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Short Communication

A Bayesian approach to detecting change points in climatic
records

Eric Ruggieri*
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ABSTRACT: Given distinct climatic periods in the various facets of the Earth’s climate system, many attempts have been
made to determine the exact timing of ‘change points’ or regime boundaries. However, identification of change points is
not always a simple task. A time series containing N data points has approximately Nk distinct placements of k change
points, rendering brute force enumeration futile as the length of the time series increases. Moreover, how certain are we
that any one placement of change points is superior to the rest? This paper introduces a Bayesian Change Point algorithm
which provides uncertainty estimates both in the number and location of change points through an efficient probabilistic
solution to the multiple change point problem. To illustrate its versatility, the Bayesian Change Point algorithm is used to
analyse both the NOAA/NCDC annual global surface temperature anomalies time series and the much longer δ18O record
of the Plio-Pleistocene. Copyright  2012 Royal Meteorological Society
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1. Background

The time series that record various aspects of the Earth’s
climate system are widely recognized as being non-
stationary (Hays et al., 1976; Imbrie et al., 1992; Karl
et al., 2000; Tomé and Miranda, 2004; Raymo et al.,
2006; Beaulieu et al., 2010; among others). Several meth-
ods have been implemented to solve the ‘change point’
problem for shorter climatic time series. For example,
Karl et al. (2000) fixes the number of discontinuities and
then uses both Haar (square) wavelets and a brute force
minimization of the residual squared error for the place-
ment of piecewise continuous line segments. Similar to
this second approach, Tomé and Miranda (2004) auto-
mate the creation of a matrix of over-determined linear
equations and consecutively solve this system for every
possible combination of change points that satisfies their
constraints. To deal with the exponentially increasing
number of change point solutions associated with longer
time series, dynamic programming change point algo-
rithms have been developed that reduce the computational
burden to a more manageable size (Ruggieri et al., 2009).
Branch and Bound techniques (Aksoy et al., 2008) also
aim to reduce the computational burden by screening and
eliminating sub-optimal segmentations.
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Alternatively, Seidel and Lanzante (2004) first identify
change points by visual inspection and then refine their
location so as to: (1) minimize the number of change
points; (2) be consistent with previous research; and
(3) have support from an iterative non-parametric statis-
tical method (Lanzante, 1996). This iterative approach
adds one change point at a time, testing each for statis-
tical significance. In an attempt to minimize the a priori
assumptions on the number and location of change points,
Menne (2006) proposes a semi-hierarchic splitting algo-
rithm to place the change points. Here, the placement of
a change point splits the time series, but each splitting
step is followed by a merge step to determine whether
change points chosen earlier are still significant.

Each of these methods returns a single, ‘optimal’
solution. But if there are ∼N k possible placements of k

change points in a time series of length N , how confident
are we that this one solution is vastly superior to any
other, especially one that may only differ by a single data
point? A Bayesian approach to the change point problem
can give uncertainty estimates not only for the location,
but for the number of change points as well.

For computational reasons, Markov chain Monte Carlo
(MCMC) (Barry and Hartigan, 1993; Lavielle and Lebar-
bier, 2001; Zhao and Chu, 2006) and Gibbs Sampling
(Stephens, 1994; Khaliq et al., 2007) approaches have
dominated Bayesian solutions to the multiple change
point problem. However, these techniques only approxi-
mate the posterior distribution of change point locations
and leave open difficult questions of convergence.
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Bayesian change point algorithms that do not rely on
MCMC procedures include Hannart and Naveau (2009)
who use Bayesian Decision Theory to minimize a cost
function for the detection of multiple change points
and Beaulieu et al. (2010) who probabilistically locate
multiple change points through a splitting algorithm akin
to Menne (2006), but without the corresponding merge
step. However, these approaches are limited to identifying
changes in mean. Fearnhead (2006) developed a recursive
algorithm similar to the Forward/Backward equations of a
Hidden Markov Model which Seidou and Ouarda (2007)
generalized to fit a regression model. With respect to the
algorithm presented here, there are two main differences:
the nature of the recursion and the prior distributions
on the model parameters. Seidou and Ouarda (2007)
require two training data sets and a prior distribution on
the distance between adjacent change points (an implicit
assumption on the number of change points in a time
series). Our approach requires neither.

In what follows, we describe an exact Bayesian solu-
tion to the multiple change point problem that uses
dynamic programming recursions to reduce the computa-
tional burden down to a point where a time series of any
length can be analysed for an arbitrary number of change
points. The key to dynamic programming is to break the
multiple change point problem down into a set of progres-
sively smaller sub-problems, the smallest of which (the
placement of a single change point) can easily be solved.
The full solution can then be obtained by efficiently piec-
ing together the solutions to these sub-problems. The
Bayesian Change Point algorithm can detect changes in
the parameters of any regression model being used to
describe a climatic time series, be it changes in the mean,
trend, and/or variance of the climate signal. After describ-
ing its implementation, the Bayesian Change Point algo-
rithm is used to analyse both the NOAA/NCDC global
surface temperature anomalies time series and the δ18O
proxy record of the Plio-Pleistocene. For the latter, the
goal is to show how the algorithm can be applied to very
long time series and search for more than just changes in
trend. The ability to provide uncertainty estimates in the
number and timing change points is a key contribution
of the Bayesian Change Point algorithm and a significant
advantage over a frequentist approach.

2. Description of the algorithm

Given the dependent variable, Y , and m known predictor
variables X1, . . . , Xm, linear regression methods are
based upon the statistical model

Y =
m∑

l=1

βlXl + ε (1)

where βl is the lth regression coefficient and ε is a
random error term. For a time series, the predictors,
Xl , are functions of time. Suppose that the change
point model contains k change points and that the

regression model shown above applies between each
consecutive pair of change points whose locations are
C = {c1, c2, . . . , ck}. The time series is bounded by c0 =
1, the first data point in the time series, and ck+1 =
N , the final data point in the time series. To place a
single change point, the probability of the data given
the regression model [f (Yi:j ) = f (Yi:j |X)] must first
be calculated for each and every possible sub-string of
the data, Yi:j = {Yi, Yi+1, . . . , Yj−1, Yj }, 1 ≤ i < j ≤ N .
For example, if the error terms, ε, are assumed to be
independent, normally distributed random variables, then
f (Yi:j ) is multivariate Normal. Let dmin be the minimum
distance between adjacent change points, I be the identity
matrix, and σ 2 be the residual variance. Then:

for i = 1 to N

for j = i + dmin to N

Yi:j |X ∼ N(Xβ, σ 2I )

endfor

endfor

Starting from one end of the time series, we can find
the probability of any prefix of the data (Y1:j , the
first j data points in a time series) containing one
change point by multiplying together the probabilities of
two non-overlapping substrings (calculated above) and
summing (marginalizing) over all possible placements
of the change point. No further information about its
location will be needed to solve the multiple change
point problem. Let Pk(Y1:j ) = Pk(Y1:j |X) be the prob-
ability density of the first j observations containing k

change points given the regression model. When k =
1 this gives, P1(Y1: j ) =

j−1∑
v=1

f (Y1: v) × f (Yv+1: j ) Next,

to find the probability density of a prefix of the
time series with two change points, P2(Y1:j ), multiply
together the probability density of a prefix containing
one change point, P1(Y1:v), and a non-overlapping sub-
string which fills out the rest of the prefix, f (Yv+1:j )

(both previously calculated) and then marginalize over
all possible placements of the second change point:

P2(Y1: j ) =
j−1∑
v=1

P1(Y1: v) × f (Yv+1: j ). The process con-

tinues, Pk(Y1: j ) =
j−1∑
v=1

Pk−1(Y1 : v) × f (Yv+1: j ), until k =
kmax, the maximum number of change points allowed.

Inferences about the parameters, including the loca-
tions of the change points, can be made by using Bayes
Rule to sample from the exact posterior distribution of
the quantities of interest. Sampling a set of solutions is
straightforward and allows us to address questions related
to uncertainty. First, a probabilistic sample of the num-
ber of change points is drawn, then their locations are
recursively sampled, and finally, the parameters of the
regression model can be sampled for each regime defined
by the locations of the change points. The three steps of
the Bayesian Change Point algorithm are detailed below:
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[1] Calculating the Probability Density of the Data
f(Yi ,j |X):
Let X = {X1, . . . , Xm} be the fixed set of regres-
sors included in the regression model (this assump-
tion can be relaxed by using a variable selection
procedure to select only a subset of the regres-
sors between each pair of consecutive change
points). Our regression model assumes that the
error term, ε, is an independent, mean zero nor-
mally distributed random variable. Therefore, the
likelihood function for a substring of the data,
Yi:j , is Y |β, σ 2, X∼N(Xβ, σ 2I ), where I is the
identity matrix. Conjugate priors were used for
the vector of regression coefficients, β, and for
the residual variance, σ 2. Specifically, β is mul-
tivariate Normal, β|σ 2∼N(0, σ 2/k0), where k0 is a
scale parameter relating the variance of the regres-
sion coefficients to the residual variance and σ 2 ∼
Scaled − Inverse χ2(v0, σ

2
0 ), where v0 and σ 2

0 act
as pseudo data points (essentially, unspecified train-
ing data) – v0 pseudo data points of variance σ 2

0 .
Let n be the number of data points in a substring.
Then we can define the parameters for the posterior
distribution on σ 2 and β|σ 2 as vn = v0 + n, β∗ =
(XTX + k0I )−1XTYi: j , sn = (Yi:j − Xβ∗)T(Yi:j −
Xβ∗) + k0β

∗Tβ∗ + v0σ
2
0 ). β∗ represents the pos-

terior mean of the vector of regression coeffi-
cients, while vn and sn are the parameters for
the posterior distribution on the residual vari-
ance, σ 2. To find the marginal probability of
a substring of the data, Yi:j , we integrate out
the nuisance parameters, β and σ 2, f (Yi:j |X) =
∫∫ f (Yi:j |β, σ 2, X)f (β|σ 2, X)f (σ 2|X)dβdσ 2,
which yields:

f (Yi:j ) = f (Yi:j |X)

=
(
v0σ

2
0 /2

)v0/2
�(vn/2)(k0)

m/2

� (v0/2) (sn/2)vn/2 (2π)n/2|XTX + k0I |1/2

(2)

This quantity is calculated and then stored in
memory for all possible substrings of the data, Yi:j ,
with 1 ≤ i < j ≤ N .

[2] Forward Recursion [Dynamic Programming]:
Let Pk(Y1:j ) be the density of the data [Y1 . . . Yj ]
with k change points. Define

P1(Y1: j ) =
∑
v<j

f (Y1:v)f (Yv+1:j ) (3)

and

Pk(Y1:j ) =
∑
v<j

Pk−1(Y1:v)f (Yv+1: j ) (4)

for k < j ⇐ N .

[3] Stochastic Backtrace via Bayes Rule:
In order to have a completely defined partition
function (or normalization constant), f (Y1:N), two
additional quantities need to be specified: (1) a
prior distribution on the number of change points,
f (K = k); and (2) a prior distribution on the
locations of the change points, f (c1, c2, . . . ck|K =
k), that is,

f (Y1:N) =
kmax∑
k=0

∑
c1...ck

f (Y1:N |K = k, c1 . . . ck)

× f (K = k, c1 . . . ck) (5)

The inner summation is exactly the quantity calcu-
lated on the Forward Recursion step (Equation (4)).
As for f (K = k, c1, . . . , ck), a priori, we place
half the probability mass on zero change points
[f (K = 0) = 0.5] and the other half on a non-zero
number of change points, divided uniformly across
the possible values of k [f (K = k) = 0.5/kmax,
where kmax is the maximal number of allowed
change points]. Additionally, we assume that all
change point solutions with exactly k change points
are equally likely, that is f (c1, . . . , ck|K = k) =
1/

(
N

k

)
.This last assumption is a combinato-

rial prior that directly accounts for the greater
number of solutions as the number of change
points increases. Together, f (K = 0) = 0.5 and for
k > 0,

f (K = k, c1, . . . , ck) = 0.5

(kmax)

(
N

k

) (6)

As this prior distribution is uniform, it does not
have to be included in the Forward Recursion, but
can instead be factored out and multiplied in at this
point. However, use of a non-uniform prior must be
incorporated in to the Forward Recursion step. With
this quantity specified, we can now draw samples
of the parameters of interest.

[3.1] Sample a Number of Change Points, k:
The Forward Recursion calculates the density of
the entire data set, Y1:N , given k change points,
Pk(Y1:N) = f (Y1:N |K = k). Using Bayes Rule, the
posterior distribution on the number of change
points given the data is:

f (K = k|Y1:N) = Pk(Y1:N)f (K = k, c1, . . . , ck)

f (Y1:N)
(7)

with f (Y1:N) defined in Equation (5).
[3.2] Sample the Locations of the Change Points, ck:

For k = K,K − 1, . . ., 1, the posterior distribution
on the location of the change points is:

f (ck|ck+1) = Pk−1(Y1 : v)f (Yv+1:ck+1)∑
v∈[k−1,ck+1)

Pk−1(Y1:v)f (Yv+1:ck+1)

(8)
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When k = 1, P0(Y1 : v) = f (Y1 : v) defined in (Equa-
tion (2))

[3.3] Sample the Regression Parameters for the Inter-
val between Adjacent Change Points ck and ck+1:
The posterior distribution for the residual variance
is:

σ 2|Y ∼ Scaled − Inverseχ2(vnsn/vn) (9)

and the posterior distribution for the coefficients of
the regression model is:

β|σ 2, Y ∼ N(β∗, (XTX + k0I )−1σ 2) (10)

where β∗, sn and vn are defined in Step 1: Calcu-
lating the Probability Density of the Data.

Calculating the probability density of the data is O(N2),
while the Forward Recursion and Stochastic Backtrace
steps are both O(kN ). Therefore, the algorithm has a total
time complexity of O(N2).

To run the Bayesian Change Point algorithm, a small
number of parameters need to be set by the user,
including kmax, dmin, and three hyperparameters needed
to describe the prior distribution of the regression coef-
ficients and the residual variance. A description of these
variables and their values can be found in the Appendix.

3. Simulation of a homogeneous time series – no
change points

One hundred data sets of size N = 250 were generated
according to Yi = β1 + β2xi + εi , where xi represents
the index of the data point, εi is a random error term
of standard deviation 2, and β1 [∼Uniform (−10, 10)]

and β2 [∼Uniform (−0.10, 0.10)] represent the intercept
and trend, respectively. With kmax = 5 and dmin = 5,
the average posterior probability of zero change points
for these one hundred data sets was 0.9996. A specific
example, in which Yi = −6.25 + 0.05xi + εi is shown in
Figure 1. Here, all 500 independently sampled solutions
contained zero change points. Had a change point been
selected, its most probable location was position 6. Thus,
the Bayesian Change Point algorithm is unlikely to
produce a change point when none exists.

The ability to detect change points depends on the
signal to noise ratio, the magnitude of the change, and
the distance between adjacent change points. To highlight
the algorithm’s ability to detect change points, we analyse
two climatic time series and compare our findings with
previously detected change points in these series.

4. Results

4.1. NOAA/NCDC annual global surface
temperature anomalies

A visual inspection of the NOAA/NCDC global surface
temperature (combined land and ocean) anomalies from
1880 to 2010 (Quayle et al., 1999) clearly shows that
the increase in temperature is not constant, but that most
of the warming takes place during two distinct periods,
one beginning around 1910 and the other during the
1970s (Karl et al., 2000; Seidel and Lanzante, 2004;
Menne, 2006). This suggests three change points due
to the fairly flat regime between the two warming
periods. To fit the global surface temperature record, we
assume that each temperature regime can be fit by a
single linear trend, Y = β1 + β2X and set kmax = 6 as
a reasonable maximum for the number of change points.

Figure 1. Simulation of a Homogeneous Time Series. A time series of size N = 250 was generated according to Yi = −6.25 + 0.05xi + εi ,
where xi represents the index of the data point and εi is a random error term of standard deviation 2 (Solid line, Blue). The green (dotted) line
represents the average model produced by the Bayesian Change Point algorithm. No change points were identified by any of the 500 sampled

solutions. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

Copyright  2012 Royal Meteorological Society Int. J. Climatol. (2012)
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Research from Karl et al. (2000) and Tomé and Miranda
(2004) suggest change points be separated by a minimum
of 15 years (dmin). Our analysis of the temperature
record reflects this constraint. However, the results are
essentially unchanged if this constraint is eliminated.

The Bayesian Change Point algorithm indicates that
there are most likely three change points in the NOAA/
NCDC record (Table I). Five hundred solutions were
independently sampled from the exact posterior distri-
bution. Figure 2 shows the average of the 500 sampled
solutions along with the locations of the change points,
displayed as spikes at the bottom of the figure. The height
of these ‘spikes’ is indicative of the probability of select-
ing a change point at a specific point in time. Tall thin
‘spikes’ represent relative certainty in the timing of a
change point while shorter and wider ‘spikes’ indicate
more uncertainty.

Table I. The posterior distribution of selecting a given number
of change points for the NOAA/NCDC global surface temper-

ature anomalies time series (1880–2010).

Number of change points Posterior probability

0 0.0000
1 0.0006
2 0.2037
3 0.7954
4 0.0004
5 0.0000
6 0.0000

The timing of the change points matches well with pre-
vious studies (Table II). In all 500 sampled solutions, a
change point was selected around 1906 (posterior proba-
bility of 59.4% for 1906–1907). A 95% credibility limit
for this first change point (1902–1914) encompasses the
dates of similar change points identified by previous stud-
ies (Table II). In 495 of the 500 samples (99.0%) a second
change point was selected around 1945 [95% Credibil-
ity Limit 1944–1946], ending the trend of increasing
temperature that began around 1910 [0.102 K/decade].
Only the change point identified by Karl et al. (2000)
falls outside of this credibility limit (Table II). A third
change point was sampled for 79.6% of solutions (398
of 500), with approximately one third of the proba-
bility mass around 1963 and the remaining two thirds

Table II. Comparing the placement of change points by the
Bayesian change point algorithm to previous studies of the
NOAA/NCDC annual global surface temperature anomalies

time series (1880–2010)a.

Study Change points

Karl et al. (2000) 1910 1941 1975
Seidel and Lanzante (2004) n/a 1945 1977
Menne (2006) 1902 1945 1963
Ruggieri et al. (2009) 1906 1945 1963
Bayesian Change Point 1906 1945 1963 or 1976

a Seidel and Lanzante (2004) do not identify a change in the first decade
of the 20th century. In this study, a third change point is selected for
only 79.6% of the sampled solutions and it is located at either 1963 or
1976, indicating the importance of both changes in the record.

Figure 2. The NOAA/NCDC Global Surface Temperature Anomalies Time Series. The blue (solid) line represents the NOAA/NCDC global
surface temperature anomaly time series, while the green (dashed) line represents the model predicted by the Bayesian Change Point algorithm.
The height of the (red) ‘spikes’ at the bottom of the figure indicates the probability of a change point being selected at each time point. Tall, thin
‘spikes’ indicate relative certainty in the timing of a change point, while shorter and wider ‘spikes’ indicate more uncertainty in the timing of a
change point. Global surface temperatures increased at a rate of 0.102 K/decade from 1906 to 1945 and at a rate of 0.145 K/decade from 1976
to present. An abrupt drop in temperatures in 1945 followed by relatively stable temperatures from 1946 to 1976 (+0.04 K/decade) separates

these two climate regimes. This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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around 1976. At this point global temperatures increase
to the present day at a rate of 0.145 K/decade. The erup-
tion of Mt Agung in 1963 (Ivanov and Evtimov, 2009)
and a 1976 climate shift apparent in the Pacific Ocean
(Trenberth and Hurrell, 1994) have been cited as abrupt
changes in the climate system corresponding to these
dates. The 95% credibility limit for this third change point
(1963–1986) includes the all shifts identified by previ-
ous studies (Table II), but is much wider than for the first
two change points due to its bimodal nature. Because the
two modes are not well separated, it is not possible to
determine a separate credibility interval for each of the
modes.

Because of the presence of autocorrelation in the global
temperature record, Karl et al. (2000), Seidel and Lan-
zante (2004), and Menne (2006) first sought to objec-
tively identify change points, and then model the residual
error within each regime using an autoregressive func-
tion. The Bayesian Change Point algorithm can be used
without change in a similar manner. In this situation,
there would be no impact on the posterior probability or
credibility intervals of change points. However, a general
caution is that ignoring positive autocorrelation can yield
a higher false alarm rate (as a run of positive or negative
residuals can be misinterpreted as a change in mean
and/or trend) while ignoring negative autocorrelations
may miss a true change point – effects which become
more pronounced as the autocorrelation increases (Lund
et al., 2007). Additionally, in the presence of autocorre-
lated errors, regression coefficients (β) remain unbiased,

but the standard error of these parameters may be under-
estimated. Taken together, the presence of autocorrelation
may in some instances lead to an overly optimistic place-
ment of change points. For the global temperature record,
the first order autocorrelation of the residuals is 0.2475,
implying that the impact on the results should be minimal.

4.2. δ18O record of the Plio-Pleistocene

Geoscientists capitalize on the changes in the isotopic
ratios of oxygen in the ocean to create a δ18O ice volume
proxy record from ocean sediment cores which quantifies
the amount of ice on the Earth at a specific time in the
past (Hays et al., 1976; Imbrie et al., 1992; Lisiecki and
Raymo, 2005; among others). The gradual cooling of
the Earth over the last 5 million years engendered the
formation of more permanent ice sheets over the Northern
Hemisphere around 2.7 million years ago (Ma), reflected
by an obvious increase in the amplitude of the δ18O at
this time (Figure 3). Further cooling of the Earth likely
contributed to the Mid-Pleistocene Transition (MPT)
(Tziperman and Gildor, 2003; Raymo et al., 2006) around
1 Ma. During the MPT, not only did the amplitude of
the δ18O proxy record increase, but the periodicity of
the glacial cycles apparently changed from 41 to 100 kyr
(Tziperman and Gildor, 2003).

Today, most theories of ice sheet dynamics are a
variation of Milankovitch (1941) Theory, which loosely
states that ice sheets respond linearly to the amount of
solar insolation (i.e. energy) received at the top of the
Earth’s atmosphere at 65°N Latitude during the summer.

Figure 3. The δ18O Record of the Plio-Pleistocene. The top panel displays the δ18O proxy record of the Plio-Pleistocene (Lisiecki and Raymo,
2005) after removing the long-term cooling trend via an exponential function. The bottom panel displays the model proposed by the Bayesian
Change Point algorithm along with the locations of the change points, indicated by the (red) ‘spikes’ at the bottom of the figure. Tall, thin
‘spikes’ represent relative certainty in the placement of a change point, while shorter and wider ‘spikes’ indicate greater uncertainty. An
average of 7.16 change points is able to fit 71.6% of the variation in the δ18O proxy record. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc
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To model glacial activity, sinusoidal functions will be
used to approximate the three components of the Earth’s
orbital motion that impact its solar insolation budget:
Precession [23 kyr], Obliquity [41 kyr], and Eccentricity
[100 kyr]. For this analysis, we set kmax = 15 and dmin =
50 kyr, or roughly half a glacial cycle in the most recent
past.

The Bayesian Change Point algorithm indicates that
there are most likely seven change points in the δ18O
proxy record (Table III). Five hundred solutions were
again sampled from the exact posterior distribution.
Figure 3 shows the average of these 500 sampled solu-
tions along with the locations of the change points, while
Figure 4 displays the posterior mean of the regression
coefficients for each of the three forcing functions at each
point in time. The 41 kyr ‘world’ that existed prior to
the MPT (Hays et al., 1976; Imbrie et al., 1992; Raymo

Table III. The posterior distribution of selecting a given
number of change points for the δ18o proxy record of the

Plio-Pleistocenea.

Number of change points Posterior probability

5 0.0000
6 0.1399
7 0.5962
8 0.2257
9 0.0363
10 0.0019
11 0.0000

a The probability of selecting 0–4 or 12–15 change points is essentially
zero and therefore not included on this table.

et al., 2006) saw an increase in the 41 kyr coefficient
around 2.73 Ma (95% credibility limit 2.72–2.74 Ma),
coinciding with the appearance of ice-rafted debris in
the proxy record and the onset of Northern Hemisphere
glaciation (Ruddiman, 2007). Beginning around 1.5 Ma
(95% credibility limit 1.48–1.53 Ma), glacial suppres-
sion of North Atlantic deep water intensified (Raymo
et al., 1990) and the dominance of the 41 kyr cycle
began to erode (Muller and MacDonald, 1997) as there
is a step-like increase in the regression coefficient of the
100 kyr sinusoid. This gradual transition from the ‘41 kyr
world’ to the ‘100 kyr world’ is complete by 0.79 Ma
[95% credibility limit 780–792 ka], a date commonly
associated with the onset of 100 kyr variability (e.g.
Mudelsee and Schulz 1997; Tziperman and Gildor, 2003;
among others) and which roughly coincides with the
Brunhes-Matuyama magnetic reversal [0.78 Ma]. How-
ever, the obliquity signal does not disappear from the
proxy record at this time; it merely becomes overshad-
owed by a more dominant 100 kyr signal. More recently,
change points were identified near the Mid-Brunhes event
(430 ka), where there was a transition from weak to
strong interglacials (EPICA, 2004) (∼470 ka, 95% cred-
ibility limit 453–487 ka) and near Marine Isotope Stage
(MIS) 11 (380 ka, 95% credibility limit 375–383 ka),
whose unusually long and warm interglacial during a time
of low eccentricity poses a problem for Milankovitch
Theory (Muller and MacDonald, 1995). The final two
change points are located near MIS6 (∼185 ka, 95%
credibility limit 168–224 ka) and MIS4 (∼71 ka, 95%
credibility limit 66–74 ka). The multiple change points
in the most recent part of the proxy record likely indi-
cate that a single 100 kyr signal is insufficient to model

Figure 4. Regression Coefficients for the δ18O Proxy Record of the Plio-Pleistocene. Sinusoidal functions approximating the three parameters
of the Earth’s orbital motion were used to model the δ18O proxy record. The transition from the ‘41 kyr world’ to the ‘100 kyr world’ begins
around 1.5 Ma with a gradual, step-like increase in the regression coefficient for the 100 kyr sinusoid and is complete by around 0.79 Ma. This

figure is available in colour online at wileyonlinelibrary.com/journal/joc
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the glacial cycles during this time. The exact mechanism
behind 100 kyr glacial cycles has been the subject of
much debate (Tziperman and Gildor, 2003; Raymo et al.,
2006; Tziperman et al., 2006; among others).

5. Discussion

An important contribution of the Bayesian Change Point
algorithm is its ability to objectively assess the uncer-
tainty surrounding the ‘optimal’ solution, both in the
number and location of change points, a significant
advantage over a frequentist solution. Thus, the novelty
of the analyses is not the detection of new change points,
but to provide a measure of uncertainty. The fact that
the credibility limits encompass these previously detected
change points helps to illustrate the accuracy and valid-
ity of the Bayesian Change Point method described in
this paper. A downside to Bayesian approaches is often
the computational complexity. However, the recursive
nature of this algorithm allows the ∼Nk calculations
to be completed in a computationally efficient man-
ner, O(N2). While the focus here was on a regression
model, the Bayesian Change Point algorithm is applica-
ble to a wide range of probabilistic models. For example,
Liu and Lawrence (1999) use a multinomial distribu-
tion in the context of the Bayesian Change Point algo-
rithm to model the frequency of nucleotides in a DNA
sequence.

The linear model used to describe the global surface
temperature time series is similar to the ‘sloped steps’
model described by Seidel and Lanzante (2004) in
which there is no continuity constraint enforced between
adjacent trend lines. A continuity constraint, (Karl et al.,
2000; Tomé and Miranda, 2004) can sometimes be a
limitation as it does not allow abrupt changes in a climate
record due to events such as volcanism (Menne, 2006;
Ivanov and Evtimov, 2009).

The functions used to model both the global surface
temperature and the δ18O proxy record were almost
certainly simplifications of the true climate phenomena.
A more complex model would likely yield a better fit to
both data sets, but the relative simplicity of these models
gives a more straightforward physical interpretation.

The number of change points identified by the
Bayesian Change Point algorithm can be sensitive to
the choice of priors. Both the global surface temper-
ature record and the δ18O proxy record are sensitive
to the priors on the variance, v0 and σ 2

0 , although
this is not without precedence (See Appendix). On the
other hand, neither of these time series are sensitive to
alternative prior distributions on the number of change
points (Equation 6), such as f (K = k) = 1

kmax + 1 , k =
0, 1, . . . , kmax, although this may not always be the case.
The proper choice of priors will depend on the nature of
the time series being analysed.

Non-independence of residual errors is often a concern
in time series analysis as it violates one of the assump-
tions of any linear regression model (Equation (1)).

The equations given in this paper are not applicable
to autocorrelated residuals, although a generalization to
include autoregressive models while non-linear, appears
plausible.

Both the 5 Myr δ18O proxy record of the Plio-
Pleistocene (Lisiecki and Raymo, 2005) and the much
shorter 130 year NOAA/NCDC annual global surface
temperature anomalies time series show periods of
markedly different climate activity. Given distinct cli-
matic periods in these and other climate records, it is
important to be able to break climatic time series into
regimes and separately study each regime in order to
better understand why and how our climate system has
changed throughout history.

Matlab code to implement the Bayesian Change Point
algorithm is available upon request from the author.
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Appendix: Parameter Settings for the Bayesian
Change Point Algorithm

There are five parameters that need to be set by the user
in order to run the Bayesian Change Point algorithm.

1. kmax – The maximum number of change points
allowed.

2. dmin – The minimum distance between consecutive
change points. If a minimum distance is desried, it can
be enforced in Step 1 of the Bayesian Change Point
algorithm [calculating the Probability Density of the
Data, f (Yi:j |X)] by setting f (Yi:j |X) = 0 for indices i

and j such that (j − i) < dmin. As a general guideline,
we recommended that the minimum distance between
consecutive change points be at least twice as many
data points as free parameters in the regression model.
This helps to ensure that enough data is available to
estimate the parameters of the model accurately.

3. k0 – The variance scaling hyperparameter for the mul-
tivariate Normal prior on β. β|σ 2∼N(0 , σ 2/k0 )
implies that the variance of the regression coefficients
is related to the residual variance, σ 2. A model that
fits the data well will have a small residual variance,
but may have large (relative to σ 2) regression coef-
ficients. Therefore, we set k0 to be small, yielding a
wide prior distribution on the regression coefficients.
For both the NOAA/NCDC global surface tempera-
ture anomaly time series and the δ18O proxy record
of the Plio-Pleistocene, k0 was set to 0.01.

4. v0 and σ 2
0 – The hyperparameters for the Scaled-

Inverse χ2 prior on σ 2. v0 and σ 2
0 act as pseudo data

points – v0 pseudo data point of variance σ 2
0 – that

help to bound the likelihood function. The posterior
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distribution on the number of change points can be
sensitive to the choice of parameters for the prior
distribution of the residual variance, v0 and σ 2

0 . Specif-
ically, the number of change points, but not the dis-
tribution of their positions, can vary with the choice
of these parameters, a phenomena previously noted
by Fearnhead (2006). In the least squares/maximum
likelihood setting, these parameters are equivalent
to penalized regression (Silverman, 1985; Ciuperca
et al., 2003; Caussinus and Mestre, 2004) techniques.
In general, the larger the product of these two param-
eters, the fewer the number of change points cho-
sen by the algorithm as this product is essentially a
penalty paid for introducing a new change point into
the model.
As we can be sure that the variance of the residuals
will not be larger than the overall variance of the
data set, one option is to conservatively set the prior
variance σ 2

0 , equal to the variance of the data set
being used and set v0 to be <25% of the size of
the minimum allowed sub-interval. For the simulation
and the NOAA/NCDC global surface temperature
anomaly time series, v0 was chosen to be 1 and σ 2

0 as
0.05, while for the analysis of the δ18O proxy record
of the Plio-Pleistocence, v0 was chosen to be 10 and
σ 2

0 as 0.30. Larger numbers of change points can result
from setting strongly informed prior distributions. A
choice along these lines acts as if there were more
data, and thus the algorithm is able to pick up more
subtle changes.
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