College of the Holy Cross, Spring Semester, 2021
 Math 241 (Professor Hwang)
 Worksheet 5, Due May 7

Let \mathcal{D} be a plane region (such as a disk or rectangle), and let $\mathbf{X}: \mathcal{D} \rightarrow S$ be a regular parametrization of a surface, i.e., a continuously-differentiable map for which $\mathbf{X}_{S} \times \mathbf{X}_{t}$ is never 0 . If f is a continuous, real-valued function on S, we define the scalar surface integral

$$
\int_{S} f d S=\int_{\mathcal{D}} f(\mathbf{X}(s, t))\left\|\mathbf{X}_{s} \times \mathbf{X}_{t}\right\| d s d t
$$

Particularly, if $f \equiv 1$, the scalar surface integral gives the area of S; if $\delta(x, y, z)$ represents the density of material at $\mathbf{X}(s, t)$, the scalar surface integral of δ represents the mass of S; if r represents the distance from some line ℓ, then the integral of $r^{2} \delta$ is the moment of inertia of S about ℓ; and so forth.

Throughout, $0<a<R$ are real numbers. If you can do an integral by geometry, symmetry, or algebra, feel free to do so. Watch for and take opportunities to re-use the results of earlier parts!
Exercise 1. Let S be the sphere of radius R centered at the origin. Evaluate the following.
(a) $\int_{S} R^{2} d S=\int_{S}\left(x^{2}+y^{2}+z^{2}\right) d S$
(b) $\int_{S} x^{2} d S=\int_{S} y^{2} d S=\int_{S} z^{2} d S$
(c) $\int_{S} x d S=\int_{S} y d S=\int_{S} z d S$
(d) Calculate the moment of inertia of S about an axis, assuming constant density; express your answer in terms of mass.
Exercise 2. Let S be the hemisphere $\{z \geq 0\}$ of radius R parametrized by

$$
\mathbf{X}(s, t)=(R \cos s \sin t, R \sin s \sin t, R \cos t), \quad 0 \leq s \leq 2 \pi, \quad 0 \leq t \leq \pi / 2
$$

Calculate the following, assuming constant density.
(a) The centroid of S.
(b) The moments of inertia of S about each coordinate axis, in terms of the mass of S.

Exercise 3. The surface T parametrized by

$$
\mathbf{X}(s, t)=((R+a \cos s) \cos t,(R+a \cos s) \sin t, a \sin s), \quad 0 \leq s \leq 2 \pi, \quad 0 \leq t \leq 2 \pi,
$$

is called a torus of major radius R and minor radius a. Calculate the following:
(a) The area of T.
(b) $\int_{T} x^{2} d S=\int_{T} y^{2} d S$ and $\int_{T} z^{2} d S$
(c) The moment of inertia of T about each coordinate axis (in terms of the mass, assuming constant density).

