
• If the op contains a (u), then this instruction can either use signed or unsigned

arithmetic, depending on whether or not a u is appended to the name of the
instruction. For example, if the op is given as add(u), then this instruction can
either be add (add signed) or addu (add unsigned).

• des must always be a register.

• src1 must always be a register.

• reg2 must always be a register.

• src2 may be either a register or a 32-bit integer.

• addr must be an address.

The MIPS Register Set

The MIPS R2000 CPU has 32 registers. 31 of these are general-purpose registers that can
be used in any of the instructions. The last one, denoted register zero, is defined to contain
the number zero at all times.

Even though any of the registers can theoretically be used for any purpose, MIPS
programmers have agreed upon a set of guidelines that specify how each of the regis- ters
should be used. Programmers (and compilers) know that as long as they follow these
guidelines, their code will work properly with other MIPS code.

Symbolic Name Number Usage

zero 0 Constant 0.
at 1 Reserved for the assembler.
v0 - v1 2 - 3 Result Registers.
a0 - a3 4 - 7 Argument Registers 1 · · · 4.
t0 - t9 8 - 15, 24 - 25 Temporary Registers 0 · · · 9.
s0 - s7
k0 - k1

16 - 23
26 - 27

Saved Registers 0 · · · 7.
Kernel Registers 0 · · · 1.

gp 28
sp 29
fp 30
ra 31

Global Data Pointer.
Stack Pointer.
Frame Pointer.
Return Address.

The MIPS Instruction Set

This section briefly describes the MIPS assembly language instruction set.
In the description of the instructions, the following notation is used:

• If an instruction description begins with an ◦, then the instruction is not a
member of the native MIPS instruction set, but is available as a pseudoin- struction.
The assembler translates pseudoinstructions into one or more native instructions.

Arithmetic Instructions

Op Operands Description

◦ abs des, src1 des gets the absolute value of src1.
add(u) des, src1, src2 des gets src1 + src2.
and des, src1, src2 des gets the bitwise and of src1 and src2.
div(u) src1, reg2 Divide src1 by reg2, leaving the quotient in register

lo and the remainder in register hi.
◦ div(u) des, src1, src2 des gets src1 / src2.
◦ mul des, src1, src2 des gets src1 × src2.
◦ mulo des, src1, src2 des gets src1 × src2, with overflow.

mult(u) src1, reg2 Multiply src1 and reg2, leaving the low-order word
in register lo and the high-order word in register
hi.

◦ neg(u) des, src1 des gets the negative of src1.
nor des, src1, src2 des gets the bitwise logical nor of src1 and src2.

◦ not des, src1 des gets the bitwise logical negation of src1.
or des, src1, src2 des gets the bitwise logical or of src1 and src2.

◦ rem(u) des, src1, src2 des gets the remainder of dividing src1 by src2.
◦ rol des, src1, src2 des gets the result of rotating left the contents of

src1 by src2 bits.
◦ ror des, src1, src2 des gets the result of rotating right the contents of

src1 by src2 bits.
sll des, src1, src2 des gets src1 shifted left by src2 bits.
sra des, src1, src2 Right shift arithmetic.
srl des, src1, src2 Right shift logical.
sub(u) des, src1, src2 des gets src1 - src2.
xor des, src1, src2 des gets the bitwise exclusive or of src1 and src2.

Comparison Instructions

Op Operands Description

◦ seq des, src1, src2 des ←
◦ sne des, src1, src2 des ←

1 if src1 = src2, 0 otherwise.
1 if src1 6= src2, 0 otherwise.

←
←
←

◦ sge(u) des, src1, src2 des
◦ sgt(u) des, src1, src2 des
◦ sle(u) des, src1, src2 des

slt(u) des, src1, src2 des ←

1 if src1 ≥ src2, 0 otherwise.
1 if src1 > src2, 0 otherwise.
1 if src1 ≤ src2, 0 otherwise.
1 if src1 < src2, 0 otherwise.

Branch and Jump Instructions

Branch

Op Operands Description

b lab Unconditional branch to lab.
beq src1, src2, lab Branch to lab if src1 ≡ src2 .
bne src1, src2, lab Branch to lab if src1 6= src2 .

◦ bge(u) src1, src2, lab Branch to lab if src1 ≥ src2 .
◦ bgt(u) src1, src2, lab Branch to lab if src1 > src2 .
◦ ble(u) src1, src2, lab Branch to lab if src1 ≤ src2 .
◦ blt(u) src1, src2, lab Branch to lab if src1 < src2 .
◦ beqz src1, lab Branch to lab if src1 ≡ 0.
◦ bnez src1, lab Branch to lab if src1 6= 0.

bgez src1, lab Branch to lab if src1 ≥ 0.
bgtz src1, lab Branch to lab if src1 > 0.
blez src1, lab Branch to lab if src1 ≤ 0.
bltz src1, lab Branch to lab if src1 < 0.
bgezal src1, lab If src1 ≥ 0, then put the address of the next instruc-

tion into $ra and branch to lab.
bgtzal src1, lab If src1 > 0, then put the address of the next instruc-

tion into $ra and branch to lab.
bltzal src1, lab If src1 < 0, then put the address of the next instruc-

tion into $ra and branch to lab.

Jump

Op Operands Description

j

jr

jal

label
src1
label

Jump to label lab.
Jump to location src1.
Jump to label lab, and store the address of the next in-

jalr src1
struction in $ra.
Jump to location src1, and store the address of the next
instruction in $ra.

Load, Store, and Data Movement

The second operand of all of the load and store instructions must be an address. The
MIPS architecture supports the following addressing modes:

Format Meaning

◦ (reg) Contents of reg.
◦ const A constant address.

const(reg) const + contents of reg.
◦ symbol The address of symbol.
◦ symbol+const The address of symbol + const.
◦ symbol+const(reg) The address of symbol + const + contents of reg.

Load

The load instructions, with the exceptions of li and lui, fetch a byte, halfword, or
word from memory and put it into a register. The li and lui instructions load a
constant into a register.

All load addresses must be aligned on the size of the item being loaded. For
example, all loads of halfwords must be from even addresses, and loads of words from
addresses cleanly divisible by four. The ulh and ulw instructions are provided to load
halfwords and words from addresses that might not be aligned properly.

Op Operands Description

◦ la

lb(u)

lh(u)

◦ li

lui

des, addr
des, addr
des, addr
des, const
des, const

Load the address of a label.
Load the byte at addr into des.
Load the halfword at addr into des.
Load the constant const into des.
Load the constant const into the upper halfword of des,

lw des, addr
and set the lower halfword of des to 0.
Load the word at addr into des.

lwl des, addr
lwr des, addr

◦ ulh(u) des, addr

◦ ulw des, addr

Load the halfword starting at the (possibly unaligned)
address addr into des.
Load the word starting at the (possibly unaligned) ad-
dress addr into des.

Store

The store instructions store a byte, halfword, or word from a register into memory.
Like the load instructions, all store addresses must be aligned on the size of the

item being stored. For example, all stores of halfwords must be from even addresses,
and loads of words from addresses cleanly divisible by four. The swl, swr, ush and
usw instructions are provided to store halfwords and words to addresses which might
not be aligned properly.

Op Operands Description

sb src1, addr Store the lower byte of register src1 to addr.
sh src1, addr Store the lower halfword of register src1 to addr.
sw src1, addr Store the word in register src1 to addr.
swl src1, addr Store the upper halfword in src to the (possibly un-

aligned) address addr.
swr src1, addr Store the lower halfword in src to the (possibly unaligned)

address addr.
◦ ush src1, addr Store the lower halfword in src to the (possibly unaligned)

address addr.
◦ usw src1, addr Store the word in src to the (possibly unaligned) address

addr.

Data Movement

The data movement instructions move data among registers. Special instructions are
provided to move data in and out of special registers such as hi and lo.

Op Operands Description

◦ move des, src1
mfhi des
mflo des
mthi src1
mtlo src1

Copy the contents of src1 to des.
Copy the contents of the hi register to des.
Copy the contents of the lo register to des.
Copy the contents of the src1 to hi.
Copy the contents of the src1 to lo.

Exception Handling

Op Operands Description

rfe

syscall

Return from exception.
Makes a system call. See 4.6.1 for a list of the SPIM
system calls.

break const Used by the debugger.
nop An instruction which has no effect (other than taking a

cycle to execute).

The MIPS Assembler

Segment and Linker Directives

Name Parameters Description

.data addr The following items are to be assembled into the data
segment. By default, begin at the next available address
in the data segment. If the optional argument addr is
present, then begin at addr.

.text addr The following items are to be assembled into the text
segment. By default, begin at the next available ad-
dress in the text segment. If the optional argument
addr is present, then begin at addr. In SPIM, the only
items that can be assembled into the text segment are
instructions and words (via the .word directive).

.extern sym size Declare as global the label sym, and declare that it is size
bytes in length (this information can be used by the
assembler).

.globl sym Declare as global the label sym.

Data Directives

Name

.align

Parameters Description

n Align the next item on the next 2n-byte boundary.

.ascii

.align 0 turns off automatic alignment.
str Assemble the given string in memory. Do not null-

terminate.
.asciiz str Assemble the given string in memory. Do null-

terminate.
.byte byte1 · · · byteN
.half

.space

half1 · · · halfN
size

Assemble the given bytes (8-bit integers).
Assemble the given halfwords (16-bit integers).
Allocate n bytes of space in the current seg-
ment. In SPIM, this is only permitted in the data

.word

segment.
word1 · · · wordN Assemble the given words (32-bit integers).

The Native MIPS Instruction Set

Many of the instructions listed here are not native MIPS instructions. Instead, they

are pseudoinstructions– macros that the assembler knows how to translate into native

MIPS instructions. Instead of programming the “real” hardware, MIPS programmers
generally use the virtual machine implemented by the MIPS assembler, which is much
easier to program than the native machine.

