College of the Holy Cross, Spring Semester, 2021 Math 241 (Professor Hwang) Worksheet 0, Due February 15

Work in groups of three of four; turn in only one write-up per group.

The act of multiplying by a matrix sends the standard basis vectors to the matrix columns. For example, the matrix $A = \begin{bmatrix} 3 & -\frac{1}{2} \\ 1 & 2 \end{bmatrix}$, which induces $\begin{bmatrix} y^1 \\ y^2 \end{bmatrix} = \begin{bmatrix} 3x^1 - \frac{1}{2}x^2 \\ x^1 + 2x^2 \end{bmatrix}$, acts on the plane by sending the unit square to the parallelogram spanned by (3, 1) and $(-\frac{1}{2}, 2)$:

Example Rotation about (0,0) by angle θ maps the standard basis vectors to

$$\operatorname{Rot}_{\theta}(\mathbf{e}_{1}) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \qquad \operatorname{Rot}_{\theta}(\mathbf{e}_{2}) = \begin{bmatrix} \cos(\theta + \frac{\pi}{2}) \\ \sin(\theta + \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix},$$

so the transformation $\operatorname{Rot}_{\theta}$ has matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Example Let θ be a real number. Reflection across the line through the origin making angle θ with the positive x-axis maps the standard basis vectors to

$$\operatorname{Ref}_{\theta}(\mathbf{e}_{1}) = \begin{bmatrix} \cos 2\theta \\ \sin 2\theta \end{bmatrix}, \qquad \operatorname{Ref}_{\theta}(\mathbf{e}_{2}) = \begin{bmatrix} \cos(2\theta - \frac{\pi}{2}) \\ \sin(2\theta - \frac{\pi}{2}) \end{bmatrix} = \begin{bmatrix} \sin 2\theta \\ -\cos 2\theta \end{bmatrix},$$

so the transformation $\operatorname{Ref}_{\theta}$ has matrix $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$.

Exercise 1. Eight matrices and eight transformations are given below. Match each matrix with the corresponding image of the unit F, and compute $T_A(\mathbf{x})$ for each A.

Exercise 2. For each matrix A, compute $T_A(\mathbf{x}) = A\mathbf{x}$, and describe T_A geometrically.

$$S_c:\begin{bmatrix}c&0\\0&c\end{bmatrix},\quad J:\begin{bmatrix}0&-1\\1&0\end{bmatrix},\quad H:\begin{bmatrix}1&0\\0&-1\end{bmatrix},\quad V:\begin{bmatrix}-1&0\\0&1\end{bmatrix}.$$

Exercise 3. Explain why $\operatorname{Rot}_{\theta}^2 = \operatorname{Rot}_{2\theta}$, and use this together with matrix multiplication to deduce the double-angle formulas for $\cos(2\theta)$ and $\sin(2\theta)$.

Exercise 4. Use the geometric idea of the preceding exercise to deduce formulas for $\cos(\theta + \varphi)$ and $\sin(\theta + \varphi)$.