is important to note that for this example, although f(1) is undefined (can’t divide by 0), the
limit still exists. When computing the limit of a function, we only care about the value that the
function approaches as we get close to the point in question. The actual value of the function (or
lack thereof) at the destination point is irrelevant.

For example, for the function f(x) graphed below, we have lim
x→4

f(x) = 5/2, even though f(4)

does not exist. Thus, even if the graph has a hole at the destination point (x = 4), the limit can still
exist.

Left- and right-hand limits

Another important fact about limits is that they must be approaching the same value from both
directions. For the graph below, lim

x→4
f(x) does not exist because the left-hand limit at x = 4 equals

5/2, while the right-hand limit equals 5. The left-hand limit is computed by only considering the
function values for x < 4, while the right-hand limit is computed by restricting to function values for
x > 4. These values must be the same for the limit to exist. The notation is shown below.

Left-hand limit: lim
x→4−

f(x) = 5/2 Right-hand limit: lim
x→4+

f(x) = 5

3



Key Fact: lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

Exercises:

2. Evaluate each of the following limits using the graph of f(x) shown below.

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) Find f(2).

3. Find each of the following limits. Note that ∞ or −∞ are acceptable answers.

(a) lim
x→3−

1

x− 3
(b) lim

x→3+

1

x− 3
(c) lim

x→3

1

x− 3
(d) lim

x→0+
lnx

4. Use a calculator to find the value of lim
θ→0

sin θ

θ
. Make a table showing the function values for

θ = ±0.1,±0.01,±0.001. Does your answer depend on whether your calculator is in degrees or
radians?

5. Use a calculator to find the value of lim
x→0

2x − 1

x
. Give your answer to five decimal places.

6. Use a graph to find the following limits.

(a) lim
x→0

sin

(
1

x

)
(b) lim

x→0
x sin

(
1

x

)
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