College of the Holy Cross, Spring Semester, 2021
Math 241 (Professor Hwang)
Worksheet 0, Due February 15

Work in groups of three of four; turn in only one write-up per group.

The act of multiplying by a matrix sends the standard basis vectors to the matrix columns.
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For example, the matrix A = 1 5 , which induces 1 %IQ , acts on the plane
by sending the unit square to the parallelogram spanned by (3,1) and (—%, 2):
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Example Rotation about (0,0) by angle # maps the standard basis vectors to
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so the transformation Roty has matrix [COS Sl } )
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Example Let 6 be a real number. Reflection across the line through the origin making
angle 6 with the positive z-axis maps the standard basis vectors to

cos 20 cos(20 — Z sin 26
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cos 20 sin 29]

so the transformation Refy has matrix [sin % — cos 20



Exercise 1. Eight matrices and eight transformations are given below. Match each matrix
with the corresponding image of the unit F, and compute T'4(x) for each A.
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Exercise 2. For each matrix A, compute T4 (x) = Ax, and describe T4 geometrically.
c 0 0 —1 1 0 -1 0
56-[0 C], J.[l O}, H.[O _J, v.[“].

Exercise 3. Explain why Rotz = Rotgy, and use this together with matrix multiplication
to deduce the double-angle formulas for cos(26) and sin(20).

Exercise 4. Use the geometric idea of the preceding exercise to deduce formulas for cos(6+¢)
and sin(6 + ).



