
CSCI 131-- Techniques of Programming
College of the Holy Cross

Topics for Final Exam:
This sheet is intended to help you prepare for the final exam in this course. The exam will cover
all topics in the course, but there will be somewhat more emphasis on the topics covered since
exam two. In addition to studying the topics and questions listed here, you should also review
the topics and questions presented on the review sheets for exams 1 and 2, since these are all
potential subjects for final exam questions. The following lists topics covered since exam 2.

1. Abstract Data Types
 Definition of abstraction
 Data Abstraction: Logical Properties vs. Implementation
 Properties of Abstract Data Type: domain & operations
 Abstract Data Type specification
 Different possible implementations
 Information hiding

2. Classes in C++
 Class declaration
 Public and Private members
 class operations
 Implementation of class member functions
 Scope resolution operator
 Class constructors
 Object oriented Programming terminology
 Client code for manipulating class objects
 Inheritance
3. Searching and Sorting a list

4. Pointers
 Declaring pointers
 Allocating memory for a pointer (using "new")
 The NULL pointer
 Accessing memory that is pointed to by a pointer
 Pointer operations
 Pointers to structs
 Accessing members of structs using a pointer
 Diagramming pointers
 The memory "heap"

5. Linked Lists
 Creating a list node
 Adding nodes to a list
 Removing nodes from a list
 Accessing list data
 Using typedef for pointers to lists
 Traversing a list
6. Recursion
 Definition of a recursive function
 Base Case vs. General Case
 Trace of recursive function
` Invocation tree for recursive function
 Tail Recursion
 Writing Tail recursion as a while loop
 Using recursion with lists
 Backtracking

The following problems are intended to help you study for the exam. Note that there will also be
questions covering topics from the first two midterms, so you should be sure to review those
topics as well. Use your Exams and Review sheets for those exams to review.

1) Write a function that counts how many even numbers there are in an integer linked list. The
function should have one parameter, a pointer to a linked list. The function should not alter the
list. It should return an integer value equal to the number of even numbers in the list.

You can assume the following definitions:
 struct Node {
 int data;
 Node *next;
 }
 typedef Node *NodePtr;

2) Consider the following code:
 int *y;
 int *x;
 x = new int;
 *x = 15;
 *x += 2;
 y = x;
 *y *= 2;

a) Draw a diagram to show represent the pointers as each line of this code is executed.

b) What are the values of *x and *y after executing this code?

3) Consider the following recursive function:
 int Mystery(char myString[], char theChar, int first, int last) {
 int answer = 0;
 if (first > last) {
 return 0;
 } else {
 answer = Mystery (myString, theChar, first + 1, last);
 if (myString[first] == theChar) {
 return answer + 1;
 } else {
 return answer;
 }
 }
 }

a) Indicate which lines of code represent the solution to the base case. Also state what the base
case is.

b) Indicate which lines of code represent the solution to the general case.

c) Suppose you have the following code use to call the Mystery function:
 char theString = "CSCI";
 int test;
 test = Mystery(theString, 'C', 0, 4);
Draw a trace of the values of the following parameters as each recursive function call is
executed:

 first last myString[first] answer return value

d) What does the Mystery function do?

4) Consider the following linked list:

Assume a Node is represented by the following struct:
 struct Node {
 int myNumber;
 Node *nextNode;
 };
 typedef Node *NodePtr;

a) Write an expression to refer to the integer in the second node of the list.

b) What is the value of the following expression?
 myList - > nextNode - > nextNode

c) Write the C++ code to create and insert a new node, whose data value is 4, in between the
two nodes of myList.

5. Consider the following class declarations:

 class Student {
 public:
 void SetName(char name[]);

void SetID(int idNum);
 void Write() const;
 void SetGpa(float the_GPA);
 Student ();
 Student (char initName[], int initId);
 private:
 char name [25];
 int id;
 float gpa;
 };

 class StudentYear : public Student {
 public:
 void SetYear(int year);
 void Write () const;
 void incrementYear();
 StudentYear ();
 StudentYear (char initName[], int initId, int initYear);
 private:
 int year;
 };

a) Which class is the parent (base) class and which is the child (derived) class?

b) Which functions are the same for both the Student and the StudentYear class?

c) What are the private data members for each class?

d) Which private data members can be accessed directly by the member functions of each class?

e) What specific kind of function is StudentYear()?

f) Write the implementation of the Write() function for the Student class. This function should
write to the standard output the values of name, id and gpa of the Student object.

g) Write the implementation of the Write() function for the StudentYear class. This function
should write to the standard output the values of name, id, gpa and year of the StudentYear
object.

h) Write the implementation of the Student(char initName[], int initId) function for the student
class. This function should assign initName[] to the name data member and initID to the id data
member of the Student object.

