
MATH 136-04: Advanced Placement Calculus

Infinite Series and Tests for Convergence

Definition: Convergence of an Infinite Series

The infinite series
∞

∑

n=1

an converges if and only if the sequence of partial sums sn = a1+a2 + · · ·+an

converges. In this case, we say that

∞
∑

n=1

an = S if and only if lim
n→∞

sn = S.

One metaphor I like for infinite series (thanks to Prof. Levandosky) is the infinite shopping cart
going through check-out at a supermarket. Each item you purchase is a term an. As the scanner
records the price of each item, the subtotal (eg. sum of all items purchased thus far) is displayed
on the screen for you and the cashier to see. The list of numbers being displayed on the screen
is precisely the sequence of partial sums. Each item you purchase increases your total (an > 0
and sn > sn−1) while if you have any coupons or store credit, this will reduce your total (an < 0
and sn < sn−1). As you watch your infinite number of purchases go by, the question is whether
the sequence of sub-totals converges or not. If it diverges, you either get in an argument with the
cashier over the total price (because it never settles down to a particular value) or you go broke
(because the sum is infinite).

Most theorems about infinite series can be deduced by applying the correct theorem about
converging sequences to the sequence of partial sums. Note that it is the tail of the infinite series
that matters when trying to determine convergence. Even if the first 2 million terms in the series
are extremely large, the series can still converge if the remaining terms approach zero fast enough.

Definition: Absolute and Conditional Convergence

An infinite series

∞
∑

n=1

an converges absolutely if the series

∞
∑

n=1

|an| converges. On the other hand,

the series converges conditionally if

∞
∑

n=1

an converges and

∞
∑

n=1

|an| diverges.

Note that an ≤ |an| always, so that considering the series of absolute values is considering a
series with larger terms. Having a mixture of positive and negative terms in a series (eg. alternating
+ − + − + − . . .) is useful for convergence as it helps the sequence of partial sums converge. Note
also that if a series has only positive terms, or a finite number of negative terms, then absolute
convergence is equivalent to regular convergence.

The following are all examples of absolutely convergent series:

∞
∑

n=1

1

n2
,

∞
∑

n=1

(−1)n

n2
,

∞
∑

n=1

e−n.

The standard example of a conditionally convergent series is the Alternating Harmonic Series,
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defined as
∞

∑

n=1

(−1)n+1

n
= 1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ − · · ·

This series converges by the Alternating Series Test (see below) and its sum is exactly ln 2. However,
taking absolute values of the terms gives the Harmonic Series which diverges (as proved in class).
Another example of a conditionally convergent series is

∞
∑

n=1

(−1)n+1

√
n

.

1. Geometric Series (Theorem 4, p. 567)

A geometric series with ratio r and first term a,

∞
∑

n=1

arn−1 = a + ar + ar2 + ar3 + · · · ,

converges if and only if |r| < 1. In the case of convergence, the sum is a

1−r
.

Due to the simple structure of the terms in a geometric series (the next term is r times the
previous one), we can obtain explicit formulas for the partial sums and for the infinite sum
itself. This is actually quite rare. For most convergent infinite series, it is far easier to show
convergence than it is to find an explicit formula for the sum of the series.

2. The nth Term Test (Theorems 6 and 7, p. 570)

If lim
n→∞

an 6= 0, then the infinite series

∞
∑

n=1

an diverges. Equivalently, if the infinite series

∞
∑

n=1

an converges, then lim
n→∞

an = 0.

This is really a test for divergence. If the terms we continue to add to the series are not
approaching zero, then the partial sums will continue to grow (or perhaps oscillate), and
the series will diverge. From the shopping cart perspective, if we keep adding items whose
price is not getting close to zero, then our total will either grow forever or perhaps oscillate
continually.

Very Important: The converse of the n-th term test is false! Just because the terms in
an infinite series go to zero, does not mean the series converges. The counterexample is
the all-important Harmonic Series which has terms converging to zero but still sums to
infinity. Having the terms in an infinite series head to zero is necessary for convergence but
not sufficient. You need to apply some other test to check for convergence.
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3. A Summation Theorem for Series (Theorem 8, p. 570)

If

∞
∑

n=1

an = A and

∞
∑

n=1

bn = B, then

(i)

∞
∑

n=1

can = cA ∀c ∈ R (constants pull out)

(ii)

∞
∑

n=1

(an + bn) = A + B (the series of a sum equals the sum of the series)

4. The Integral Test (p. 577)

Suppose that

∞
∑

n=1

an is an infinite series with an > 0 ∀n ∈ N. Let f : [1,∞) → R be the

function obtained by replacing the n in the formula for an with the variable x. Suppose that
f is a decreasing, continuous function with lim

x→∞

f(x) = 0. Then,

∞
∑

n=1

an converges if and only if

∫

∞

1

f(x) dx converges.

This test gives a quick proof of the p-series test and another argument for the divergence of
the harmonic series.

5. The p-series Test (p. 578)

The series
∞

∑

n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

This is particularly useful when applying the comparison test. Note that the case on the
border is when p = 1, which is the harmonic series. Once again, we see the importance of this
series.

6. The Comparison Test (p. 579)

Suppose that {an} and {bn} are two sequences satisfying 0 ≤ an ≤ bn, ∀n ∈ N. If

∞
∑

n=1

bn

converges, then

∞
∑

n=1

an converges. Equivalently, if

∞
∑

n=1

an diverges, then

∞
∑

n=1

bn diverges.

This is pretty clear. Given two infinite series of positive terms, if the one with bigger terms
converges, so does the smaller one. The contrapositive is that if the smaller one diverges,
than so must the bigger one. It is worth pointing out that this theorem is still valid if the
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sequences obey 0 ≤ an ≤ bn, ∀n ≥ N for some natural number N , rather than ∀n ∈ N. As
long as the two series eventually obey the inequality, then the conclusion holds. Remember,
it is the tail of the infinite series that matters not a finite number of terms at the start.

7. The Alternating Series Test (p. 585)

Suppose that {an} is a decreasing sequence of non-negative numbers that converges to 0.

Then the alternating series
∞

∑

n=1

(−1)n+1an converges.

A decreasing sequence is one for which an+1 ≤ an, that is, the next term in the sequence
is smaller or equal to the previous one. This is the best test to apply when considering the
convergence of an alternating series. By plotting the sequence of partial sums on a number
line, it is easy to believe the veracity of this test. Note the difference between this test and
the n-th term test.

8. The Absolute Convergence Test (p. 588)

If the infinite series
∞

∑

n=1

|an| converges, then
∞

∑

n=1

an converges as well.

This is a useful theorem to apply when considering series that have some negative terms.
The converse is false, as shown by the alternating harmonic series. In fact, any conditionally

convergent series would violate the converse.

9. The Ratio Test (p. 589)

Suppose that

∞
∑

n=1

an is an infinite series with an 6= 0 ∀n ∈ N. If

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= r < 1,

then the series converges absolutely. If the limit above is r > 1 (or infinite), the series diverges.
If the limit above is r = 1, no conclusion can be drawn.

This test is particularly useful with terms involving n! or exponential functions such as 2n. It
is also the test applied to determine the radius of convergence of a Power Series.
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