# College of the Holy Cross, Spring Semester, 2021 

Math 241 (Professor Hwang)
Worksheet 0, Due February 15

Work in groups of three of four; turn in only one write-up per group.
The act of multiplying by a matrix sends the standard basis vectors to the matrix columns. For example, the matrix $A=\left[\begin{array}{rr}3 & -\frac{1}{2} \\ 1 & 2\end{array}\right]$, which induces $\left[\begin{array}{c}y^{1} \\ y^{2}\end{array}\right]=\left[\begin{array}{r}3 x^{1}-\frac{1}{2} x^{2} \\ x^{1}+2 x^{2}\end{array}\right]$, acts on the plane by sending the unit square to the parallelogram spanned by $(3,1)$ and $\left(-\frac{1}{2}, 2\right)$ :


Example Rotation about $(0,0)$ by angle $\theta$ maps the standard basis vectors to

$$
\operatorname{Rot}_{\theta}\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right], \quad \operatorname{Rot}_{\theta}\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
\cos \left(\theta+\frac{\pi}{2}\right) \\
\sin \left(\theta+\frac{\pi}{2}\right)
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right],
$$

so the transformation $\operatorname{Rot}_{\theta}$ has matrix $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.


Example Let $\theta$ be a real number. Reflection across the line through the origin making angle $\theta$ with the positive $x$-axis maps the standard basis vectors to

$$
\operatorname{Ref}_{\theta}\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
\cos 2 \theta \\
\sin 2 \theta
\end{array}\right], \quad \operatorname{Ref}_{\theta}\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
\cos \left(2 \theta-\frac{\pi}{2}\right) \\
\sin \left(2 \theta-\frac{\pi}{2}\right)
\end{array}\right]=\left[\begin{array}{r}
\sin 2 \theta \\
-\cos 2 \theta
\end{array}\right],
$$

so the transformation $\operatorname{Ref}_{\theta}$ has matrix $\left[\begin{array}{rr}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$.

Exercise 1. Eight matrices and eight transformations are given below. Match each matrix with the corresponding image of the unit F , and compute $T_{A}(\mathbf{x})$ for each $A$.


Exercise 2. For each matrix $A$, compute $T_{A}(\mathbf{x})=A \mathbf{x}$, and describe $T_{A}$ geometrically.

$$
S_{c}:\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right], \quad J:\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \quad H:\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad V:\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Exercise 3. Explain why $\operatorname{Rot}_{\theta}^{2}=\operatorname{Rot}_{2 \theta}$, and use this together with matrix multiplication to deduce the double-angle formulas for $\cos (2 \theta)$ and $\sin (2 \theta)$.

Exercise 4. Use the geometric idea of the preceding exercise to deduce formulas for $\cos (\theta+\varphi)$ and $\sin (\theta+\varphi)$.

