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Abstract

We investigate the fundamental domains of rational functions and provide visualizations
for relevant examples. The fundamental domains give a thorough understanding of the global
properties of the functions studied.

1 Introduction

Any rational function f(z) can be viewed as the canonical projection of a branched covering Riemann

surface (Ĉ, f) of the Riemann sphere Ĉ. Indeed, f is locally injective in the neighborhood of every

point z ∈ Ĉ, except for the points zk, which are solutions of the equation f ′(z) = 0 and the points
cj which are multiple poles of f. In [Bar-G] we have studied global mapping properties of Blaschke

products, showing that every Blaschke product w = B(z) of degree n induces partitions of Ĉ into

n sets whose interior is mapped conformally by B onto Ĉ \ L, where L is a cut. Following [A, p.
98] we called these sets fundamental regions or domains.

The fundamental regions have played an important role in the theory of automorphic functions.
In fact, a fundamental region of a group of transformations is a fundamental region of an automor-
phic function with respect to that group. These regions characterize the global mapping properties
of automorphic functions. In this paper we show that any rational function f has similar proper-
ties. Moreover, once the fundamental regions of f are known, invariants of f can be found, i.e.
mappings Uk of the Riemann sphere on itself such that, for every z ∈ Ĉ, we have f ◦ Uk(z) = f(z).
Obviously, the set of these invariants is a cyclic group of order n. They are the cover transforma-
tions (see [A-S, p. 37]) of (Ĉ, f) and we can extend the concept of automorphic function to such a
group. Using this terminology, the main result of this paper shows that any rational function f is
an automorphic function with respect to the group of cover transformations of (Ĉ, f). The proof is
constructive and we use the technique of simultaneous continuations developed in [Bar-G] in order
to find fundamental regions for f .

To visualize the fundamental regions, we color a set of annuli centered at the origin of the
w-plane in different colors with saturation increasing counter-clockwise (i.e., determined by the
argument of each point) and brightness increasing outward (i.e., determined by the absolute value
each point) and impose the same color, saturation and brightness to the pre-image of every point
in these annuli.
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2 A Simple Example: Linear Fractional Transformations

We visualize the linear fractional transformation

w = f(z) =
az + b

cz + d
, where ad− bc 6= 0

as follows.

Consider the circle w = reiθ (r is fixed ). Its pre-image by f is z(r, θ) =
−dw + b

cw − a
.

lim
r→0

z(r, θ) = − b
a
, and lim

r→∞
z(r, θ) = −d

c
.

If r is small, the pre-image is a circle containing − b
a

. If r is large, the pre-image is a circle

containing −d
c

. If r =
∣∣∣a
c

∣∣∣, the pre-image of the circle is a line (perpendicular to the line through

− b
a

and −d
c

, since f is conformal).

Example 1: f(z) =
(2 + 3i)z + (1− i)

(1 + 2i)z + (−1 + 4i)
.

The pre-images of the annuli

under the mapping f are shown below.
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We notice that f has a single fundamental domain.

For reasons of clarity, in the images above we provide a zoom of the colored annuli and of the
fundamental domains.

3 Mapping Properties of the Second Degree Rational Func-

tions

A study of the second degree rational functions can be found in [N, p.266]. We use Nehari’s results
in order to illustrate some of the mapping properties of these functions. The main result found in

[N] relevant to this topic is that any mapping w = f(z) =
a1z

2 + a2z + a3

b1z2 + b2z + b3
can be written under

the form
f(z) = S2 ◦ T ◦ S1, (1)

where S1 and S2 are Möbius transformations and η = T (ζ) = ζ2. Indeed, to prove this statement
we only need to determine six essential parameters of the two unknown Möbius transformations S1

and S2 such that (1) is true, which is allays possible.
The function ζ = S1(z) transforms the z-plane into the ζ-plane, such that a circle (see Example

3 below) or a line L (see Example 2 below) corresponds to the real axis from the ζ-plane. The
function η = T (ζ) = ζ2 transforms each one of the upper and the lower half-planes of the ζ-plane
into the whole η-plane with a cut alongside the real half-axis. Finally, the function w = S2(η)
transforms the η-plane into the w-plane and the real half-axis into an arc of a circle or a half line
L′. Summing up, f maps conformally each one of the two domains determined by L onto the whole
w-plane with a cut alongside L′. Thus, for such a function f, the fundamental domains can allays
be taken the two domains mapped by S1 onto the upper and the lower half planes.

Example 2: We illustrate the case where f(z) =
(1 + i)z2 + 4z + 1− i
(2 + i)z2 + 6z + 2− i

. In this case S1(z) =
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z + 1

z − i
and S2(z) =

z + i

2z + i
. The pre-image of the real axis under S1 is the line z =

1 + ti

t− 1
shown

below.

The image of the positive real half axis under S2 is the semicircle of radius 0.25 centered at 0.75.

For the visualization, we consider colored annuli centered at (0.75, 0).
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We visualize the fundamental domains of f in Figure 1(a), by considering pre-images of these
annuli under f .

Note: f has two funadamental domains. They are precisely the regions delimited by the pre-
image L of the real axis under S1.

Example 3: We illustrate the case f(z) =
(8− 17i) + (6− 16i)z − (9− 9i)z2

(8− 19i) + (16− 14i)z − (14− 21i)z2
.

Then, S2 is the same Möbius transformation as in the previous example and S1 is the Möbius
transformation illustrated in the previous section.

Thus, S1(z) =
(2 + 3i)z + (1− i)

(1 + 2i)z + (−1 + 4i)
and S2(z) =

z + i

2z + i
.

The pre-image of the real axis under S1 is the circle shown below.

The pre-images of the annuli centered at 0.75
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under the mapping f are:

Note: f has two fundamental domains: the interior of the disk whose boundary is the pre-image
of the real axis under S1 and the exterior of this disk.

4 Mapping properties of Blaschke Quotients

In [B-G] we studied the mapping properties of Blaschke quotients B of a special type, namely such

that for every z ∈ Ĉ, B ◦ h(z) = h ◦ B(z), where h(z) = −1/z. Such a rational function has the
particularity that its poles and zeros appear in pairs which are opposite to each other and if zk is
a pole of order p of B, then 1/zk is a zero of order p of B and vice-versa. The point z = 0 is a zero
or a pole of B of an odd order and therefore ∞ is a pole, respectively a zero, of the same order.

The main result of [B-G] shows that, for a Blaschke quotient of degree n of such a type, there is

a partition of Ĉ in 2n simply connected sets such that the interior of each one of them is mapped
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conformally by B either on the open unit disc (i-set), or on the exterior of the closed unit disc
(e-set). The interior of the union of an i-set and an adjacent e-set is mapped conformally by B on
the Riemann sphere with a slit. The map is continuous (with respect to the spheric metric) on the
borders, except for the branch points. Here, we prove that a similar property holds for any finite
Blaschke quotient.

Let B(z) = B1(z)/B2(z) be a Blaschke quotient of degree n, i.e. the quotient of two finite
Blaschke products B1 and B2 of degrees n1, respectively n2, such that max{n1, n2} = n. The
function B is locally injective, except for the set of points H1 = {b1, b2, ..., bm}, which are solutions

of the equation B′(z) = 0. Consequently, (Ĉ, B) is a branched covering Riemann surface of Ĉ having

H1 as set of branch points. In other words, (Ĉ \H1, B) is a smooth covering Riemann surface of Ĉ.

Theorem 1 For every Blaschke quotient B of degree n there is a partition of Ĉ into n sets sym-
metric with respect to the unit circle whose interior Ωk is mapped each one conformally by B on
Ĉ \ L, where L is a cut. Moreover, B : Ωk → Ĉ is surjective.

Proof: Let H2 = {z1, z2, ..., zn} be the solutions of the equation B(z) = eiθ, where θ ∈ R has been
chosen such that H1 ∩H2 = ∅. It is obvious that such a choice is always possible. Since the image
of the unit circle by B is the unit circle, at least one of the points zk belongs to the unit circle.
Also, since B(1/z) = 1/B(z), the solutions which are not on the unit circle, must be two by two
symmetric with respect to the unit circle.

If we perform simultaneous continuation from every zj over the unit circle (starting from eiθ),
we obtain arcs γj,j′ starting at zj ∈ H2 and ending at some point zj′ ∈ H2. Some of these arcs might
cross each other, but this can happen only at the points in H1 since these are the only points where
the injectivity of B(z) is violated.

Let W = {w1, w2, ..., wp}, where wk = B(bk), |bk| < 1, bk ∈ H1 and wk are not points of
intersection of γj,j′ . We connect eiθ, w1, ..., wp by a polygonal line Γ with no self intersection and
perform simultaneous continuation over Γ from all zj ∈ H2. The domains bounded by the pre-image
of Γ and the arcs γj,j′ are mapped by B either on the unit disc (i-domains) or on the exterior of the
unit circle (e-domains). Indeed, every one of these domains Ωj,j′ is bounded by an arc γj,j′ whose
image by B is the unit circle, and by an arc having the end points in zj and zj′ whose image by
B is a part of Γ. The previous affirmation follows from the conformal correspondence theorem (see
[N, p. 154]). It is obvious that every i-domain has a symmetric e-domain with respect to the unit
circle and vice-versa. An i-domain and an adjacent e-domain are always separated by an arc γj,j′
and their union to which the open γj,j′ is added as a point set constitutes a fundamental domain Ωj

of B. If we denote L =Γ ∪ Γ̃, where Γ̃ is the symmetric of Γ with respect to the unit circle, then it
is obvious that B maps conformally every Ωk on Ĉ \ L and the mapping B : Ωk → Ĉ is surjective,
which completely proves the theorem.

Example 4: Let a1 =
1

4
e
πi
6 , a2 =

1

3
e−

πi
5 and b =

1

2
e

2πi
3 .

B1(z) =

(
a1

|a1|
z − a1

a1z − 1

)2

· a2

|a2|
z − a2

a2z − 1
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B2(z) =

(
b

|b|
z − b
bz − 1

)2

.

Then,

B(z) =
B1(z)

B2(z)
=
e−

4iπ
5

(
−1

4
e
iπ
6 + z

)2 (
−1

3
e−

iπ
5 + z

)(
−1 + 1

2
e−

2iπ
3 z
)2

(
−1

2
e

2iπ
3 + z

)2 (
−1 + 1

4
e−

iπ
6 z)
)2 (
−1 + 1

3
e
iπ
5 z
)

is a Blaschke quotient of degree 5.

H1 = {0.216506+0.125i,−1.+1.73205i, 0.162638+0.986686i, 0.254261−0.0769968i,−0.994981−
0.100059i, 3.6026− 1.09096i}.

A polygonal line L passing though the images of the branch points is shown below.

The pre-image of L under B is shown below.
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We consider a collection of colored annuli.

The pre-image of these annuli under B are shown below.

For a better view, each figure above shows several zoomed images.
In the next section we show that a similar property is true for any rational function.

5 Mapping Properties of Arbitrary Rational Functions

Let w = f(z) be a rational function with zeros a1, a2, ..., ap and poles b1, b2, ..., bq. Let αi be the
multiplicity of ai and βj be the multiplicity of bj. Then, the degree of f is n = max{u, v}, where
u = α1 + α2 + ...+ αp and v = β1 + β2 + ...+ βq.

If lim
z→∞

f(z) = 0, n = v and a0 = ∞ is said to be a zero of multiplicity α0 = n − u of f . If

lim
z→∞

f(z) =∞, n = u and b0 =∞ is said to be a pole of multiplicity β0 = n− v of f.

Theorem 2 Every rational function f of degree n defines a partition of Ĉ into n sets whose
interior is mapped conformally by f on Ĉ \ L, where L is a cut. The mapping can be analytically
extended to the boundaries, except for a number ≤ n of common points zj of those boundaries in
the neighborhood of which f is of the form

(i) f(z) = wj + (z − zj)kh(z), when f(zj) = wj,
(ii) f(z) = (z − zj)−kh(z), when f(zj) =∞,
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(iii) f(z) = z−kh(z), when zj =∞ and f(∞) =∞,

with h(z) analytic and h(zj) 6= 0, k ≥ 2. In other words, (Ĉ, f) is a branched covering Riemann

surface of Ĉ and the branch points are zj.

Proof: Since lim
z→aj

f(z) = 0, we can find a positive number r small enough such that the pre-image

Γ of the circle γr centered at the origin and of radius r will have disjoint components Γj, each
containing just one zero aj. If∞ is a zero of f, then the respective component Γ0 must be traversed
clockwise, in order for ∞ to remain on its left. We understand by the domain bounded by Γ0 (if

Γ0 exists) that component of Ĉ defined by Γ0 which contains ∞. For the opposite orientation of Γ0

we have a curve containing all the other components Γj.
Moreover, we can choose the above r such that f ′(z) = 0 has no solution in the closed domain

bounded by Γj except maybe for aj. Then, for an arbitrary θ ∈ R, the equation f(z) = reiθ has
exactly αj distinct solutions on Γj. Now, consider the pre-image by f of the ray inside γr determined
by reiθ. In the domain bounded by Γj it consists of a union of αj Jordan arcs having in common
only the point aj and connecting aj to the solutions of f(z) = reiθ on Γj, j = 0, 1, 2, ..., p (see [A,
p. 131– 133]).

Let ck, k = 1, 2, ...,m, be the solutions of the equation f ′(z) = 0 external to all Γj, and let
wk = f(ck) = rke

iθk . Suppose that r1 ≤ r2 ≤ ... ≤ rm. When rk = rk+1, then we take θk < θk+1, for
every k. We perform simultaneous continuation starting from all aj over a curve L from the w-plane
in the following way. We take first the pre-image by f of the segment from 0 to r1e

iθ1 . This is a
union of arcs, αj of which are starting in aj, j = 0, 1, 2, ..., p. At least one of these arcs is connecting
one of the aj with c1. If r1 = r2, then we take the pre-image of the shortest arc between w1 and w2 of
the circle centered at the origin and having the radius r1 (if w1 = −w2, we go counter-clockwise on
that circle), etc. If rk < rk+1, we take the pre-image by f of the union of the arc of circle centered
at the origin and having the radius rk, between wk and rke

iθk+1 , and the segment between this last
point and wk+1. After the point wm has been reached, if f has at least one multiple pole, we take
the pre-image of the ray from wm to ∞. If f has no multiple pole, then the end of L is wm and
therefore L is a finite path. In this way we build in a few steps the path L and the simultaneous
continuation over L starting from all aj. The continuation arcs can have in common only points
ak, bk or ck, and all bk and ck are reached by several pre-image arcs. Indeed, if two such arcs meet
in a point c, then they are both mapped by f on the same sub-arc of L starting in f(c). One of the
following four situations may happen:

a) f(c) = 0 and f ′(c) = 0, hence c coincides with a multiple zero ak. Then f has the expression
(i) with w0 = 0 in a neighborhood of c = zj.

b) f(c) 6= 0 and f ′(c) = 0, hence c coincides with a ck. Then f has the expression (i) with
w0 = f(c) in a neighborhood of c = zj.

c) f(c) =∞ and c is a multiple pole bk of f. Then f has the expression (ii) in a neighborhood
of c = bk = zj.

d) c =∞. Then f has the expression (iii) in a neighborhood of ∞.
On the other hand, every ck and bk must be reached by some continuation arcs, since f(ck) ∈ L

and f(bk) ∈ L. More exactly, there are as many continuation arcs starting in ck as the multiplicity
of ck as zero of the equation f ′(z) = 0 and there are as many continuation arcs starting in bk
as the multiplicity of bk as a pole of f . The arcs starting in simple zeros of f border exactly n
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bounded and/or unbounded domains Ωk (fundamental domains) which are mapped conformally by
f on the w-plane from which the curve L has been removed. This is a corollary of the boundary
correspondence theorem (see [N, p. 154]). If we denote by Ωk the closure of Ωk, then it is obvious

that Ĉ = ∪nk=1Ωk. With the notation Ak = Ωk\ ∪k−1
j=1 Ωj we have the partition in the statement of

the theorem.

Example 5: f(z) =
z3(z + 2)

(z − i)4(z + 3− i)3

We consider the polygonal line L passing through each image of the zeroes of f ′

whose pre-image under f is:

Below we consider a collection of colored annuli. In this case the saturation of the annuli
increases starting at the polygonal line L.
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Their image under f is shown below.

Finally, we examine the case in which f is a polynomial of degree n. Then the unique pole of f is
∞ and it has multiplicity n. Hence, the ray from wm to∞ has as pre-image n infinite arcs and all the
domains Ωk are unbounded. For a polynomial P (z) = a0z

n+a1z
n−1+...+an, a0 6= 0, we can describe

these infinite arcs. Suppose that arg a0 = α and arg cm = β and let zk(t), t > 0, be the parametric
equation of one of these arcs. Then P (zk(t)) = a0[zk(t)]

n[1 + a1/zk(t) + . . .] and argP (zk(t)) = β.

In other words, α+ n arg zk(t) + o(t) = β + 2jπ, lim
t→∞

o(t) = 0. Hence lim
t→∞

arg zk(t) =
β − α
n

+
2jπ

n
.

Thus, the arcs zk(t) tend asymptotically to the rays of slope
β − α
n

+
2jπ

n
, j = 0, 1, ..., n− 1. This

leads to the following theorem.

Theorem 3 Every polynomial P of degree n defines a partition of Ĉ into n unbounded regions
such that the interior of every region is mapped conformally by P on Ĉ \ L, where L is a cut. The

mapping can be extended analytically to L, except for a finite number of points, such that (Ĉ, P ) is a

branched Riemann covering of Ĉ having those points as branch points. The fundamental domains of
(Ĉ, P ) are bounded by arcs which tend asymptotically to n rays, every two consecutive rays forming
an angle of 2π/n.
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Example 6: P (z) =
z7

7
− z, P ′(z) = z6 − 1. The branch points are the sixth roots of unity.

We consider the polygonal line L passing through each image of the zeroes of P ′

whose pre-image under P is:
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The pre-images of the annuli

under P are shown below.
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