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Preface

Calculus is an important part of the intellectual tradition handed down
to us by the Ancient Greeks. Refined in the intervening centuries, cal-
culus has been used to resolve a truly incredible array of problems in
physics, and is increasingly applied in areas as diverse as computer
science, population biology, and economics. As taught in the schools,
“calculus” refers almost exclusively to the calculational procedures—
differentiation and integration in one real variable—used in the math-
ematical study of rates of change. However, calculus has a beautiful
but lesser-known theoretical foundation that allows us to speak consis-
tently and meaningfully of the infinitely large and infinitesimally small.
This foundation, which is required knowledge for all serious students of
mathematics, exemplifies the dual aspects of theory and application in
mathematics.

The aims of this book are various, but all stem from the author’s
wish to present beautiful, interesting, living mathematics, as intuitively
and informally as possible, without compromising logical rigor. Natu-
rally, you will solidify your calculational knowledge, for this is in most
applications the skill of primary importance. Second, you will acquire
understanding of the theoretical underpinnings of the calculus, essen-
tially from first principles. If you enjoy pondering the concept of infin-
ity, this aspect of the book should appeal to you. The third major goal
is to teach you something of the nature and philosophy of mathematics
itself. This aspect of the presentation is intended to have general ap-
peal, not just to students who intend to major in mathematics at the
university level, but to the mathematically curious public. Calculus is
extremely well-suited to this meta-lesson, because its theoretical foun-
dations rest firmly upon notions of infinity, which can lead to apparent
logical paradoxes if not developed carefully. To make an analogy, trying
to apprehend the logical nature of calculus by intuition alone is akin
to landing an airplane in cloudy weather; you may succeed if someone

ix
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trustworthy tells you what to do (or if an author states theorems with-
out proof, or even without giving careful definitions), but you acquire
few flying skills that can be applied at other airports (or in other math-
ematical situations). Careful definitions, logic, and proof are the radar
that allow you to see through the intuitive fog, resolve (or avoid) ap-
parent contradictions, and understand what is true and why it is true.
When you have mastered the organization of ideas required to prove
a theorem, the theorem becomes a part of you that cannot be taken
away or denied by anyone. By contrast, factual knowledge acquired
by memorization is shallow and flimsy: If you are told that something
you have learned is wrong, you have no way to get at the truth. To
continue the piloting analogy, if you only know how to fly when an
instructor is telling you what to do, your skills are not generally appli-
cable. The information the radar gives you (statements of theorems)
is important, but even more important is your ability to use radar for
yourself, especially in new situations.

The fourth and final large goal of the book is to present substantial
mathematical results. Despite common perception, mathematics is a
creative discipline, often likened to classical music by its practitioners.
Just as no one would mistake musical scales for actual music, nor would
anyone confuse spelling and grammar for literature, no mathematician
would equate routine book problems with real mathematics. Of course,
routine problems are an important pedagogical tool: They allow you
to practice computational techniques until you are fluent. But while
you are not likely to succeed mathematically unless you master calcula-
tion, you are certainly not guaranteed success merely by working lots of
routine problems. If your only experience with mathematics is school
courses, you may have much to unlearn about the nature of mathe-
matics. The material you encounter may seem qualitatively unfamiliar
at first, but gradually your viewpoint will shift away from techniques
towards the concepts and logical relationships that are fundamental to
the nature of mathematics. Along the way, you will also meet colorful
identities such as

eiπ + 1 = 0 and
∞∑
k=1

1

k2
=
π2

6
,

and precisely stated assertions that encapsulate facts you learned in
school, but with terms carefully defined and logical structure laid out
plainly.
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To make one last analogy, think of mathematics as terrain. Some
areas are flat and grassy, good for a pleasant stroll; others are hilly,
but with well-worn trails. There are cliffs scaled by narrow, difficult
paths that require ropes, and ravines where it is easy to see how to
cross, but difficult to scramble through the undergrowth. Here and
there, mountain peaks climb far above the plains. The views from the
top are stunning, allowing you to see wide vistas and their connections,
but are achieved only by a long, difficult climb. Still, the trails have
been blazed, and steady work will bring you to the summit. The book
is your tour guide, showing you interesting trails and geographical fea-
tures in the part of the map called “real analysis”. The skills you learn
will accumulate, allowing you to tackle more difficult trails. Along the
way, there are springs, waterfalls, and wildflowers as rewards for steady
progress. All the places on the itinerary are well-mapped out, but occa-
sionally we will pass a cliff that no one has yet scaled, and a few times
you will glimpse the vast, uncharted hinterlands where current research
occurs.
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Chapter 1

The Language of Mathematics

Die Mathematiker sind eine Art Franzosen; redet man zu
ihnen, so übersetzen sie es in ihre Sprache, und alsbald ist
es etwas ganz anderes.

Mathematicians are like Frenchmen. Whatever you say to
them, they will translate into their own language, whereupon
it becomes something completely different. —Goethe

1.1 The Nature of Mathematics

Mathematics is unique among human intellectual endeavors; it is not
art, philosophy, or science, but it shares certain features with each. As a
language, mathematics is unparalleled in its ability to express features
of the physical world with astounding accuracy. At the same time,
mathematics has no intrinsic connection to the real world; the objects
of mathematics are concepts, and do not have physical existence in
the same way that stars, molecules, or people do. Conversely, stars,
molecules, and people are not mathematical objects, though they do
possess attributes (height, mass, or temperature, for example) that can
be modeled by mathematical concepts.

It is remarkable that the language of mathematics can be used to
describe and predict natural phenomena, but this fact is not itself part
of mathematics. Mathematical concepts seem to exist independently,
in a (metaphorical) Platonic universe apart from the physical world,
waiting to be discovered rather than created. Mathematics is guided to
an extent by aesthetics, and though there are no graduate-level courses
on what constitutes beautiful mathematics, mathematicians agree to a

1



2 CHAPTER 1. THE LANGUAGE OF MATHEMATICS

remarkable extent in judging parts of mathematics to be beautiful, or
deep (meaning “connected to widely disparate parts of the subject”), or
correct (meaning “logically consistent” rather than “true”).

Electronic computers provide a good physical analogy for abstrac-
tion and recursion, two basic themes of this book. Briefly, abstraction is
the process of describing the properties an object or structure possesses.
Recursion is the act of defining a structure in terms of simpler objects.
Abstraction is in contrast to implementation, which is a specific way of
building or realizing something.

For example, a computer stores and manipulates data as a pattern
of bits or binary digits, conventionally called 0 and 1. Bits are an
abstraction of data, and abstract properties of data are those that are
independent of the physical representation of bits. In many theoretical
considerations, only the pattern of bits, the abstract structure of the
data, is relevant.

The recursive nature of computer science is exemplified by the fact
that a computer program is not merely a long string of bits, but that
these bits are organized, first into groups of “bytes” (almost always
8 bits), then into “words” (of 4 or 8 bytes), then assembly language in-
structions (collections of words that are meaningful to the processor),
functions (groups of assembly instructions that perform some action
specified by the programmer), and libraries (collections of related func-
tions). A computer program—your web browser, text editor, or media
player—is built by “linking” functions from libraries.

Data storage can be implemented physically in several ways:

• Magnetic domains—floppy and ZIP disks, PC hard drives.

• Light and dark spots or bands—compact disks and UPC symbols.

• Holes and “no-holes” in a paper strip—punch cards and ticker
tape.

• Charged and uncharged capacitors—RAM.

The common abstract feature is a pair of contrasting states. A math-
ematician or theoretical computer scientist sees no essential difference
between these storage schemes. Depending on context, we might call
the contrasting states “black and white”, “zero and one”, “true and false”,
or “on and off”, but regardless of name there is a single underlying struc-
ture. In mathematics, you should strive to understand the structure
rather than memorize the name.
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Next, consider the following arithmetic/logical operations that are
built from representations of bits:

• (Binary arithmetic) Think of 0 as representing an arbitrary even
integer, and 1 as representing an arbitrary odd integer. That is,
an integer is identified with its remainder on division by 2. The
sum of two odd integers is always even (“1 + 1 = 0”), the product
of an even and an odd integer is always even (“0 · 1 = 0”), and so
forth. If we tabulate the results of addition and multiplication,
we get

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

• (Boolean logic) Think of F as representing an arbitrary “false”
assertion (such as “2 + 2 = 5”) and T as representing an arbitrary
“true” sentence (such as “1+1 = 2”). Since “2+2 = 5 or 1+1 = 2,
but not both” is true, we write “F xor T=T”. (“xor” stands for
“exclusive or”: one statement is true, but not both.) Since “2+2 =
5 and 1+1 = 2” is false, we write “F and T=F”. The tables below
give the “truth value” of a statement made by conjoining two
statements, according to whether or not each statement is true or
false.

xor F T
F F T
T T F

and F T
F F F
T F T

Each pair of tables encapsulates some structure about bits of data.
The truly mathematical observation is that the entries of the tables
correspond : under the correspondence even-False and odd-True, “addi-
tion (mod 2)” corresponds to “xor”, and “multiplication (mod 2)” corre-
sponds to “and”. The two pairs of tables above are different implemen-
tations of the same abstract structure, which might even be denoted

∨ • ◦
• • ◦
◦ ◦ •

∧ • ◦
• • •
◦ • ◦
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We have just described an abstract relationship among abstract
structures. Eventually, we might find such relationships arising in var-
ious contexts and give the concept a name, such as “isomorphism”.
Making such a definition is an act of recursion: It groups together a
class of abstract relationships among abstract structures. In time, we
might find it profitable to study isomorphisms themselves, moving to
yet a higher level of abstraction. The branch of mathematics called
category theory deals with this sort of issue.

The example above is intended not to discourage you with com-
plexity, but to illustrate that mathematics is concerned with abstract
properties of conceptual systems, and that structures can be organized
and understood with their extraneous details stripped away.

The Objects of Mathematics

The fundamental objects in mathematics are sets and their constituent
elements. A set is an abstraction of the informal concept of a collection
of objects. The set of names of the U.S. states in the year 1976 has
50 elements; “Massachusetts” is an element of this set, while “Puerto
Rico” and “Uranium” are not. As a more mathematical example, the
set of prime numbers, integers p greater than 1 that have no divisors
other than 1 and p, is a set. The numbers 2, 5, and 213466917 − 1 are
elements of the set of primes, while 4 and 213466917 are not.

In mathematics, we do not discuss “what sets really are”; this issue
is philosophical, not mathematical. Mathematics is built on set theory
in much the same way computer science is built on strings of bits. In
computer science, the objects of study are built up recursively; ulti-
mately, everything is defined in terms of Boolean operations and words
of bits. Further, a computer program has an abstract existence aside
from the way the bits are stored and accessed physically. Similarly, the
objects and structures of calculus—integers, real numbers, functions,
and so forth—are defined recursively in terms of simpler objects, and
are ultimately built from sets. Every mathematical assertion may be
interpreted as an assertion about sets, though even “2 + 2 = 4” is sur-
prisingly difficult to write purely in terms of sets. The nature of sets
is an irrelevant “implementation detail”; instead, the properties of sets
are paramount.
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Mathematics and Science

Mathematics was once called “the most exact science”. In the last two
centuries, it has become fairly clear that mathematics is fundamentally
not a science at all. In mathematics, the standard of acceptance of an
idea is logical, deductive proof, about which we say more below. While
mathematicians sometimes perform “experiments” , either with pencil
and paper, or with an electronic computer, the results of a mathemati-
cal experiment are never regarded as definitive. In physics or chemistry,
by contrast, experiment is the sole criterion for validity of an idea.1

A few minutes’ reflection should reveal the reasons for these rad-
ically differing criteria. Mathematical concepts have no relevant at-
tributes other than those we ascribe to them, so in principle a mathe-
matician has complete access to all properties possessed by an object.
In the physical sciences, however, the objects of study are phenom-
ena, about which information can only be obtained by experiment. No
matter how many experiments are performed, scientists can never be
certain that their knowledge is complete; a more refined experiment
may conflict with existing results, indicating (at best) that an accepted
Law of Nature needs to be modified, or (at worst) that someone has col-
lected data carelessly. Experimental results are never mathematically
exact, but are subject to “uncertainty” or “experimental error”. Thus,
in the sciences we do not have the same access to our object of study
that we do in mathematics. Laws of Nature—mathematical models of
some aspect of reality—are virtually assured of being approximate.

Despite the differing aims and standards of acceptance, mathemat-
ics and the physical sciences enrich each other considerably. The most
obvious direction of influence is from mathematics to the sciences: The
best available descriptions of natural phenomena are mathematical, and
are astoundingly accurate. For example, total eclipses of the sun can
be predicted hundreds of years in advance, down to the time and loca-
tions at which totality will occur. Less apparent but no less important
is the beneficial influence that physics, biology, and economics have
had on mathematics, particularly in the 20th Century. For whatever
reason, mathematics that describes natural phenomena is deeply in-
terconnected and full of beautiful, unexpected results. Without the
guiding influence of science, mathematics tends to become ingrown,
specialized, and merely technical.

1This characterization of science is due to the physicist, R. P. Feynmann.
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Mathematical Certainty

This chapter is informal, and its intent is to make contact with material
you know rather than lay down formal foundations of mathematics.
Nonetheless, formal foundations do exist, in the form of sets of axioms
of set theory. The “usual” axioms are called ZFC, for Zermelo-Frankel
and the axiom of Choice.

In mathematics, there is no concept of absolute truth, only logical
consistency with respect to an axiom system, about which we say more
below. It is an article of faith among mathematicians that ZFC is con-
sistent. Most mathematicians work within ZFC, and results that are
proved in ZFC are said (colloquially) to be “true”. However, it is impor-
tant to remember that mathematics does not really produce “objective
truth” but rather establishes that statements are consistent with ZFC.
The distinction is fundamental, and often misunderstood. To say that
“2 + 2 = 4 is a universal, mathematical truth” is misguided; more ac-
curate would be the legalistic (yet non-trivial) claim, “If the concepts
2, 4, +, and = are suitably defined, in a way that conforms to our in-
tuition about counting, then 2 + 2 = 4.” Mathematical truth, arguably
the most certain kind of truth, is always relative to an axiom system.
Provability, not truth itself, is the central concern of mathematics.

1.2 Sets and Operations

Sets are often denoted by capital letters, and elements by small letters.
We write x ∈ X to indicate that X is a set and x is an element of X.
Similarly, we write y 6∈ X to denote the fact that y is not an element
of X.

If Y is a set with the property that every element of Y is an element
of X, then we say Y is a subset of X and write Y ⊂ X. The names
of the original thirteen colonies are a subset of the set of state names.
The set of prime numbers is a subset of the set of positive integers. The
set of even numbers is not a subset of the set of prime numbers.

In order to avoid logical contradictions (such as Russell’s paradox,
see Exercise 1.5), it is necessary to fix a universe, a set U with the
property that X ⊂ U for every set X under consideration. In this book
the universe is usually taken to be R, the set of real numbers, or the set
of “functions” whose domain and range are R. (Functions are defined
in Chapter 3.)
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Sets can be visualized with Venn diagrams. The universe is depicted
as a rectangle, and sets under consideration are interiors of curves,
Figure 1.1.

XY

Figure 1.1: A Venn diagram for the relation Y ⊂ X.

Two sets X and Y are equal exactly when X ⊂ Y and Y ⊂ X,
namely, when each set has the same elements. A set that has finitely
many elements may be presented as a list, as in {0, 1}. It does not
matter if an element is listed more than once; the sets {0, 1} and
{0, 1, 1} are equal. “Set builder notation” describes a set by specifying
the universe together with properties that characterize the elements.
For example, R+ := {x ∈ R | x > 0} (read “the set of x in R such
that x is greater than 0”) denotes the set of positive real numbers. The
colon next to the equality indicates that the corresponding side of the
equation is being defined.

There is a unique empty set ∅ which contains no elements. If you
have trouble believing this, you will sympathize with medieval philoso-
phers who balked at the concept of “zero.” However, the deciding factors
are that the empty set is useful, and its existence is logically consistent
with the axioms of set theory.

An element x of a set X should be carefully distinguished from the
singleton {x}, the set whose single element is x. For example, the
relation x ∈ {x} is always true, while x ∈ x is rarely true. Similarly,
elements and subsets must not be confused, though on the surface they
are related concepts: For every set X, we have ∅ ⊂ X but usually
∅ 6∈ X.

A set can be specified in many ways; for instance, R+ is also ex-
pressed as {y ∈ R | y has a real logarithm}, or as {x ∈ R | x 6=
0 and x =

√
x2}, while the two-element set {0, 1} can be written as

{x ∈ R | x2 = x}, for example.
Specifications of the empty set are often amusing:

∅ = {x ∈ R | x 6= x} = {x ∈ R | x2 = −1} = {x ∈ Q | x2 = 2}.
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The last characterization is discussed below; “Q” is the set of rational
numbers. The empty set must be distinguished from the (non-empty)
set {∅}, whose single element is the empty set. This point is not at all
silly, despite appearances, see Chapter 2.

Denote the universe by U . If X ⊂ U is a set, then the complement
of X, denoted ∼X or Xc, is the set defined by Xc = {y ∈ U | y 6∈ X}.
Informally, the complement of X is “the set of objects not in X”.

There are operations from which new sets are formed from existing
sets. Four of the most important are informally described here. If X
and Y are sets, then we may form their

• Union X ∪ Y , consisting of elements that are in X or Y or both.
(Mathematicians use the word “or” in the non-exclusive sense un-
less specifically stated otherwise.)

• Intersection X ∩ Y , consisting of elements that are in both X
and Y . The sets X and Y are disjoint if their intersection is the
empty set, that is, they have no elements in common.

• Cartesian product X×Y , consisting of all ordered pairs (x, y) with
x ∈ X and y ∈ Y . IfX = {A, B, . . . , H} and Y = {1, 2, . . . , 8},
then X × Y is the 64-element set

{(A, 1), (A, 2), . . . , (A, 8), (B, 1), . . . , (H, 8)},
while if X and Y are intervals of real numbers, then their Carte-
sian product is a rectangle in the plane. In particular, a plane
may be viewed as the Cartesian product of two lines.

• Difference X \ Y , consisting of all elements of X that are not
elements of Y . If the universe is fixed, then X \ Y = X ∩ (∼ Y ).

Union and intersection are Boolean operations (“or” and “and” re-
spectively), while the Cartesian product creates tables from lists. Venn
diagrams for union, intersection, and difference are as follows:

Unions and intersections of infinitely many sets are defined as ex-
pected: If {Xα}α∈I is a family of sets in some universe U (with I an
“index set”), then⋃

α∈I
Xα = {x ∈ U | x ∈ Xα for some α ∈ I},⋂

α∈I
Xα = {x ∈ U | x ∈ Xα for all α ∈ I}.
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X Y

X ∪ Y

X Y

X ∩ Y

X Y

X \ Y

Figure 1.2: Venn diagrams for simple set operations.

In this book, an infinite index set is usually the set of positive integers,
as in

X =
∞⋂
n=1

(− 1
n
, 1
n
).

A real number x is an element of X exactly when −1/n < x < 1/n for
every positive integer n. We will see that x = 0 is the only real number
with this property, so X = {0}. Additional examples of infinite set
operations are given in Exercise 2.10.

1.3 Logic

As mentioned, mathematicians do not really find “objective truths”, but
instead derive logical conclusions by starting with assumptions called
hypotheses. In this section we begin the study of logical deduction,
emphasizing the linguistic differences with ordinary English.

Mathematicians use generally agreed-upon axioms (foundational as-
sumptions) and rules of logical deduction. In this book, the axioms are
the Zermelo-Frankel-Choice axioms of set theory, and the rules of de-
duction are those of Aristotelean logic.

Throughout this section, a running sequence of examples is pre-
sented to illustrate the concepts being introduced. Mathematics aims
for generality, but the human mind often favors particulars, and it is
these that make mathematics directly useful. The aim of mathematics
is precise thinking, not generality for its own sake. That said, abstrac-
tion (which fosters generality) has a definite purpose: To extract the
essential features of a problem and ignore extraneous details. Preci-
sion is important because intuition (especially regarding the infinite)
is often misleading, sometimes blatantly wrong. Logical deduction is
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the “hygiene of mathematics,” (after H. Weyl) the principle tool by
which intuition is checked for logical consistency, and erroneous think-
ing avoided.

Statements and Implications

A statement is a sentence that has a truth value, that is, which is
unambiguously either true or false with respect to some axiom system.
A mathematical sentence may depend on variables, and may thereby
summarize a family of statements, one for each possible assignment of
variables. The truth value of the resulting statement may depend on
the values of the variables. The important thing is that, for each specific
choice of variables, the sentence should be either true or false. By use
of variables, theorems often encapsulate infinitely many statements.

Here are some examples, in which the variable n is an integer. Ob-
serve that the statements that depend on n encapsulate infinitely many
statements.

• “−4 is an even integer.” “The decimal expansion of π is non-
repeating and contains the string ‘999999’.” (True)

• “For every integer n, n2 − n is an even integer.” (True)

• “2 + 2 = 5.” (False)

• “For some integer n, both n and n+ 1 are even integers. (False)

Sentences that are not statements include “n is an even integer”
(whose truth value depends on n) and the self-referential examples,
“This sentence is true” (whose truth value must be specified as an ax-
iom) and “This sentence is false” (which cannot be consistently assigned
a truth value).

Statements are linked by logical implications or if-then statements,
sentences of the type, “If H, then C.” The variable H is a statement,
called the hypothesis of the implication, and the variable C is a state-
ment called the conclusion of the implication. We think of C as being
deduced or derived from H.

The fundamental idea of Aristotelean logic is that an implication is
valid unless it derives a false statement from a true statement:

• If 1 6= 0, then 12 6= 0. (Valid)
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• If 1 6= 0, then 12 = 0. (Invalid)

• If 1 = 0, then 12 6= 0. (Valid)

• If 1 = 0, then 12 = 0. (Valid)

If a hypothesis and conclusion are related by valid implication, then
the hypothesis is said to imply the conclusion. In this view, it is valid
(not logically erroneous) to deduce a conclusion from a false hypothe-
sis: If we start with truths and make valid deductions, we obtain only
truths, not falsehoods. An implication with false hypothesis is said to
be vacuous. To emphasize, validity has the possibly counterintuitive
property that if the hypothesis is false, then every conclusion follows
by valid implication. As strange as this convention seems, it does not
allow us to deduce falsehoods from truths. Logical validity is central to
the concept of “proof,” and is therefore crucial to the rest of the book
(and to mathematics in general).

The term “imply” has a very different meaning in logic than in ordi-
nary English. In English, to “imply” is to “hint” or “suggest” or “insin-
uate.” In mathematics, if a hypothesis implies a conclusion, then the
truth of the conclusion is an ironclad certainty provided the hypothesis
is true. The term “valid” also has a precise meaning which is not exactly
the same as in ordinary English. Finally, note that every statement has
a truth value, but only an if-then statement can be valid or invalid.

Interesting logical implications usually depend on variables, and the
truth value of the implication therefore depends upon the truth values
of the hypothesis and conclusion. The concept of logical validity comes
into its own when an implication depends on variables. The follow-
ing examples illustrate various combinations of truth and falsehood in
hypothesis and conclusion:

• If n is an integer and if n is even, then n/2 is an integer. (Valid)

• If n is an integer, then n/2 is an integer. (Invalid)

• If n is an integer and n = n+ 1, then 2 + 2 = 5. (Valid)

• If n is an integer and n = n+ 1, then 2 + 2 = 4. (Valid)

The distinction between “truth” (which applies to statements) and
“validity” (which applies to logical implications) may at first seem a
bit fussy. However, it is important to be aware that the concepts are
different, though they are not wholly unrelated, either; when a logical



12 CHAPTER 1. THE LANGUAGE OF MATHEMATICS

implication has a definite hypothesis and conclusion, the entire sentence
becomes a statement, which may be either true or false. Validity of the
implication expresses the truth of the resulting statement in terms of
the truth values of the hypothesis and conclusion. In this sense, logical
validity is a sort of “meta-truth.” A single valid implication usually
yields infinitely many true statements.

Logical Consistency

If, in some axiomatic system, it is possible to prove some proposition P
and also prove the negation ¬P , then every statement Q is provable,
since either P =⇒ Q or ¬P =⇒ Q is vacuously true. The pair
{P, ¬P} is called a logical contradiction, and an axiom system is said
to be inconsistent if a contradiction can be derived in it. While it may
be very interesting to discover that an axiom system is inconsistent, an
inconsistent system is not in itself mathematically interesting.

Work of K. Gödel in the 1930s showed that it is impossible to prove
that ZFC is consistent, except by using some other (“more powerful”)
axiom system, whose consistency is unknown. By way of reassurance,
it is also known that if there is a contradiction in ZFC, then there is a
contradiction in ordinary arithmetic.

Definitions and Theorems

Mathematical definitions establish terminology, the common ground
from which to work. The primary difficulty in making “good” definitions
is isolating, or abstracting, exactly the desired conceptual properties.

Mathematical definitions are interpreted literally. For a beginner, it
can be a serious conceptual obstacle not to read in more than is stated
when interpreting definitions.

A physicist, a statistician, and a mathematician were mo-
toring in the Scottish countryside when they came upon a
flock of one hundred sheep, one of which was black. The
physicist said, “From this, we deduce that one percent of
sheep are black.” The statistician said, “No, we only know
that of these 100 sheep, one is black.” The mathematician
corrected, “I’m afraid you’re both wrong. We only know
that of these 100 sheep, one of them is black on one side.”
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When you are asked to prove something (in this book or elsewhere),
the first thing to do is make sure you know and understand the def-
initions of all concepts involved. Eventually this will become second
nature to you (or you will quit mathematics in frustration), but it
doesn’t hurt to be reminded frequently at this stage.
Definition 1.1 An integer n is even if there exists an integer m such
that n = 2m.

For each integer n, the definition provides a criterion to determine
whether or not n is even. The criterion is a pass/fail test, nothing more.
A definition also provides a condition that every even integer satisfies.
If an integer k is even, you immediately know something about k; for
instance, the last digit cannot be “3.”

We immediately see that n = 6 is even, since m = 3 satisfies the
condition of the definition. By contrast, we cannot determine so easily
whether 5 is even or not; using the definition, we would have to show
somehow that 5 6= 2m for every integer m, an infinite task. Instead we
must find a criterion for non-evenness. For example, we might prove
that an integer that leaves a remainder of 1 on division by 2 is not even.
Since 5 satisfies this criterion, we would deduce that 5 is not even.

Generally, in problem solving the definition plays the role of a test,
e.g. “Determine which of the following integers is even. . .” while in prov-
ing theorems, the definition plays the role of a condition, e.g. “If n is
an even integer, then n2 is an even integer.”

On Doing Mathematics

The dilemma above (“Is 5 even?”) is the norm for mathematical study
and research, and can be extremely frustrating. A mathematical cri-
terion is usually considerably more subtle than “evenness”, and it may
be difficult to see immediately whether or not a specific object satis-
fies a criterion. Unfortunately, if you do not know in advance what is
true, you do not how to proceed when trying to prove something! All
too quickly you will encounter this survival lesson: In mathematics,
you must not be afraid to work provisionally, follow blind alleys, exam-
ine the consequences of hypotheses not known to be true, and search
for examples that may not exist. The process of discovery is never
straightforward, and mathematics is no exception. In time you will
develop intuition regarding approaches to a problem that are likely to
be fruitful, and ideas that are probably dead ends. You will learn how
to “play” with hypotheses, how to look at special cases and formulate



14 CHAPTER 1. THE LANGUAGE OF MATHEMATICS

general guesses, how to distinguish real patterns from illusory ones, and
finally how to prove that the patterns you have found are real.

Theorems

A theorem is a valid implication of sufficient interest to warrant special
attention. A lemma is a valid implication that is mostly of technical
interest in establishing a theorem. If you program, it may help to think
of a lemma as a “logical subroutine”, a short piece of logical argument
that is used repeatedly and should be separated out for clarity and
brevity. A proposition is “a small theorem of independent interest”. To
an extent, the choice of term in a given situation is a matter of style.

Most mathematical assertions are stated in one of three forms (in
roughly decreasing order of formality):

• (Valid implication) “If n is an even integer, then n2 is a multiple
of 4.”

• (Quantified sentence) “For every even integer n, n2 is a multiple
of 4.”

• (Direct statement) “The square of an even integer is a multiple
of 4.”

Each expresses the fact that an object that has one property (an even
integer) also has another property (its square is a multiple of 4). An
even more formal wording, that combines implication and quantifica-
tion, is “If n is an even integer, then there exists an integer k such that
n2 = 4k.”

When every hypothesis of a valid implication is true, then the con-
clusion is also true. This is the only information implicitly or explicitly
conveyed by a logical implication. In particular, if some hypothesis is
false, then no information whatsoever is asserted. To emphasize:

A theorem conveys absolutely no information unless every
hypothesis is satisfied.

A common confusion is to remember the conclusion of a theorem
and to pay no attention to the hypotheses, thereby leading (at best)
to a statement out of context or (at worst) to a bad interpretation.
In the mid-1990s, a popular newspaper columnist fell into this pitfall
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over A. Wiles’ proof of “Fermat’s Last Theorem”. Wiles used tech-
niques from “hyperbolic geometry”, which the columnist thought was
self-contradictory because “It is possible to square the circle in hyper-
bolic geometry”, while every school student of the columnist’s genera-
tion learned that “It is impossible to square the circle”. The columnist
was, presumably, remembering the conclusion of a celebrated theorem
of 19th Century mathematics:

Theorem 1.2. Let the axioms of Euclidean geometry be assumed. If a
line segment of unit length is given, then it is impossible to construct a
line segment of length π in finitely many steps using only a straightedge
and compass. Consequently, it is impossible to construct a segment of
length

√
π, that is, to “square the circle”.

As a general lesson, Theorem 1.2 says nothing about the possibility
of constructing such a line segment with tools other than a straightedge
and compass, nor about the possibility of obtaining better and better
approximations with a straightedge and compass, thereby (in a sense)
achieving the construction in infinitely many steps. The relevant short-
coming in this story is that the theorem says nothing unless the axioms
of Euclidean geometry are assumed.2

If there is a linguistic lesson to be gleaned from mathematics, it
is that words themselves are merely labels for concepts. While our
minds react strongly to words,3 it is the underlying concepts that are
central to logic, mathematics, and reality. Good terminology is chosen
to reflect meaning, but it is a common, human, mistake to assume an
implication is obvious on the basis of terminology. Mathematicians
remind themselves of this with the red herring principle:

In mathematics, a ‘red herring’ may be neither red nor a
herring.

Theorem 1.2 is remarkable for another reason: It asserts the impos-
sibility of a procedure that is a priori conceivable (namely, that is not

2The columnist’s error was not this glaring; they argued that because theorems
of hyperbolic geometry can be interpreted as statements in Euclidean geometry,
a “hyperbolic” proof is self-contradictory. The resolution to this objection is that
while “squaring the circle in hyperbolic geometry” can be interpreted as a statement
about Euclidean geometry, the interpretation is markedly different from “squaring
the circle in Euclidean geometry”, and does not contradict Theorem 1.2.

3To the extent that nonsensical rhetoric can be persuasive, or that it is illegal in
the U.S. to broadcast certain words by radio or television.
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obviously contradictory).4 This is a completely different matter from
saying “Human knowledge does not currently have the means to ‘square
the circle’.” It means, rather, that the axioms of Euclidean geometry
are not logically compatible with the construction of a certain line seg-
ment, with certain tools, in finitely many steps. The logic of the proof
is briefly sketched later on, after methods of proof have been discussed.

Proof

To illustrate the ideas of proof in more detail, and with an example
of some historical and mathematical importance, consider the familiar
fact that “

√
2 is irrational.” There is a theorem behind this assertion,

but the present phrasing leaves much to be desired: It ignores, for ex-
ample, questions such as “What is a real number?” and “What is the
relationship between rational and irrational (real) numbers?” A fas-
tidious mathematician might prefer the assertion “There is no rational
square root of 2.” Even this is not a logical implication, however. One
way to express precisely (and in a manner amenable to proof!) the
irrationality of

√
2 is as follows.

Theorem 1.3. If m and n are positive integers, then (m/n)2 6= 2.

Theorem 1.3 exemplifies the quote of Goethe at the opening of this
chapter, though with a bit of practice you will be able to translate men-
tally from informal assertions to precisely stated logical implications.
You should convince yourself this theorem really does say “There is no
rational square root of 2.” An alternative wording is the quantified
sentence, “For every rational number x, x2 6= 2.”

The proof of Theorem 1.3 is expedited by the following observation:

Lemma 1.4. If k is an even integer, and if there is an integer m with
m2 = k, then k is a multiple of 4.

In Lemma 1.4, the hypothesis consists of two statements, “k is an
even integer” and “there is an integer m with m2 = k” (sometimes
phrased as “k is a square”). The conclusion is the statement “there
is an integer n such that k = 4n.” As stated, Lemma 1.4 gives no
information whatsoever in the event that k is not even, nor does it give
information if k is not a perfect square.

4A popular cartoonist claimed that “It is impossible to prove the impossibility
of something.” While this is arguably true of science, it is certainly not true of
mathematics.
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Proof. Lemma 1.4 is established by checking a couple of cases. Assume
that k is a square, so there is an integer m with m2 = k. If m is odd,
then k = m2 is odd (why?), while ifm is even, then k = m2 is a multiple
of 4 (why?). So, the only way a square can be even is if it is already a
multiple of 4, as was to be shown.

This proof is admittedly a bit informal, if conceptually correct; the
details would require definition of an “odd” integer, together with steps
answering the two questions in parentheses. A direct proof of The-
orem 1.3 can be based on Lemma 1.4. A more standard proof by
contradiction is given later.

Proof. Observe that (m/n)2 = 2 means the same thing as m2 = 2n2.
By writing m/n in lowest terms, m and n may be assumed to have no
common factor; in particular, they are not both even.

Case 1: m is odd. In this event, m2 is odd. Since 2n2 is even for
every n, there does not exist an integer n with m2 = 2n2.

Case 2: n is odd. Then 2n2 is an even integer that is not divisible
by 4. By Lemma 1.4, 2n2 is not a perfect square.

This shows that if m and n are positive integers, then m2 6= 2n2, which
completes the proof.

Equivalent Forms of Implication

Perhaps the most visual way to understand the conditional statement
“If H, then C” is in terms of sets and subsets. Let H denote the set
of all objects satisfying the hypothesis H and let C denote the set of
all objects satisfying the conclusion C. The logical implication “If H,
then C” takes the form H ⊂ C, see Figure 1.3 below. In words, “Every
object that satisfies the hypothesis H also satisfies the conclusion C.”

Figure 1.3: The Venn Diagram for “If H, then C”.
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Let Hc denote the set of objects that do not satisfy the hypoth-
esis H, and let Cc denote the set of objects that do not satisfy the
conclusion C. Thus Hc is the set-theoretic complement of the set H.
It should be clear from Figures 1.3 and 1.4 that H ⊂ C means the
same thing as Cc ⊂ Hc. The corresponding logical implication, “If
not C, then not H,” is called the contrapositive of the statement “If H,
then C.” Every implication is logically equivalent to its contrapositive.
The contrapositive is sometimes stated “H only if C.”

c

c

Figure 1.4: The contrapositive: “If not C, then not H”.

It is common to use the notation H =⇒ C, read “H implies C,”
instead of the equivalent forms H ⊂ C or “If H, then C.” Logicians
write ¬C instead of “not C.” In this notation, the contrapositive is
written ¬C =⇒ ¬H.

Yet a third reformulation of H ⊂ C is H ∩ Cc = ∅. In words, there
is no object that both satisfies the hypothesis H and fails to satisfy the
conclusion C.

Statement Name Set Interpretation

If H, then C. Direct Implication H ⊂ C
If not C, then not H. Contrapositive Cc ⊂ Hc

Table 1.1: Direct implication and contrapositive.

The following sentences (each logically equivalent to H =⇒ C)
are used interchangeably, usage being dictated primarily by style: If
H, then C; C if H; H only if C; H is sufficient for C; C is necessary
for H. Mathematical reading demands a great deal of attention to
precise wording!
Example 1.5 The (valid) implication “If m and n are even integers,
then m+ n is even” is written equivalently as

• m+ n is even if m and n are even.
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• m and n are even only if m+ n is even.

• In order that m+ n be even, it suffices that m and n be even.

• In order that m and n be even, it is necessary that m+n be even.

• If m + n is not even, then m and n are not both even; in other
words, at least one of m and n is not even.

Observe carefully that nothing in the last phrasing excludes the
possibility that neither m nor n is even. The hypothesis is “m + n is
odd,” and the conclusion is “m and n are not both even” (or “at least
one of them is odd”). While it is true that both numbers cannot be odd
(if their sum is not even), this fact is not asserted. You might say a true
mathematical assertion need not tell the whole truth. �

Converse and Inverse

There are two other statements that are similar in appearance—but not
logically equivalent—to H =⇒ C. The first, called the converse, is
C =⇒ H; this asserts that if the conclusion is satisfied, then so is the
hypothesis. The second, called the inverse ¬H =⇒ ¬C, asserts that
if the hypothesis is not satisfied, then neither is the conclusion.

Statement Name Set Interpretation

If C, then H. Converse C ⊂ H
If not H, then not C. Inverse Hc ⊂ Cc

Table 1.2: Converse and inverse.

A very common mistake is to confuse a statement with its converse
or inverse. Generally, a statement is not logically equivalent to its
converse. In Example 1.5, the (non-valid) converse implication reads
“If m + n is even, then m and n are even.” The incorrectness of the
converse is exhibited by the existence of counterexamples : Indeed, the
sum of two odd integers is even.

Methods of Proof and Disproof

Every theorem in mathematics is (equivalent to) one or more logical
implications, though sometimes the logical implication is disguised by
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the wording of the theorem. An “if and only if” (sometimes written “iff”
or “⇔”) statement is a pair of logical implications where each statement
is the converse of the other. Loosely, a true iff statement is the whole
truth. It is a stylistic tradition that in a definition, the word “if” is
always taken to mean “iff.” Thus Definition 1.1 above really means
“An integer n is even if, and only if, there is an integer m such that
n = 2m.”

A proof is an argument used to establish the truth of a logical im-
plication H =⇒ C. There are three methods of proof, corresponding
to the three set-theoretic interpretations of the implication.

Direct Proof With the direct method, H ⊂ C is proven by showing
that if x is in H, then x is in C, or that “x ∈ C for every x ∈ H.” In
words, choose a “generic” object x that satisfies the hypothesis H and
show that this object must also satisfy the conclusion C.

Contraposition Proof by contraposition relies on the equivalence of
H ⊂ C and Cc ⊂ Hc. This method may be regarded either as a different
method of proof, or as a direct proof of a different (but logically equiv-
alent) statement. In this method, choose a “generic” object that fails
to satisfy the conclusion and show that it fails to satisfy the hypothesis
as well.

Contradiction Proof by contradiction relies on the equivalence of
H ⊂ C and H ∩ Cc = ∅. The approach is to show that if some object
simultaneously satisfies the hypothesis and fails to satisfy the conclu-
sion, then mathematics is logically inconsistent: There is a statement P
such that P and ¬P are both true.

Example 1.6 The standard proof that there is no rational square root
of 2 is by contradiction, and relies more heavily on Lemma 1.4. Assume
m/n is in lowest terms, and that (m/n)2 = 2, or m2 = 2n2. This
equation implies that the even integer 2n2 is a perfect square, hence
is a multiple of 4 by Lemma 1.4. Thus m = 2`, that is, m is even.
Dividing 2n2 = m2 = 4`2 by 2 gives n2 = 2`2. Applying Lemma 1.4
again, we find that n2 is a multiple of 4, so n is even. Thus m/n is not
in lowest terms, contradicting the original assumption.

In summary, the argument above shows that if m/n is in lowest
terms and (m/n)2 = 2, then m/n is not in lowest terms. This shows
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(m/n)2 = 2 is impossible, that is, there is no rational square root of 2.
�

Proof by contradiction tends to be awkward logically, and does not
generally build a logical link between hypothesis and conclusion. For
this reason, proof by contradiction should be regarded as a last resort.
Happily, most proofs by contradiction can easily be re-written as proofs
by contraposition, though as in Theorem 1.3 it may be necessary to
reformulate the implication appropriately.

It is a common mistake, especially under exam pressure, to start a
proof by assuming the conclusion. This amounts to assuming what is
to be proved, and is clearly wrong. To emphasize:

When proving a logical implication, the conclusion is never
assumed.

Let us return for a moment to Theorem 1.2, which asserts (loosely)
the impossibility of squaring the circle in Euclidean geometry. Here
are the basic ideas of the proof: First it is shown that if a segment of
length π could be constructed in finitely many steps with a straight-
edge and compass, then the real number π would satisfy a polyno-
mial relation with rational coefficients—something like π2 − 10 = 0 or
1− π2/6 + π4/120 = 0 (neither of these is correct). But for purely an-
alytic reasons (that are, unfortunately, beyond the scope of this book),
such a relation would imply existence of an integer between 0 and 1.
Since no such integer exists, the purported construction is impossible,
in the sense of being incompatible with basic properties of numbers.

Counterexamples The previous items deal with establishing the
truth of a logical implication. The dual task, proving the falsity of
a logical implication, is accomplished by means of counterexamples. A
counterexample to the assertion H =⇒ C is an object x that both
satisfies the hypothesis and fails to satisfy the conclusion. Existence
of such an x proves that the intersection H ∩ Cc is non-empty, so that
H ⊂ C is false, see Figure 1.5.

While the falsity of the assertion H =⇒ C can be proven by
finding an object that both satisfies the hypothesis and fails to satisfy
the conclusion, the statement H =⇒ C cannot be proven by finding
an example y satisfying both the hypothesis and the conclusion; in
Figure 1.6, such an example exists but the statement “H =⇒ C”
is false. To prove a logical implication, it must be shown that every
object satisfying the hypothesis satisfies the conclusion.
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x

Figure 1.5: A Counterexample.

y

Figure 1.6: A Misleading Example.

Summary

Three themes run through all bodies of well-developed mathematical
knowledge: Definitions, theorems, and examples. Definitions can be
made freely, but good definitions are usually hard-won. When you en-
counter a definition for the first time, you should ask yourself: What
are some examples and non-examples? What kinds of objects are dis-
tinguished by the definition? It is usually a bad definition that specifies
only objects that can be characterized by a simpler alternative. It is
also possible for a definition to compress an astounding amount of sub-
tle information into a few deceptively simple criteria. The definition
of the natural numbers—the first precise definition in this book—is an
excellent example. Roughly, the quality of a definition is measured by
its simplicity (which is connected to its ease of use) and the number of
unexpected consequences it has.

Examples bring a definition to life; the worst definitions are those
that have no examples (or no non-examples) because the definition is
either logically inconsistent or tautological. Examples make definitions
useful for modeling real-life situations, and definitions are usually cho-
sen to make some real-world intuition precise. As noted earlier, it may
be very difficult to verify whether or not a specific object is an example
of a definition! For this reason, simple definitions are preferable: They
are easier to verify when treating specific examples. However the advice
of A. Einstein is germane: Make things as simple as possible, but no
simpler.

Theorems are non-obvious consequences of definitions. They are
useful for classifying examples (perhaps by reformulating a definition in
an equivalent, non-obvious way), organizing logical relationships among
concepts, and extending knowledge about classes of objects. Often
knowledge about a particular object is gleaned by verifying that the
object is an example of some definition, then using a theorem that
guarantees all such objects have the desired property.
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Mathematics is participatory, so these remarks may not mean much
at this stage (unless they’re intuitively obvious). If you return to them
periodically throughout the book, you should find their meaning be-
coming clearer.

1.4 Calculus and the “Real World”

Calculus is often called the mathematical study of rates of change. The
questions it addresses include finding the area enclosed by curves in
a plane (and defining what is meant by “area” for a curved region),
finding lines that are tangent to curves (and defining what is meant
by “tangency”), calculating the energy needed to move an object in a
non-constant gravitational field, predicting the rate of progression of a
chemical reaction as the reactants are used up by the reaction, finding
the speed of a stone dropped from a cliff (and defining what is meant
by “speed at an instant of time”), and so forth. As a tool of the sciences,
calculus comprises three majors facets:

• The “practical” side, which makes connection to the domains
of physics, chemistry, biology, economics—the “real world”—and
through which calculus acquires its largest group of consumers:
scientists and engineers.

Applications take the form of “Laws of Nature,” which are equa-
tions whose solutions model some aspect of the physical world.
In scientific modeling, there is always a trade-off between sim-
plicity and accuracy. Newton’s law of gravitation is simple, and
adequate for most practical purposes, but it fails to explain some
observable phenomena. Einstein’s general theory of relativity re-
fines and extends Newton’s law, but it requires difficult and subtle
mathematics in order to perform predictive calculations.

• The “calculational” aspect, which allows intuitive ideas about “in-
finitely small” quantities, “points” in space, and “instants” of time,
to be converted into symbolic expressions and manipulated to ob-
tain useful answers to the types of questions described above.

• The “theoretical” foundation, which defines differentials and inte-
grals in terms of set theory (the “machine language” of mathemat-
ics) and proves that the manipulations are logically consistent, so
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that the answers obtained are in some sense reasonable even if
the technical details and intuition do not coincide exactly.

Each of these aspects is important in its own right, and each supports
the others, though most users do not need to understand the founda-
tions in order to use the applications. (To use a mechanical metaphor,
you can drive a car without being able to rebuild the engine.) However,
it is better to have true understanding of a subject rather than mere
familiarity; true knowledge is flexible, and can be applied correctly in
novel situations, while familiarity is limited to situations encountered
previously.

Modeling Physics with Mathematics

A simple physical example will serve to illustrate these facets as well
as several related issues that arise. Suppose a stone is dropped from a
cliff y0 meters high; how many seconds pass before the stone hits the
ground, and how fast will the stone be moving at impact? In elementary
physics, these answers are encoded in a formula for the height y(t) of
the stone after t seconds have passed:

(1.1) y(t) = y0 − 4.9t2.

It is important to remember that this model is not an exact description
of reality. We next discuss, in some detail, the assumptions that go
into this model, to illustrate the practical way mathematics interfaces
with the sciences.

In order to use mathematics to describe natural phenomena, a back-
and-forth procedure of approximation and mathematical modeling must
be employed. In a situation as simple as that of a falling stone, these
mental machinations are often made unconsciously, but in complicated
and novel problems it is necessary to understand how to translate from
mathematics to “the real world” and back.

As a first approximation, the stone will be regarded as a point par-
ticle, imbued with no attributes other than position and mass, and the
earth’s surface will be modeled by a flat plane. Barring effects of wind
and Coreolis deflection, the stone drops vertically, so the motion of the
stone is determined by knowing, for each time t (measured in seconds
after its release, for example), its height y(t) (measured in meters, say)
above the ground. Even in informal English the height of the stone is
said to be “a function of time.” The mathematical concept of a function
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is fundamental, and is discussed at length in Chapter 3. Because the
quantity of interest—the height of the stone at time t—is determined
by a single number, this model is said to be a “one-variable” problem.

To say anything further, it is necessary to borrow some results from
physics; mathematics says absolutely nothing about the way stones
fall, nor in general about anything other than mathematics. In our
idealized situation, the motion of the stone is governed by Newton’s
laws of motion: there are “forces” acting (gravitation and air resistance
are the most important ones), and these determine the “acceleration” of
the stone. Acceleration is a concept of differential calculus: the velocity
of the stone is its rate of change of position (in units of meters per
second), while the acceleration is the rate of change of the velocity (in
“ ‘meters per second’ per second”). In the Newtonian model, the forces
acting on the stone determine its behavior, and it is this predictive
power that answers the original questions.

It is convenient to make a couple of idealizations:

• The acceleration due to gravity is constant during the stone’s fall.

• There is no air resistance.

The first assumption is justified as follows. According to Newton’s law
of gravitation, the force acting on the stone is a certain constantG times
the mass m of the stone times the mass M of the earth, divided by the
square of the distance R(t) from the stone to the center of the earth
at time t. According to Newton’s third law of motion, the net force on
the stone is equal to the mass of the stone times its acceleration. In
symbols,

(1.2) F = −G mM

R(t)2
= ma;

the minus sign indicates that the force is directed toward the center of
the earth. Because the distance the stone falls is very small compared
to the radius R of the earth, the ratio R(t)/R is very nearly equal to 1
throughout the stone’s fall, so the denominator in equation (1.2) may
be replaced by R2 without much loss of accuracy. The assumption that
there is no air resistance is not realistic, but modeling the air resistance
on a solid body is horrendously complicated even if the body is perfectly
spherical (another unrealistic assumption). However, the point to be
made concerns modeling, and neglecting air resistance illustrates this
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point nicely: Sometimes you must make unrealistic simplifications to
get a tractable calculation.

By equation (1.2), the acceleration of the stone is (approximately!)
a = −GM/R2. This number has been measured to be roughly −9.8 me-
ters per second per second at the surface of the earth. At last we are
ready to use calculus. The technique to be used is called “integration”
and is studied at length starting in Chapter 7. Here we give the intu-
itive description; nothing in the next paragraphs should be taken too
literally.

The acceleration of the stone—the rate of change of velocity—is
constant, so in each instant of time the velocity increases by the same
amount, and after t seconds is equal to v(t) = v0−at meters per second;
v0 is the initial velocity, which is zero because the stone was dropped.

Now, in the same instant of time, the stone falls a distance of −at dt
meters. Adding up these infinitesimal distances (and omitting the de-
tails) leads at last to (1.1). To repeat, the height of the stone before
impact is

y(t) = y0 − 1

2
at2 = y0 − 4.9 t2.

As a sanity check, let us verify the correctness of this formula: In the
instant of time between t and t + dt, the stone falls from height y(t)
to y(t+ dt), a distance of

dy := y(t+ dt)− y(t) = −1

2
a
(

(t+ dt)2 − t2
)

= −1

2
a(2t dt+ dt2).

Dividing by dt gives the stone an instantaneous velocity of

(1.3)
dy

dt
= −at− a

2
dt,

which is essentially v(t) = −at because dt is vanishingly small.
To emphasize once more, equation (1.1) is a model for the height of

a dropped stone t seconds after its release from a height of y0 meters.
Armed with this formula, we can answer the question, “When does
the stone land?” because the impact of the stone corresponds to the
condition y(t) = 0 in the model and this equation is easily solved for t in
terms of the initial height y0. The stone’s impact speed is even easier to
find: at0 meters per second (the discarded minus sign merely indicates
that the stone hits the ground while moving downward). In terms of
the initial height y0 (in meters),

Impact time =

√
y0

4.9
, Impact velocity = 2

√
4.9y0.
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For most calculus courses this is the end of the story, and indeed, it
is hoped that none of the mathematics or physics was unfamiliar. The
point in going through this simple example in such detail was to point
out the features of modeling a real-world situation, and to mention the
interesting and controversial steps that occurred in obtaining the veloc-
ity of the stone from equation (1.2) and verifying that equation (1.1)
really does lead to the computed velocity.

Velocity is supposed to represent “instantaneous rate of change of
position,” but what exactly does this mean? (If this question cannot
be answered, then there is no reason to believe the equation v = −at is
meaningful or useful!) The ancient Greek Zeno of Elea discovered the
following apparent paradox. Imagine the falling stone at “an instant
of time.” The stone has a definite location, and is indistinguishable
from a stationary stone at the same height. More concretely, imagine
an infinitely fast camera that captures literal instants of time. Then
there is no way to distinguish a moving object from a stationary object
on the basis of a single photograph. But since this argument can be
made at every instant of time, there is no difference between moving
and standing still! Yet the falling stone does fall rather than levitating,
and motion is patently possible. Where did the argument go astray?
To see intuitively why there is no paradox, imagine a very fast cam-
era that can capture arbitrarily small intervals of time; an exposure
of a thousandth of a second, a billionth of a second, or a billionth of a
billionth of a billionth of a second is possible. To such a camera, a mov-
ing stone and a stationary stone do not appear identical; the moving
stone makes a slightly blurred image because its position changes while
the shutter is open. Of course, the image of the falling stone becomes
sharper as the shutter speed is increased, but the resulting picture is
never identical to a photograph of a stationary stone. Additionally, the
distance traveled by the stone divided by the exposure time gets “closer
and closer to a limiting value” as the shutter speed increases; this “lim-
iting value” has units of meters per second, and is interpreted as the
“instantaneous velocity” of the stone. Effectively, this limiting proce-
dure “magnifies the time scale by a factor of ∞.” This explanation is
substantially incomplete, because the phrases in quotes have not been
defined. Intuitively, the points are that:

• States of rest and motion can be distinguished over arbitrarily
small intervals of time, even though they cannot be distinguished
at a single instant;
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• If we look at smaller and smaller intervals of time, motion looks
more and more as if it is at constant speed; geometrically, the
graph of position as a function of time looks more and more like
a straight line as we “zoom in” at time t.

Though these remarks are imprecise, they contain the germ of precise
definitions in which a logically consistent mathematical theory of rates
of change can be formulated. The naive idea of “instantaneous velocity”
(distance divided by time) involves the meaningless expression 0/0. The
concept of “limits” (Chapter 4) neatly circumvents this difficulty and
permits mathematical treatment of instantaneous speed.

Several other issues have also arisen implicitly, though they are
mostly non-mathematical. “Instants of time” are physically meaning-
less, as are spatial points, though both concepts serve as useful idealiza-
tions that are quite accurate for macroscopic events. In making mathe-
matical models of “real” situations, it is always necessary to neglect cer-
tain effects, to forget some attributes of the objects under consideration,
and even to make purely mathematical approximations (for example,
in solving numerical models with a digital computer). Mathematics is
a precise and detailed language that happens to be useful for describ-
ing many observed phenomena. Many of the laws of nature can be
expressed conveniently in the language of differential equations, which
relate quantities and their rates of change. Sciences such as physics
and chemistry attempt to relate outcomes of experiments with mathe-
matical descriptions so that the results can be predicted in advance or
otherwise understood. These mathematical models—so-called Laws of
Nature—may be quite accurate, but none as yet is all-encompassing or
completely accurate to the limits of measurement.

There is good reason to assert that mathematics is not “real” in
a physical sense; it is a tool or language that our minds use to con-
struct accurate, predictive models of reality. The aim of this book is to
show how the mathematics underlying calculus is logically consistent
by building it from set theory, while giving interesting and substantial
applications of these powerful mathematical techniques.

Exercises
Some of these exercises are fairly traditional, and assume you are fa-
miliar with standard mathematical notation. Others are designed to
make you think about language, mental models, and semantics. The
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only way to learn to “speak Mathematics” is through practice; writing,
reformulating, and thinking. Familiarity can be acquired through read-
ing, but originality can only come through participation. Additionally,
Mathematics uses English words and grammar (in this book, at least),
but is not English. A few of the exercises illustrate important differ-
ences. Mathematical definitions and theorems tend to be stated in a
“logical” form that our brains are not normally adept at understanding,
see Exercise 1.10. For most students, it is a psychological hurdle to rec-
ognize that Mathematics is a language with a fairly rigid syntax, that
colloquial speech is often substantially imprecise, and that something
suggested by association is not linked by logic, see Exercises 1.3, 1.4,
and 1.9. (Almost all advertising relies on the confusion of association
with a logical link.)
Exercise 1.1 Prove that if a whole number k is a perfect square, then
either k or k−1 is divisible by 4. (Compare Lemma 1.4.) �
Exercise 1.2 Let X and Y be sets. The symmetric difference X4 Y
is defined to be (X \Y )∪ (Y \X). Illustrate the definition with a Venn
diagram; prove that

X 4 Y = (X ∪ Y ) \ (X ∩ Y ),

and that the symmetric difference corresponds to the Boolean opera-
tion xor (“exclusive or”).

Note: To prove two sets X and Y are equal, you must show two
things: X ⊂ Y , and Y ⊂ X. �
Exercise 1.3 Someone holding a bag of blue marbles says, “Every
marble in this bag is either red or blue.” Is this a true statement? If
not, why not? If so, does it “tell the whole truth”? Explain. �
Exercise 1.4 R. M. Waldo, the tallest documented human, was just
under 9 feet in height. Assume for this question that he was the tallest
human ever to live, and that he was exactly 9 feet tall.

(a) Consider the claim, “Humans are at most 12 feet tall.” Is this
claim true? If not, why not? If so, can you write it as an “If. . . ,
then. . . ” statement?

(b) Consider the claim, “Humans are at most 9 feet tall.” Does this
claim “tell the whole truth”? If so, in precisely what sense does it
do so?
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(c) Does the assertion in part (a) imply the assertion in part (b), or
vice versa?

Telling the truth mathematically is not the same as telling the truth in
a Court of Law. (Standards of proof are different as well, but that is
another issue.) �
Exercise 1.5 Though it seems strange at first, a set can be be an
element of itself. One early problem with set theory was Russell’s
paradox : LetX be the set of all sets that are not elements of themselves.
Prove that X is an element of itself iff it is not an element of itself.

This problem was fixed by exercising more care with the notion of
a “set”: There must be a universe fixed at the outset, and the “set of all
sets” is not a “set” but a larger object called a “class.” �
Exercise 1.6 Some of the greatest achievements of 20th Century logic
were made by K. Gödel. Among other things, Gödel formulated a state-
ment in arithmetic that could be interpreted as saying, “This statement
cannot be proven.” Assuming there is no contradiction in mathematics,
prove that Gödel’s statement is true but unprovable (in the axiomatic
framework in which it is formulated). This demolished the cherished
idea that every mathematical truth can be proven in some fixed ax-
iomatic system. �

Many statements in analysis involve the quantifiers “for every” (the
universal quantifier ∀) and “there exists” (the existential quantifier ∃).
We will not use these symbols, though you are cautioned that some
people are fond of writing, e.g.,

(∀ε > 0) (∃δ > 0) |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

The next exercise introduces some basic properties of quantifiers.
Exercise 1.7 Consider the quantified sentences:

(a) For every marble x in the bag, x is blue.

(b) There exists a red marble y in the bag.

(c) For every real x > 0, there exists a natural number n with 1/n < x.

Give the negation of each sentence. Express (a) and (c) as conditional
statements, and give their contrapositives. Express the negations of
(b) and (c) as conditional statements, and give their contrapositives.
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Notice that “for every” and “there exists” are exchanged under negation.
�
Exercise 1.8 A game-show host presents the contestant with the equa-
tion “a2 + b2 = c2.” The contestant replies, “What is the Pythagorean
Theorem?”

(a) Is this really the correct question? If not, can you append a clause
to give a question that would satisfy a mathematician?

(b) State the Pythagorean Theorem in if-then form.

A theorem is not merely its conclusion. Despite this, after A. Wiles
announced the proof of Fermat’s Last Theorem, the Mathematical Sci-
ences Research Institute (MSRI) in Berkeley produced T-shirts bearing
the message, “an+bn = cn: NOT!” �
Exercise 1.9 The President, a law-abiding citizen who always tells
the truth, has time for one more Yes/No question at a press conference.
In an attempt to embarrass the President, a reporter asks, “Have you
stopped offering illegal drugs to visiting Heads of State?”

(a) Which answer (“Yes” or “No”) is logically truthful?

(b) Suppose the President answers “Yes”. Can the public conclude
that the President has offered illegal drugs to visiting Heads of
State? What if the answer is “No”?

(c) Explain why both answers are embarrassing.

If the President were a Zen Buddhist, she might reply, “mu,”5 meaning
“Your question is too flawed in its hypotheses to answer meaningfully.”
�
Exercise 1.10 One striking peculiarity of the human brain is that it
is “better” at seeing certain situations in an emotional light than it is at
understanding an equivalent logical formulation. Here is an example.

(a) Each card in a deck is printed with a letter on one side and a
number on the other. Precisely, the letter is either “D” or “N”
and the number is a whole number between 16 and 70 inclusive.
There is no restriction on the combinations in which cards are
printed. Your job is to assess whether or not cards satisfy the

5Pronounced “moo”
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single criterion: “Every ‘D’ card has a number greater than or
equal to 21 printed on the reverse.” You are also to separate
cards that satisfy this criterion from those that do not.

Write the criterion as an “If. . . , then. . . ” statement, and deter-
mine which of the following cards satisfy the criterion:

20

D

(i)

46

D

(ii)

16

N

(iii)

25

N

(iv)
(b) You are shown four cards:

18
(i)

35
(ii)

D
(iii)

N
(iv)

Which cards must be turned over to determine whether or not
they satisfy the criterion of part (a)?

(c) The legal drinking age in a certain state is 21. Your job at a
gathering is to ensure that no one under 21 years of age is drinking
alcohol, and to report those that are. A group of four people
consists of a 20 year old who is drinking, a 46 year old who is
drinking, a 16 year old who is not drinking, and a 25 year old
who is not drinking. Which of these people is/are violating the
law?

After reporting this incident, you find four people at the bar: An
18 year old and a 35 year old with their backs to you, and two
people of unknown age, one of whom is drinking. From which
people do you need further information to see whether or not
they are violating the law?

(d) Explain why the card question is logically equivalent to the drink-
ing question.

Which did you find easier to answer correctly? �



Chapter 2

Numbers

There is a pervasive but incorrect perception that mathematics is the
study of numbers; some mathematicians even joke that the public be-
lieves mathematical research consists of extending multiplication tables
to higher and higher factors. This misapprehension is fostered by school
courses that treat routine calculation as the primary goal of mathemat-
ics. In fact, calculation is a skill, whose relationship to mathematics
analogous to the relationship of spelling to literary composition.

In school, you learned about various kinds of numbers: the counting
(natural) numbers, whole numbers (integers), fractions (rational num-
bers), and decimals (real numbers). You may even have been introduced
to complex numbers, or at least to their most famous non-real member,
i, a square root of −1. One goal of this chapter is to (re-)acquaint you
with these sets of numbers, and to present their abstract properties—
the associative, commutative, and distributive laws of arithmetic, prop-
erties of inequalities, and so forth. At the same time, you will see (in
outline) how these sets of numbers are constructed from set theory,
and discover that the way you have learned about numbers so far is
almost purely notational. Nothing about the integers requires base 10
notation, and nothing about the real numbers forces us to use infinite
decimals to represent them. You will learn to view numbers notionally,
in terms of axioms that abstract their properties. The philosophical
question “What is a real number?” will evaporate, leaving behind the
answer “An element of a set that obeys several axioms.”

One misnomer should be dispelled immediately: Though
√

2 is a
“real” number while

√−1 is an “imaginary” number, each of these sym-
bols represents a mathematical abstraction, and neither has an exis-
tence more or less “real” than the other. No physical quantity can

33
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definitively represent
√

2, because measurements cannot be made with
arbitrary accuracy. If you take the square root of 2 on a calculator,
you get a rational number whose square is often noticeably not equal
to 2. It cannot even be argued that

√
2 has a geometric meaning (the

diagonal of a unit square) and
√−1 doesn’t; the imaginary unit can be

viewed perfectly well as a 1/4-rotation of a plane. Performing such a
rotation twice (squaring) reflects the plane through its origin, which is
tantamount to multiplication by −1. The geometric picture of complex
multiplication is “real” enough that it can be used to interpret Euler’s
famous equation eiπ + 1 = 0, as we shall see in Chapter 15.

The natural numbers are simple enough to be defined directly in
terms of sets, but more complicated number systems—the integers, ra-
tionals, reals, and complex numbers—are defined successively, in terms
of the previous type of numbers. There is a fringe benefit: The tech-
niques of recursive definition, mathematical induction, and equivalence
classes, which arise naturally in constructing the integers from set the-
ory, are important and useful throughout mathematics. By far the most
complicated step is the definition of real numbers in terms of rational
numbers. If the recursive definitions are expanded, a single real number
is a mind-bogglingly complicated set. Luckily, it is never necessary to
work with “expanded” definitions; the abstract properties satisfied by
the set of real numbers are perfectly adequate.

To make a computer analogy, sets are bits, natural numbers are
bytes, the integers and rational numbers are words, the real and com-
plex numbers are assembly language, and calculus itself is an appli-
cation program. At each stage, the objects of interest are built from
the objects one level down. No sane person would write a spreadsheet
program in assembly language, and no sane person would attempt to
interpret an integral in terms of sets at the level of natural numbers.
The recursive nature of calculus (or programming) allows you to forget
about the details of implementation, and concentrate on the properties
your building blocks possess.

2.1 Natural Numbers

L. Kroeneker, the 19th Century mathematician, said (in free transla-
tion) that “the natural numbers alone were created by God; all others
are the work of Man [sic].” A more modern (and secular) phrasing is
mathematics forces us to study the counting numbers, but real numbers
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• • • • • •
0 1 2 3 4 5

() (())
· · ·

Figure 2.1: The set of natural numbers.

are a human invention.
You have met the set N of natural numbers as the set of counting

numbers, starting with 0. Abstractly, N is “an infinite list” character-
ized by three properties:

N.1 There exists an initial element, denoted for the moment by φ.

N.2 There is a notion of successorship: Every natural number n has
a unique “successor” ?n, and every natural number other than φ
is the successor of a unique natural number, its predecessor.

N.3 For every non-empty subset A ⊂ N, there exists a smallest ele-
ment, namely an element n0 ∈ A such that every other element
of A arises in the chain of successorship beginning with n0.

The set N is depicted in Figure 2.1: Successorship is denoted by arrows,
and elements of N are denoted both in the usual way (Hindu-Arabic
numerals) and by using the notion of successors. The ellipsis indicates
that “the pattern continues forever”.

Property N.1 says N is non-empty, while N.3, the well-ordering
property, is the basis for the method of mathematical induction. Con-
ceivably, N.1–N.3 are logically inconsistent. To show that they are not,
we will construct a set N and a notion of successorship that satisfy N.1–
N.3. For the most part, we regard N.1–N.3 as axioms—statements
whose truth is unquestioned. In other words, we will “forget the de-
tails of the implementation” of Theorem 2.1 and take N.1–N.3 as the
starting point for deducing properties of the natural numbers.

Theorem 2.1. There exists a set N, with a notion of successorship,
that satisfies Properties N.1–N.3. This set is unique up to an order-
preserving isomorphism.

The term “order-preserving isomorphism” is explained in Chapter 3,
but in the present situation means “a relabelling of elements that pre-
serves the notion of successorship”.
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Proof. (Sketch) There is a unique set ∅ that contains no elements.
Define φ to be the set ∅. Now define successorship: If n ∈ N has been
defined (as a set), then the successor of n is defined to be the set

(2.1) ? n := n ∪ {n}.
Unwrapping the definition gives, in Hindu-Arabic notation,

1 = {∅}
2 = 1 ∪ {1} =

{
∅, {∅}}

3 = 2 ∪ {2} =
{
∅, {∅}, {∅, {∅}}}

...

Note that n ⊂ ?n as sets, and that (for example) the set “3” has three
elements: ∅, {∅}, and {∅, {∅}}.

In a careful proof, there are many details to check, such as con-
struction of a universal set in which the construction takes place. One
must also take care to use only axioms of set theory, and not to rely on
(possibly wishful!) intuition. However, the following assertions should
be clear:

• For each pair n and m of distinct natural numbers (regarded as
sets), either n ⊂ m and m arises in the chain of successorship
beginning with n, or vice versa. The usual meaning of “less than”
for natural numbers is exactly proper inclusion of sets.

• The “number of elements” of the set n is exactly what is nor-
mally meant by the natural number n. This is because the set ?n
contains exactly one more element than the set n, namely the
element n. (Do not confuse elements, nested within one sets of
braces, with the number of “∅” symbols.)

Property N.1 is true by construction, as is most of N.2; the only non-
obvious detail is that a natural number cannot have two different pre-
decessors. But granting the facts just asserted, if ?n1 = ?n2, then
(relabelling if necessary) n1 ⊂ n2. If n1 and n2 were distinct, then we
would have ?n1 ⊆ n2, which is impossible because ?n1 = ?n2.

To see that every non-empty set A ⊂ N has s smallest element,
start at φ and take successors. At each stage, you are either in A or
not. If you start in A, there is nothing to prove, while if you never
arrive at an element of A, then by construction of N the set A is
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empty. Otherwise, there is a first time that successorship yields an
element n0 of A, and every other element of A must arise in the chain
of successorship starting with n0.

Though the recursive structure of (2.1) is simple, the expanded no-
tation is unusable: Writing out the integer 100 is impossible because the
number of “∅” symbols doubles with each succession. “Hash marks”,
where for example � denotes “5”, represent natural numbers more
efficiently (in a manner similar to Roman numerals), but are still inad-
equate for modern use. Hindu-Arabic numerals are extremely compact;
each additional digit describes numbers ten times as large, and the use
of positional context to ascribe value to a digit (the ones column, tens
column, and so forth) facilitates calculation, making it easy to write,
add, and multiply enormous natural numbers.

Recursive Definition, and Induction

Consider the problem of writing a computer program completely from
scratch. Ordinarily, a programmer picks a “computer language” such
as C, writes a formally-structured but human-readable “source code
file”, then uses a special program called a compiler to convert the source
code into a pattern of bytes that a machine can execute. Now, a mod-
ern C compiler is an extremely complicated, sophisticated program,
something that is too complex to write from scratch. How would some-
one get started without a compiler? The answer is that they would
first write a small, not very featureful compiler in machine language,
then use it to compile a more powerful compiler. Next they would take
their “second-stage” compiler and write a full-blown C compiler. Thusly
equipped, they would write the program they set out to create.

By analogy, suppose we wish to construct the set of real numbers
from scratch. Our construction of N above is something like a bare
computer, capable of being programmed but having no software at all.
The set of natural numbers does not come equipped with the arithmetic
operations of addition, multiplication, and exponentiation; these must
be constructed from the notion of successorship, and are analogous to
our hand-written, “first-stage” compiler. Armed with natural numbers
and arithmetic operations, we proceed to construct the integers and
the rational numbers, which are analogous to the successive compilers;
only then are we ready to construct the set of real numbers.

The ideas introduced above embody recursive definition, in which
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a sequence of objects or structures is defined, each in terms of the
previous. Even the construction of arithmetic operations on N has
a strongly recursive flavor. Addition is defined to be iterated succes-
sion: “2 + 3” means “the successor of the successor of the successor
of 2” (‘take the successor of 2’ 3 times), see equation (2.2). Once addi-
tion is available, multiplication is defined to be iterated addition, and
exponentiation is defined to be iterated multiplication. The familiar
properties of arithmetic will be proven using mathematical induction, a
technique for establishing the truth of infinitely many assertions that
are suitably “logically linked”. From these structures flows a vast and
deep river of ideas and theorems, whose extent is by no means entirely
mapped. Fermat’s Last Theorem was established only in 1994; other
assertions about N, such as Goldbach’s Conjecture1 or the Twin Primes
Conjecture2, remain open.

Addition of Natural Numbers

The intuition behind addition of natural numbers is “agglomeration of
heaps”, as in • • + • •• = • • • • •. You should keep in mind that the
following discussion is just a formalization of this idea, and remember
the Goethe quote.

Suppose we wish to program a computer to add two natural num-
bers, using the definition of addition as iterated successorship. While
intuitively the expression “m + n” means “start with m and take the
successor n times,” such a prescription is not immediately helpful, be-
cause a computer has a fixed processor stack, while the number n can
be arbitrarily large. What is needed is a procedure that requires only a
fixed amount of processor memory.

Imagine, for the moment, that you do not know the meaning of “+”.
Any use of the symbol must be explained in terms of natural numbers
and successorship, and in particular there is no reason to assume formal
properties like m+ n = n+m. Let m be a natural number, and define
m + 1 = ?m. Now, if n is a natural number, and if the expression
“m+ n” has been defined for all m ∈ N, then we define

(2.2) m+ (n+ 1) := (m+ n) + 1 for all m ∈ N.

It is necessary to make a separate definition for m + 1 to start the
process. In less suggestive notation, m + (?n) := ?(m + n) for all

1Every even number greater than 4 is a sum of two odd primes.
2There exist infinitely many pairs of primes of the form {p, p+ 2}.
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m ∈ N. It is not obvious that m + n = n + m for all m and n; this is
part of Theorem 2.6 below.

Equation (2.2) provides an algorithm for “taking the n-fold iterated
successor”: Begin with two “heaps of stones” and move stones from the
second heap to the first until no stones are left in the second heap. In
pseudocode,

Let m and n be natural numbers;
While ( n > 0 ) {

Replace m by its successor;
Replace n by its predecessor;

}
Return m;

Mathematical Induction

Theorem 2.2, the Principle of Mathematical Induction, is one of the
most important places natural numbers arise in analysis. In many set-
tings, an infinite string of assertions can be proven by establishing the
truth of one of them (usually but not always the first one) and showing
that each statement implies the next. Induction is particularly well-
suited to situations in which something has been defined recursively.

Theorem 2.2. Suppose that to each natural number n ∈ N is associ-
ated a sentence P (n), and that

I.1 (Base case) The sentence P (n0) is true for some n0 ∈ N;

I.2 (Inductive Step) For each natural number k ≥ n0, the truth of P (k)
implies the truth of P (k + 1).

Then each sentence P (n) with n ≥ n0 is true.

Proof. Intuitively, P (n0) is true by hypothesis, so the inductive step
says that P (n0 +1) must also be true. But then the inductive step says
that P (n0 + 2) is true, and so on ad infinitum. Thus all the subsequent
sentences are true.

Formally, let A ⊂ N be the set of n ≥ n0 for which P (n) is false.
We wish to show that if the hypotheses of the theorem are satisfied,
then A is empty. Equivalently, we may establish the contrapositive:
If A is not empty, then the hypotheses of the theorem are not satisfied.
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Assume A is not empty. By Property N.3, there is a smallest el-
ement of A. Let n be its predecessor. By definition of A, the state-
ment P (n) is true, while P (n+ 1) is false; thus the inductive step fails
for k = n, so the hypotheses of the theorem are not satisfied.

Example 2.3 Suppose (ak) = a0, a1, a2, . . . is a sequence of numbers.
We use recursive definition to define the sequence of partial sums as
follows. First we set S0 = a0; then, for n ≥ 0 we define Sn+1 =
Sn+an+1. This definition successively expands to S0 = a0, S1 = a0+a1,
S2 = a0 + a1 + a2, and so on. Summation notation is extremely useful
in this context; we write

Sn = a0 + a1 + · · ·+ an =
n∑
k=0

ak for n ≥ 0.

The expression on the right is read, “the sum from k = 0 to n of ak”,
and is called the nth partial sum of the sequence (ak). The recursive
definition of the partial sums looks like

(2.3)
n+1∑
k=0

ak = an+1 +
n∑
k=0

ak for n ≥ 0.

The symbol k, called a dummy index (of summation), is a “local vari-
able” that has no meaning outside the summation sign. It is simply
a placeholder to remind us that we are adding up a finite sequence of
terms, and can be replaced by any letter not already in use, such as
i or j. By contrast, n is related to the number of terms, and is not a
local variable.

It is important to become fluent with summation notation. We will
encounter plenty of examples in due time. Exercise 2.4 provides further
practice. �

Example 2.4 Suppose we wish to find a formula for the sum of the
first n odd integers. The first step is to guess the answer! Though
mathematics is deductive, it is often discovered by trial and error or
educated guessing. The role of proof is to verify that a guess is correct.
The odd integers are 1, 3, 5, 7, and so forth; the nth odd integer is 2n−1.
The first few sums are

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16
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On the basis of this evidence, it looks like the sum of the first n odd
integers is n2. However, despite the compelling picture, no amount of
case-by-case checking will suffice to prove this claim for all n ∈ N,
because infinitely many claims are being made. To attempt a proof by
induction, consider the sentence

P (n) :
n∑
i=1

(2i− 1) = 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

At this stage, we do not know if some or all of the sentences P (n)
are true; we will attempt to demonstrate their truth by showing that
conditions I.1 and I.2 hold.

To verify I.1, replace n by 1 everywhere in P (n); this yields the
sentence 1 = 12, an obvious truth. To establish the induction step,
assume the kth sentence P (k) is true. In this example, assume that

P (k) :
k∑
i=1

(2i− 1) = k2.

The left-hand side is the sum of the first k odd numbers; to get the
sum of the first (k+ 1) odd numbers, we add the (k+ 1)st odd number
2(k+1)−1 = 2k+1 to both sides of the equation, and perform algebra:

k+1∑
i=1

(2i− 1) =
( k∑
i=1

(2i− 1)
)

+ (2k + 1)

= k2 + (2k + 1) = (k + 1)2.

The second equality uses the inductive hypothesis P (k), while the last
step is an algebraic identity. The entire equation is the assertion P (k+
1). Thus, if P (k) is true, then P (k + 1) is also true. By the Induction
Principle, P (n) is true for all n ∈ N.

The end result of this argument is a useful fact, and is said to express
the given sum “in closed form.” To find the sum of the first 1000 odd
numbers, it is not necessary to perform the addition, but merely to
square 1000. �

Mathematicians are famous for reducing a problem to one they have
already solved. In principle, the more difficult problem is then also
solved; in practice, a complete solution may be extremely complicated,
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because the earlier problem may rely on solution of an even simpler
problem, and so forth.
Example 2.5 The Tower of Hanoi puzzle consists of 7 disks of de-
creasing size that are initially in a stack and which can be placed on
any of three spindles, Figure 2.2. The object is to move the stack of
disks from one spot to another, subject to two rules:

(i) Only one disk may be transferred at a time.

(ii) A disk may rest only on a larger disk or on an empty spot.

The question is twofold: Determine how to transfer the disks, and find
the smallest number of individual transfers that move the entire stack.

Figure 2.2: The Tower of Hanoi.

More generally, the game can be played with n disks. Before you
read further, you should try to solve the puzzle for small values of n;
coins of varying denominations make good disks. When n = 1 or n = 2,
the solution is obvious, and for n = 3 or n = 4 the solution should be
easy to find. According to legend, there is a Brahmin monastery where
the monks toil ceaselessly to transfer a stack of 64 disks from one spot
to another, subject to the rules above; when they complete their task,
the universe will come to an end with a thunderclap. We need not fear
the truth of this legend, as will soon become apparent.

The Tower of Hanoi has a beautiful and simple recursive structure.
Let us take a managerial approach to the general problem: Suppose we
knew how to move a stack of (n−1) disks between any pair of spindles.
We could then solve the problem by moving the top (n− 1) disks from
spindle 1 to 2 (Figure 2.3; this requires many individual transfers, but
may be regarded as a single operation), moving the largest disk from 1
to 3, and finally moving the stack from 2 to 3. This reduces solving the
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n disk Tower of Hanoi to solving the (n − 1) disk tower. The 1 disk
tower is trivial. If you know a programming language, you may enjoy
implementing this recursive algorithm and seeing how long it takes to
run with a modest number of disks.

Figure 2.3: Solving the Tower of Hanoi puzzle recursively.

To see how many individual transfers must take place, examine
the recursive structure of the solution more carefully: Imagine there
are n people, labelled 1 through n, and that person j knows how to
solve the j disk tower. In the solution, all j does is delegate two tasks
to (j − 1) and move a single disk. The total number of transfers under
j’s authority is one plus twice the number under (j − 1)’s authority.
Moving a single disk takes one transfer; moving a stack of two disks
therefore takes 1+2·1 = 3 transfers, moving a stack of three disks takes
1 + 2 · 3 = 7 transfers, moving a stack of four disks takes 1 + 2 · 7 = 15
transfers, and so on. It is left as an exercise to guess a formula for the
number of transfers required to move a stack of n disks, and to prove
this guess is correct by mathematical induction.

It should be clear why recursive definitions are so useful; an im-
mense amount of complexity can be encoded in a small set of recursive
rules. Each person in the solution of the Tower of Hanoi needs to know
only two trivial things, but by coordinated delegation of tasks they
solve a complicated problem. However, the number of transfers needed
essentially doubles with each additional disk. Suppose one disk can
be moved per second. To move two disks will take at least 2 seconds,
to move three disks will take at least 4 seconds, and so on (this is a
lower bound, not an exact count). To move a stack of 7 disks will take
more than a minute. A stack of 13 disks will take about an hour if
no mistakes are made, a stack of 20 will take about a week, a stack
of 35 is well beyond a single human lifetime, and a stack of 60—at one
transfer per second—would take considerably longer than the universe
is believed to have existed. The Brahmin priests of the legend will not
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complete their task before the earth is destroyed by well-understood
astronomical phenomena. �

Properties of Addition

As a final application of mathematical induction, let us see how prop-
erties of addition follow from the axioms for the natural numbers. The
arguments are relatively involved; they use nothing more than induc-
tion, but the choices of inductive statements are sometimes delicate.
At least a skimming is recommended, though the proof of Theorem 2.6
may be skipped on a first reading.

Theorem 2.6. Addition is associative and commutative; that is, if m,
n, and ` are natural numbers, then m + (n + `) = (m + n) + ` and
n+m = m+ n.

Proof. Equation (2.2) says (with different letters) that

(∗) p+ (q + 1) = (p+ q) + 1 for all p and q ∈ N;

associativity for ` = 1 is built into the definition of addition. To prove
associativity in general, consider the statement

A(`) : m+ (n+ `) = (m+ n) + ` for all m and n ∈ N.

The base case is given by (∗). Assume A(k) is true for some k > 1;
then for each choice of m and n ∈ N,

m+
(
n+ (k + 1)

)
= m+

(
(n+ k) + 1

)
(∗): p = n, q = k

=
(
m+ (n+ k)

)
+ 1 (∗): p = m, q = n+ k

=
(
(m+ n) + k

)
+ 1 by A(k)

= (m+ n) + (k + 1) (∗): p = m+ n, q = k

Thus, A(k) impliesA(k+1); becauseA(1) is true, Theorem 2.2 saysA(`)
is true for all ` ∈ N, that is, addition is associative.

Commutativity is proven by a double application of induction; first
show that n+ 1 = 1 + n for all n ∈ N (by induction on n), then prove
that n+m = m+n for all m, n ∈ N (by induction onm). Associativity
is used several times. Consider the statement

P (n) : n+ 1 = 1 + n.
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The base case P (1) says the successor of 1 is the successor of 1 (or
1 + 1 = 1 + 1), which is obviously true. Now assume P (k) is true for
some k ∈ N; we wish to prove P (k + 1). But

(k + 1) + 1 = (1 + k) + 1 inductive hypothesis P (k)

= 1 + (k + 1) by associativity.

This proves P (k + 1), so by induction P (n) is true for all n ∈ N. Now
consider the statement

C(m) : n+m = m+ n for all n ∈ N.

The infinite sequence of assertions {P (n) : n ∈ N} is exactly the base
case C(1). Assume C(k) is true for some natural number k, namely
that n+ k = k + n for all n ∈ N. Then for all n ∈ N,

n+ (k + 1) = (n+ k) + 1 associativity
= (k + n) + 1 inductive hypothesis, C(k)

= k + (n+ 1) associativity
= k + (1 + n) by P (n) above
= (k + 1) + n, associativity

that is, C(k + 1) is true. By induction, C(m) is true for all m, so
addition is commutative.

A substantial amount of work has been expended simply to place
grade-school arithmetic on a set-theoretic footing, though the tools
developed—recursive definition and mathematical induction—are worth
the effort. Observe that the symbols “2,” “4,” “+,” and “=” have been
defined in terms of sets, and that the theorem “2+2 = 4” has essentially
been proven.

Multiplication and Exponentiation

Just as addition of natural numbers was defined to be iterated succes-
sion, multiplication is defined to be iterated addition: 2× 3 = 2 + 2 + 2
(‘add 2 to itself’ 3 times), for example. Precisely, define m× 0 = 0 for
all m ∈ N, then for n ≥ 0 define

(2.4) m× (n+ 1) = (m× n) +m for all m ∈ N.
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Note that the distributive law is built into the recursive specification
of multiplication. An excellent exercise is to mimic the proof of The-
orem 2.6, showing that multiplication is associative and commutative,
and distributes over addition.

Going one step further, exponentiation is iterated multiplication:
23 = 2×2×2 (‘multiply 2 by itself’ 3 times).3 Precisely, we set m0 = 1
for all m > 0, then define, for n ∈ N,

(2.5) mn+1 = (mn)×m for m > 0.

(We make the special definition 0n = 0 for all n > 0; the expression
00 is not defined.) You should recursively expand these definitions
and write the algorithms as pseudocode as an exercise. Observe that
exponentiation is immensely complicated when expressed in terms of
successorship.

Addition and multiplication are commutative and associative, and
it would not be unreasonable to suspect this is true of the operations
obtained by successive iteration of them. However, exponentiation is
neither commutative nor associative! In fact, aside from the trivial
cases m = n, there is only one pair of natural numbers (2 and 4) for
which exponentiation commutes. It is amusing to ponder why 24 = 42,
and why these numbers are exceptional in this regard.

Relations

Let X be a set. Recall that X×X is the set of ordered pairs of elements
of X.
Definition 2.7 A relation on X is a set R ⊂ X ×X of ordered pairs
from X. If x and y are elements of X, then we say “x is related to y
by R” or “xRy” if (x, y) ∈ R.

In the examples below, filled circles represent elements of R.
Example 2.8 Let X = N, the set of natural numbers, and let R ⊂
N ×N be the set of pairs (m,n) with m < n, see Figure 2.4. In this
case, m is related to n exactly whenm < n. �

Example 2.9 Again let X = N, and let R be the set of pairs (m,n)
for which m + n is even, Figure 2.5. In this case, m is related to n
when m and n have the same parity, that is, are both even or both
odd. �

3If generalization comes to mind, you are ready for the Ackerman function!
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Figure 2.4: Less than.
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Figure 2.5: Parity.

Example 2.10 Let X be an arbitrary set. The relation of equality is
defined by the subset ∆ = {(x, x) : x ∈ X}, Figure 2.6. Two elements
of X are related by ∆ exactly when they are equal. The subset ∆ is
often called the diagonal of X×X. �

Example 2.11 Let X be a set having more than one element. The
relation of inequality is defined by the complement of the diagonal,
Figure 2.7, namely by R = (X ×X) \∆ = {(x, y) ∈ X ×X : x 6= y}.
�
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Figure 2.6: Equality.
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Figure 2.7: Inequality.

Definition 2.12 Let X be a set. An equivalence relation on X is a
relation, usually denoted ∼, such that
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• (Reflexivity) For all x ∈ X, x ∼ x. In words, every element is
related to itself.

• (Symmetry) For all x and y ∈ X, x ∼ y if and only if y ∼ x.
Roughly, the relation sees only whether x and y are related or
not, and does not otherwise distinguish pairs of elements.

• (Transitivity) For all x, y, and z ∈ X, if x ∼ y and y ∼ z, then
x ∼ z. Intuitively, the relation is all-encompassing; everything
related to something related to x is itself related to x.

If ∼ is an equivalence relation on a set X, then there is a “partition”
of X into disjoint subsets called equivalence classes, each consisting
of elements that are mutually related by ∼. The equivalence class of
x ∈ X is defined by

[x] = {y ∈ X : x ∼ y} ⊂ X.

The set of equivalence classes is denoted X/∼, read X modulo equiva-
lence. Intuitively, an equivalence relation “is blind to” certain distinc-
tions; it cannot distinguish elements in a single equivalence class. The
“parity” relation on N is an equivalence relation, with two equivalence
classes: [0] = {even numbers} and [1] = {odd numbers}. These classes
can be written in (infinitely) many ways, e.g., [1] = [3] = [329].
Remark 2.13 The “less than” relation is transitive, but neither re-
flexive nor symmetric. The relation of “inequality” is symmetric, but
neither reflexive nor transitive (if x 6= y and y 6= z, it does not fol-
low that x 6= z in general). The “empty” relation on a non-empty set
(R = ∅; nothing is related to anything else) is symmetric and transitive
(because the hypotheses are vacuous) but is not reflexive.

There is a clever (but erroneous!) argument that a symmetric and
transitive relation must be reflexive: If x is related to y by a symmetric
relation, then (so the argument goes) taking z = x in the transitivity
property shows that x is related to x. As shown by the “empty rela-
tion,” the error is in assuming that every element is actually related to
something. �

2.2 Integers
The natural numbers have an asymmetry; while every natural number
has a successor, not every natural number has a predecessor. Conse-
quently, equations such as 2 + x = 1 have no solution in the set of
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natural numbers. To circumvent this deficiency, we construct—using
only natural numbers and operations of set theory—a larger collection
of “numbers” that contains a copy of N and in which equations like
n1 + x = n2 always have solutions (when n1 and n2 are numbers of the
more general type). This larger set of numbers is the set Z of integers.4

In the following discussion, we speak of objects we wish to define
as if they already exist. This is not logically circular, because we seek
only to motivate the eventual definition, not to prove anything.

We take our cue from the equation n1 + x = n2: Given an ordered
pair (n1, n2) of natural numbers with n1 ≤ n2, there exists a unique
natural number x with n1 + x = n2. Suppose we were to “define” an
integer to be an ordered pair of natural numbers, with the idea that the
pair x = (n1, n2) corresponds to the solution of n1 +x = n2. This seems
promising, because negative numbers could be realized as ordered pairs
with n1 > n2; for example, the pair (2, 1) would correspond to the
solution of 2 + x = 1, namely to the integer x = −1.

The small hitch is that many different pairs would represent the
same number; (1, 4), (6, 9), and (1965, 1968) all correspond to the num-
ber 3. In fact, two pairs (n1, n2) and (m1,m2) represent the same num-
ber exactly when n2−n1 = m2−m1, that is, when n2 +m1 = n1 +m2.
We are therefore led to define the relation

(2.6) (m1,m2) ∼ (n1, n2) iff n2 +m1 = n1 +m2.

This equation defines an equivalence relation on the set X = N×N, as
you can check, and uses nothing but the set of natural numbers and the
operation of addition. We arrive at an “implementation” of the integers
in terms of sets:
Definition 2.14 An integer is an equivalence class of N × N with
respect to the relation (2.6).
For example, using boldface numerals to denote integers in the usual
way,

2 = [(0, 2)] = [(5, 7)], −2 = [(2, 0)] = [(7, 5)], 0 = [(0, 0)] = [(4, 4)].

In this construction, a single integer consists of infinitely many pairs
of natural numbers! The equivalence class

[
(0, n)

] ∈ X corresponds to
the natural number n, so we have succeeded in building a copy of N
inside Z.

4The abbreviation comes from German, probably from Zahl (for “number”) or
Zyklus (for “cycle”, a reference to abstract algebra).
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It remains to define addition and multiplication of integers. Think
of each integer (equivalence class) as a hat containing infinitely many
slips of paper, each slip having an ordered pair of natural numbers
written on it. We know that if two slips (n1, n2) and (n′1, n

′
2) are drawn

from a single hat, then n2 + n′1 = n′2 + n1. To add (⊕) or multiply (�)
two integers, pick one slip from each of the corresponding hats; say the
slips are (m1,m2) and (n1, n2). The slips

(†) (m1,m2)⊕ (n1, n2) := (m1 + n1,m2 + n2)

(m1,m2)� (n1, n2) := (m1n2 + n1m2,m1n1 +m2n2)

each determine an equivalence class, and these will be called the sum
and product of the two original slips. (For example, plug in (4, 2)
and (1, 4); to what integers do these pairs correspond? What are their
“sum” and “product” according to these formulas?) This “definition” is
provisional because it is not immediate that the “sum” and “product”
would have come out the same regardless of which slips were drawn from
the same two hats. The claim is that while the numbers on the sum
and product slips depend on the original slips, the equivalence classes
determined by (†) do not change no matter how the slips are chosen.
Writing the proof in detail will ensure you understand the ideas.

We should check that when a pair of integers correspond to natural
numbers, the laws of arithmetic “work the same way” as the rules for
adding and multiplying natural numbers. To this end, plug (0, n) and
(0,m) into (†):

(0,m)⊕ (0, n) := (0,m+ n)

(0,m)� (0, n) := (0,mn)

Make sure you understand why these equations say that “arithmetic
of natural numbers regarded as integers works just like arithmetic of
natural numbers”. Having made this observation, it is safe to use the
ordinary symbols “+” and “·” when adding or multiplying integers.

More illuminating is the process that leads us to discover (†). The
approach is to write down the properties we want our new operations
to have, then to express the operations in terms of our definition of
integers. Because we are not proving anything, there is no need for
rigor. The slip (m1,m2) represents the integer normally called m2−m1,
and similarly for (n1, n2). The sum and product ofm2−m1 and n2−n1,
in ordinary notation, are

m2 + n2 − (m1 + n1) and m1n1 +m2n2 − (m1n2 + n1m2).
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Translating into the language of pairs gives (†). Observe that the
rules (†) are clearly commutative, and that + is associative as an op-
eration on integers; multiplication is also associative, but the proof
requires a short calculation.

Negative numbers were resisted by medieval philosophers as mean-
ingless. This viewpoint is expressed facetiously in a modern joke:

A physicist, a biologist, and a mathematician see two peo-
ple go into a house. Later three people come out. The
physicist thinks, “The initial observation was in error.” The
biologist thinks, “They have reproduced.” The mathemati-
cian thinks, “If exactly one person enters the house, it will
be empty again.”

Of course, it is not that negative numbers are meaningless (or worse,
in contradiction with set theory!), but that they cannot be used indis-
criminately to model real-world situations. Using common sense, we
know that the house did not start off empty.

Properties of the integers

We have “implemented” integers as equivalence classes of pairs of natu-
ral numbers, but are mostly interested in their abstract arithmetic and
order properties, to which we now turn. The set Z of integers, together
with the operation of addition, forms a mathematical structure called
a (commutative) group. For future use, an abstract definition is given
below. Definition 2.15 formalizes the idea that the sum of two integers
is an integer, and that addition obeys certain properties.

A basic concept is that of a binary operation on a set G. Loosely, a
binary operation ⊕ on G is a way of “combining” two elements x and y
of G to get an element x ⊕ y. The ordinary sum of two integers is a
binary operation on Z, as is the ordinary product.
Definition 2.15 Let G be a set, and let ⊕ be a binary operation on G.
The pair (G,⊕) is a commutative group if the following are satisfied:

A.1 (Associativity) (x⊕ y)⊕ z = x⊕ (y ⊕ z) for all x, y, and z in G.

A.2 (Neutral element) There exists an e ∈ G such that x⊕e = e⊕x = x
for all x ∈ G.

A.3 (Existence of inverses) For each x ∈ G, there exists an element y
such that x⊕ y = e.
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A.4 (Commutativity) x⊕ y = y ⊕ x for all x, y in G.

Our immediate interest is the situation G = Z, the set of integers,
for which ⊕ = + is ordinary addition. However, the concept of a
commutative group arises in other contexts, and the unconventional “⊕”
is meant to remind you that in general a group operation need not be
literal addition.

To discuss the additive group of integers, we switch to the more
conventional “+” symbol for the binary operation, and write “e” as “0”.
It is customary to denote the additive inverse of n by −n, but for now
the latter must be regarded as a single symbol, not as the product of n
and −1. The operation of subtraction is merely addition of an additive
inverse; observe, however, that subtraction is neither associative nor
commutative!

The integers are not characterized by Axioms A1–A.4; that is, there
are commutative groups that are not abstractly equivalent to the group
of integers under addition. Further study of these issues belongs in a
course on abstract algebra.

Axioms A.1–A.4 have some simple but useful consequences. Two of
them are proven here, both for illustration and to emphasize that they
are not explicitly part of the definition.

Theorem 2.16. The neutral element in Z is unique, and every element
of Z has a unique additive inverse.

Proof. Assume 0 and 0′ are neutral elements. Because 0 is a neutral
element, Axiom A.2 with a = 0′ implies 0′ = 0 + 0′. Reversing the roles
of 0 and 0′ implies that 0 = 0 + 0′; thus 0 = 0′ as claimed.

Now supposem andm′ are inverses of n, that is, n+m = n+m′ = 0.
Then

m = m+ (n+m′) = (m+ n) +m′ = m′

by Axioms A.2, A.1, and A.2 respectively.

Axiom systems, such as A.1–A.4, play two roles. They can be as-
sumed outright and taken as a starting point for an abstract theory
(of commutative groups, in this case). Alternatively, axioms can be
regarded as theorems that must be established in the context of some
construction. The latter viewpoint is used to prove that axiom systems
are consistent. (The unproven—and unprovable—assumption is that
set theory itself is logically consistent.) We shall mostly adopt the for-
mer viewpoint from now on. Lurking behind the scenes are successive
constructions of the rational, real, and complex number systems.



2.3. RATIONAL NUMBERS 53

2.3 Rational Numbers
Intuitively, a rational number p/q is a quantity that “when added to
itself q times” gives p. Alternatively, p/q consists of p units of “cur-
rency” 1/q, where q units add up to unity. If k is a positive integer,
then p/q and kp/kq represent the same number, because the currency
is smaller by a factor of k but there are k times as many units. Logical
consistency demands that kp/kq = p/q even when k is negative.

Every rational number can be expressed as a quotient of integers
in infinitely many ways; for example, 1/2 = 5/10 = (−3)/(−6). A
quotient p/q is in lowest terms if q > 0, and if p and q have no common
factor larger than 1. An integer is regarded as a rational number with
denominator 1. Every rational number has a unique representation in
lowest terms.

The rational numbers do for multiplication what the integers did
for addition: They allow solution of arbitrary equations qx = p for
q 6= 0 with p and q integers, and as a fringe benefit such equations are
automatically solvable even when p and q are rational (with q 6= 0).
If q = 0, then the expression “p/0” ought to stand for the solution of
the equation 0x = p. However, this equation has no solution if p 6= 0,
while every rational number is a solution when p = 0. For this reason,
we make no attempt to define the quotient p/0 as a rational number.
Informally, division by zero is undefined.

If two rational numbers—say 2/5 and 5/12—are to be added, they
must be “converted” into a common currency. This is accomplished by
cross multiplication, which in this case represents the given numbers
as 24/60 and 25/60. They can now be added (or subtracted) in the
obvious way. This reasoning lies behind the general formula

(2.7)
p1

q1

+
p2

q2

=
p1q2 + p2q1

q1q2

,

which would be used to motivate the analogue of equation (†) in the
construction of Q from Z.

If integers are viewed as lengths (multiples of some unit length on
a number line), then rational numbers can also be viewed as lengths;
arbitrary rational lengths can be constructed with a straightedge and
compass. It is important to develop good intuition about the way the
set of rational numbers is situated on a number line. To this end, fix a
positive integer q and consider the set 1

q
Z of integer multiples of 1/q,

namely the set of rational numbers of the form p/q, Figure 2.8. The
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set 1
q
Z is a “scaled copy” of Z, with spacing 1/q, and the union of all

these sets is Q, cf. Figure 2.9.

−2 −1 0 1 2

Figure 2.8: The set of rational numbers with denominator q.

−2 −1 0 1 2

Figure 2.9: The set of rational numbers with denominator at most q.

It is not immediately clear whether or not every point on the number
line is represented by a rational number, but Figures 2.8 and 2.9 should
make it clear that every point on the line is “arbitrarily close to” a
rational number. If we take the Ancient Greek idea of points on the
number line as distances, then plausibly every distance is a ratio of
integers. However, though the Pythagoreans had built their philosophy
on ideas of integer ratios and harmonies, they eventually discovered—to
their considerable dismay, according to legend—that the diagonal of a
unit square cannot be expressed as a ratio of integers, see Theorem 1.3.
If distances are to be modeled as numbers, then the set of rational
numbers is inadequate.

Unfortunately, it is not clear how to describe or quantify the “gaps
between rational numbers”, particularly if we cannot make external ref-
erence to the number line (which, after all, we have not defined in terms
of set theory). Suitable descriptions were found by R. Dedekind and
G. Cantor—independently and by entirely different methods—in 1872.
To give an indication of their constructions, we must first study the
set Q of rational numbers in more detail.

Arithmetic and Order Properties of Q

The set of rational numbers together with the operation of addition,
equation (2.7), forms a commutative group (see A.1–A.4 above): Ad-
dition is commutative and associative, there is a neutral element for
addition, and every element has an additive inverse. The group (Q,+)
is more complicated than the group (Z,+), however. Specifically, Z is
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“generated by” the element 1, in the sense that every element of Z is
obtained by repeatedly adding 1 (or its additive inverse) to itself. By
contrast, equation (2.7) implies that there is no finite set of generators
for (Q,+): If a1, . . . , an are rational numbers with ai = pi/qi in lowest
terms, then taking sums and differences cannot generate numbers whose
denominator is larger than N = q1 · · · qn, the product of the individual
denominators. Consequently, the set of rational numbers generated by
the ai’s has bounded denominator, and therefore cannot be all of Q, see
Figure 2.9.

The set of rational numbers has another arithmetic operation, mul-
tiplication, defined by

(2.8)
p1

q1

· p2

q2

=
p1p2

q1q2

.

Let Q× denote the set of non-zero rational numbers. Multiplication
combines two elements of Q× to give a third; the order of the factors
has no bearing on the result, and the number 1 acts as a neutral element.
Finally, if r = p/q is a non-zero rational number, then r−1 = q/p is also
a non-zero rational, which is clearly a multiplicative inverse of r. The
set Q× endowed with the operation of multiplication satisfies A.1–A.4:
(Q×, ·) is a commutative group.

If Q were merely endowed with two separate group operations, then
rational arithmetic would be relatively uninteresting. However, these
operations are connected by the distributive law

a · (b+ c) = a · b+ a · c for all a, b, and c ∈ Q.

The analogue with multiplication on the right follows by commutativ-
ity of multiplication. (Observe the asymmetry that addition does not
distribute over multiplication.)

Much of elementary arithmetic can be deduced from the group ax-
ioms for addition in Q, the group axioms for multiplication in Q×, and
the distributive law. A couple of examples are given here to illustrate
the way the axioms are used to prove more familiar-looking properties.
The second claim below, which looks tautological at first glance, asserts
that the additive inverse of a is equal to the product of a and −1. (If
it were not, then the notation “−a” would be extremely misleading!)

Theorem 2.17. If a ∈ Q, then a · 0 = 0 and −a = a · (−1).

Proof. The first assertion is proven by noticing that 0+0 = 0 (definition
of neutral element applied to a = 0), so multiplying both sides by a
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and using the distributive law gives a · 0 + a · 0 = a · 0. Adding the
inverse of a · 0 implies a · 0 = 0.

By Theorem 2.16, −a is the unique rational number such that a +
(−a) = 0. If we can show that a · (−1) has this property, then the
theorem will be proved. But we have

a+
(
a · (−1)

)
=
(
a · 1)+

(
a · (−1)

)
Definition of neutral element

= a · (1 + (−1)
)

Distributive Law
= a · 0 Definition of additive inverse,

and this is equal to 0 by the first part of the theorem.

Abstract structures similar to Q arise frequently enough to warrant
a special name:
Definition 2.18 A field (F,+, ·) consists of a non-empty set F and
two associative operations + and · such that

F.1 (F,+) is a commutative group, with neutral element 0.

F.2 The set F× = F \ {0} of non-zero elements of F is a commutative
group under multiplication, with neutral element 1 6= 0.

F.3 Multiplication · distributes over addition +.

By customary laziness, mathematicians say “the field F” when the op-
erations are understood. Observe that (Z,+, ·) is not a field; the non-
zero integer 2 has no multiplicative inverse. The study of general fields
belongs to abstract algebra, and is not pursued in detail here. The ax-
ioms are given to demonstrate the conceptual economy of abstraction:
A result like Theorem 2.17, which can be proven with nothing but the
axioms of a field, is valid for an arbitrary field.

Finite Fields

Remarkably, there exists fields having finitely many elements. These
appear in various parts of mathematics, as well as in “public-key encryp-
tion”. When you view a “secure web site”, whose URL begins https://,
your web browser uses finite field arithmetic to send and receive data
securely. The “number of bits” (at this writing, usually 128) is related
to the number of elements of the field. The larger the field, the more
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difficult the cipher is to break without the decoding key, but the slower
the data transfer.
Example 2.19 A field must contain at least two elements, because
we require that 0 6= 1. In a finite field, successive sums of 1 cannot all
be distinct, so there must be a smallest positive integer p for which

1 + · · ·+ 1 = 0 (p summands).

The field axioms imply that p is a prime number; for instance, p cannot
be 6, because then 1 + 1 and 1 + 1 + 1 would be non-zero elements
whose product is 0. Further considerations imply that the number of
elements in a finite field—its order—must be a power of p. It is possible
to construct fields of order pk, proving their existence. Thus there exist
fields of order 2, 3, 4 = 22, 5, 7, 8 = 23, 9 = 32, 11, etc.; and there do
not exist fields of order 6 = 2 · 3, 10 = 2 · 5, 12 = 22 · 3, and so forth.

Fields of prime order are easy to describe; for p = 5, say, take
F5 = {0, 1, 2, 3, 4} (the set of remainders upon division by 5) and
define the operations to be the usual ones, except that the sum or
product is divided by 5 and the remainder taken. Thus in F5, 2+3 = 0
(the ordinary sum is 5, which leaves remainder 0 on division by 5) and
2 · 3 = 1 (the product is 6, which leaves remainder 1). Arithmetic
in a finite field can look strange. The two examples just given can
legitimately be written −2 = 3 (or −3 = 2) and 1/2 = 3 (or 1/3 = 2).
Of course, the symbols 2 and 3 represent elements of F5, not rational
numbers. It would be less provocative to write −[2] = [3] and [2]−1 =
[3].

The construction of a field with 4 = 22 elements (more generally,
having pk elements with p prime and k > 1) is not discussed here.
It is possible for a field to have infinitely many elements, yet satisfy
1+· · ·+1 = 0 for finitely many summands. �

The Finite Geometric Series

This section presents a useful calculation that can be performed in an
arbitrary field, and which furnishes a nice example of mathematical
induction. If you prefer, regard the field below as R.
Example 2.20 Let a and r be elements of a field, and let n ∈ N. The
expression

(2.9)
n∑
j=0

a rj = a+ a r + a r2 + a r3 + · · ·+ a rn
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is called a geometric series, and is characterized by the ratio of each
pair of consecutive terms being the same (namely r). If r = 1, then the
series consists of n + 1 terms, each equal to a, so the sum is a(n + 1).
(In a general field, this may be 0 even if a 6= 0!) When r 6= 1, the closed
form of the geometric series can be guessed by multiplying the sum by
1− r and “telescoping” the terms:

(1− r)(a+ a r + a r2 + a r3 + · · ·+ a rn)

= (a+ a r + a r2 + a r3 + · · ·+ a rn)

− (ar + a r2 + a r3 + · · ·+ a rn + a rn+1)

= a− arn+1 = a (1− rn+1).

This argument, as with many that contain an ellipsis or the words “and
so on,” can be made precise with mathematical induction. (As with the
sum of odd integers, the informal argument was needed to guess the
answer!) Consider the statement

P (n) : (1− r)
n∑
j=0

a rj = a (1− rn+1).

When n = 0, this is the tautology a (1 − r) = a (1 − r). Assume
inductively that P (k) is true for some k ∈ N. The truth of P (k+ 1) is
deduced by adding the term a rk+1(1− r) (corresponding to j = k+ 1)
to both sides of P (k) and using algebra. This is left as an exercise.

When r = 1, P (n) merely asserts that 0 = 0, but the informal
argument given above (which could be supplemented by an induction
proof) evaluates the sum. Thus

(2.10)
n∑
j=0

a rj =


a

1− rn+1

1− r if r 6= 1,

a (n+ 1) if r = 1.

Remarkably, the left-hand side of this equation is defined by a single
sum, while the closed form requires two cases; the special definition at
r = 1 occurs exactly when the expression for r 6= 1 becomes 0/0. We
have found a context in which the expression “0/0” can be ascribed
meaning! �
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Ordered Fields and Absolute Value

The set of rational numbers is “ordered” in an abstract sense, see Defi-
nition 2.21. The order relation on Q is the key to constructing the set
of real numbers. Because order properties are fundamental to calculus,
we introduce them in a general setting.
Definition 2.21 An ordered field is a field (F,+, ·) together with a
subset P ⊂ F satisfying the following conditions.

O.1 (Trichotomy) For every a ∈ F, exactly one of the following is true:
a ∈ P , −a ∈ P , or a = 0.

O.2 (Closure under +) If a, b ∈ P , then a+ b ∈ P .
O.3 (Closure under ·) If a, b ∈ P , then a · b ∈ P .

An element of P is a positive number. If −a ∈ P , then a is negative.
Informally, O.1 says that every number is either positive, negative,

or zero. O.2 and O.3 say that sums and products of positive numbers
are positive. The order relation < associated to a set P of positive
numbers is defined by

x < y iff y − x ∈ P.

A field may or may not admit an order relation. A finite field never
admits an order operation (why?), nor does a field in which −1 has a
square root. To see the latter, observe first that in an ordered field, if−a
and −b are negative (so that a and b are positive), then Theorem 2.17
implies that

(−a)(−b) = (a)(−1)(b)(−1) = (−1)2(a · b) = a · b,

which is positive by O.3. (This simple algebraic fact caused heated
dispute among medieval philosophers. Axiomization and calculation
have certain advantages over intuitive arguments.) In particular, in an
ordered field, the square of every non-zero element is positive. This
implies that 1 = 12 is positive, and −1 is negative, in every ordered
field. Thus, as claimed, if there is a square root of −1 in F, then F
does not admit an order relation.

Proposition 2.22. In the rational field, there is a unique set P ⊂ Q
satisfying O.1–O.3.
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Proof. Suppose P ⊂ Q satisfies O.1–O.3. As shown above, 1 ∈ P .
Thus every natural number q 6= 0 is in P by O.2. The reciprocal 1/q
is also positive, since otherwise the equation q · (−1/q) = −1 would
contradict O.3. Finally, if p and q are non-zero natural numbers, then
p/q = p · (1/q) is positive. We claim that

(2.11) P = {p/q ∈ Q | p, q positive integers with no common factor}
We have shown that if P ⊂ Q satisfies O.1–O.3, then P is the set
in (2.11), so there is at most one choice for P . But for this choice of P ,
each of O.1–O.3 is clear; see Exercise 2.11.

Let x and y be elements of an ordered field. The inequality x < y
(“x is less than y”) is also written y > x (“y is greater than x”). It is
convenient to write “x ≤ y” instead of “x < y or x = y.” By trichotomy,
x ≤ y is the negation of y < x.

Conventionally, a larger number lies farther to the right on the num-
ber line. Figure 2.9 makes it clear that though the set of rational
numbers is ordered, rational numbers are not strung along the number
line like beads; for each rational number x, there is no “next” rational
number. In particular, there is no smallest positive rational number.

An order relation < on a field F determines the set P = {x ∈ F |
0 < x}. Thus an ordered field may be denoted either by (F,+, ·, P ) or
by (F,+, ·, <). This somewhat unwieldy notation emphasizes all the
structure of an ordered field: A set of elements, two binary operations
(subject to axioms), and a set of “positive” elements (subject to further
axioms). In all, we have listed twelve axioms for an ordered field: Four
group axioms for addition, four more for multiplication, one for the
distributive law, and three order axioms.

The order axioms O.1–O.3 are low-level instructions. In practice, we
want to manipulate inequalities as fluently as equalities. Theorem 2.23
successively gives rules for adding and multiplying inequalities by fixed
numbers, for taking reciprocals of an inequality, and for adding and
multiplying two inequalities (of non-negative numbers). Each of these
properties is deduced from the order axioms by one of a few standard
arguments. This list is not all-encompassing, but the proof illustrates
the most important ideas, and other similar properties should provide
easy exercises.

Theorem 2.23. Let a, b, c, and d be elements of an ordered field.

(i) (Transitivity of <) If a < b and b < c, then a < c.
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(ii) If a < b, then a+ c < b+ c and −a > −b.
(iii) If a < b and 0 < c, then ac < bc.

(iv) If c < d < 0 < a < b, then 1/d < 1/c < 0 < 1/b < 1/a.

(v) If 0 < a < b and 0 < c < d, then 0 < a+c < b+d and 0 < ac < bd.

The analogous assertions hold if “<” is replaced by “≤” in (i), (ii), (iii),
and (v).

Proof. Property (i) is a restatement of O.2; a < b means b − a ∈ P ,
while b < c means c− b ∈ P . By O.2, c− a = (c− b) + (b− a) ∈ P , so
a < c.

(ii) Suppose a < b, that is, b − a ∈ P . Using the field axioms,
this is re-written as (b + c) − (a + c) ∈ P , which by definition means
a+c < b+c. Similarly, b−a = (−a)−(−b) ∈ P , which means −b < −a.

To prove (iii), observe that by assumption b− a and c are in P . By
O.3, their product (b− a)c = bc− ac is in P , which means ac < bc.

(iv) For reciprocals, note that if x > 0, then 1/x > 0 (since otherwise
−1 = x(−1/x) would be positive by O.3); similarly, if y < 0, then
1/y < 0. Assume that 0 < a < b. Then 0 < ab by O.3, so 0 < 1/(ab)
as just shown, and applying (iii) with c = 1/(ab) proves (iv).

Property (v) is a consequence of (i)–(iii): Under the hypotheses,
a+ c < b+ c < b+ d and ac < bc < bd.

Finally, if < is replaced by ≤, then consider separately the two cases
a < b and a = b. In the first case the proof already given implies the
desired result (since, e.g., −a > −b trivially implies −a ≥ −b). If a = b,
the conclusions are obvious.

Let (F,+, ·, <) be an ordered field. The absolute value of a ∈ F,
denoted |a|, is defined by

(2.12) |a| =
{

a if a ≥ 0

−a if a < 0

Trivially, 0 ≤ |a| = | − a| for all a. The quantity |a − b| = |b − a| can
be interpreted as the distance between a and b on the number line, and
this accounts for its importance in analysis.
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Roughly, taking the absolute value of a number “throws away the
minus sign, if any.” Note, however, that “| − a| = a” is generally false.
In symbolic computations, |a| can be replaced by either a or −a as
appropriate, so any assertion about absolute values can be established
by checking sufficiently many cases. This is usually tedious, since the
number of cases doubles for each additional absolute value symbol in
the equation being checked.

Maxima and minima

Let (F,+, ·, <) be an ordered field, and let a, b ∈ F. The maximum of a
and b is simply the larger of the two numbers, and is denoted max(a, b).
The minimum is defined similarly. An amusing and useful application
of the absolute value is a pair of formulas for max and min:

Theorem 2.24. Let a and b be elements of an ordered field. Then

max(a, b) =
a+ b+ |a− b|

2
, min(a, b) =

a+ b− |a− b|
2

.

Proof. For simplicity, write M = max(a, b) and m = min(a, b). There
are two possibilities: M = a and m = b, or M = b and m = a. (If
a = b, then both are true.) In either case, M +m = a+ b: the sum of
two numbers is their sum! Moreover, M −m is non-negative and equal
either to a− b or to b− a; consequently, M −m = |a− b|. Solving for
M and m proves the theorem.

Some general properties of absolute value and distance are collected
in Theorem 2.25. They will be used repeatedly in defining and working
with limits.

Theorem 2.25. Let a and b be elements of an ordered field. Then

(i) |a| ≤ b if and only if −b ≤ a ≤ b.

(ii) |ab| = |a| · |b|.
(iii) |a+ b| ≤ |a|+ |b| and |a− b| ≤ |a|+ |b|.
(iv) |a− b| ≥ ∣∣|a| − |b|∣∣.

These inequalities are so important because they hold simultane-
ously for all choices of a and b, and therefore represent general proper-
ties of ordered fields.
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Proof. The first property translates between a single absolute value
inequality and a pair of ordinary inequalities. To prove it, note that
a ≤ |a| and −a ≤ |a|; thus |a| ≤ b if and only if a ≤ |a| ≤ b and −a ≤
|a| ≤ b, and the second of these is equivalent to −b ≤ a. Combining
these gives (i).

Properties (ii) and (iii) are proven by checking cases. Because each
claim is unchanged if both a and b are multiplied by −1, it is enough
to assume one of the numbers is non-negative. Each claim is also un-
changed if a and b are exchanged, so it suffices to assume a ≤ b. Finally,
the two parts of (iii) are equivalent, since replacing b by −b exchanges
the two assertions. In summary, it is enough to verify (ii) and the sec-
ond part of (iii) in the two cases 0 ≤ a ≤ b and a ≤ 0 ≤ b. In the
notation of Theorem 2.24, a = m and b = M ≥ 0.

Property (ii) is easily verified in each case. The second part of (iii)
is not much more difficult. If a ≤ 0 ≤ b, then m = a = −|a| and
M = b = |b|, so |a− b| = M −m = |a|+ |b|. If instead a = m ≥ 0, then
|a− b| = M −m ≤M +m = |a|+ |b|. This proves (iii).

Property (iv) can be derived from (iii) by some noteworthy gym-
nastics:

|a| = |(a− b) + b| ≤ |a− b|+ |b| for all a and b,

and similarly |b| ≤ |b− a|+ |a| = |a− b|+ |a|. Subtracting |b| from the
first inequality and |a| from the second gives

|a| − |b| ≤ |a− b| and |b| − |a| = −(|a| − |b|) ≤ |a− b|,
and this is equivalent to (iv) by (i).

The assertions (iii) and (iv) are often called the Triangle Inequality
and the Reverse Triangle Inequality, especially when written

|x− z| ≤ |x− y|+ |y − z|
for all x, y, z.

(2.13)

|x− z| ≥ ∣∣|x− y| − |y − z|∣∣(2.14)

The first is exactly (iii) with a = x− y and b = y− z, while the second
is (iv) with a = x − y and b = z − y. The names come from the
interpretation of absolute values as distances; the length of a side of a
triangle is no longer than the sum of the lengths of the other two sides,
and is at least as long as (the absolute value of) the difference of their
lengths.
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Suprema

Which state has the lowest highest point? —Moxy Früvous

If y is a point on the number line, then there are rational numbers
“arbitrarily close to” y, Figure 2.8. This idea of arbitrarily close ap-
proximation is perhaps the fundamental idea of calculus, and is key in
eliminating the “gaps” in Q.
Definition 2.26 Let (F,+, ·, <) be an ordered field. A subset A ⊂ F
is bounded above if there exists an M ∈ F such that x ≤ M for all
x ∈ A. The set A has a maximum if there is an a ∈ A such that x ≤ a
for all x ∈ A. With obvious modifications, we speak of sets that are
bounded below or have a minimum. A set is bounded if it is bounded
both above and below.

In an ordered field, a subset that has a maximum is not merely
bounded above, but has a largest element; however, a set can be bounded
above without having a maximum. This is slightly counterintuitive,
perhaps because a finite set of numbers always has a largest element.
The set of negative rational numbers is bounded above by 0, but there
is no largest negative rational number. Clearly, ifM is an upper bound
of A and M ≤M ′, then M ′ is also an upper bound of A; upper bounds
are not unique. By contrast, a set has at most one maximum, for if a
and a′ are both maxima of A, then a′ ≤ a (since a is a maximum) and
a ≤ a′ (since a′ is a maximum), so a = a′.

The empty set is bounded (the condition is vacuous), though it
has no maximum or minimum. Every non-empty finite set has both a
maximum and a minimum, hence is bounded. The concepts of bound-
edness, maximum, and minimum are of greatest interest for infinite
sets—those with infinitely many elements. Note that in common usage,
“infinite” is often used in the sense of “unbounded” (e.g., “Cosmologists
do not know if the universe is infinite”). It is important not to confuse
these terms mathematically: An unbounded set is infinite,5 but the set
{x ∈ Q | 0 < x < 1} is infinite, yet bounded. Note that this set has
neither a minimum nor a maximum.

Suppose A ⊂ F is a non-empty set that is bounded above. It is
desirable, both in theory and practice, to find “the best possible upper
bound” of A. “Better” means smaller since a smaller upper bound
conveys more information; knowing a person is less than 6 feet tall
gives more information than knowing they are less than 7 feet tall.

5Contrapositively, a finite set is bounded.
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Consider the set of upper bounds of A. The “best” upper bound of A
would be the minimum of the set of upper bounds, if this minimum
exists. If it exists, this minimum (which is unique, by remarks made
above) is called the least upper bound or supremum of A, and is denoted
supA, see Figure 2.10.

If A has a maximum, then supA = maxA, but a set may have a
supremum even if it has no maximum. The set Q− of negative rational
numbers has no maximum, but is bounded above by M for every M ≥
0. Consequently, 0 is an upper bound of Q−, and is the smallest upper
bound; sup Q− = 0.

Proposition 2.27. Let A ⊂ F be a set that has a supremum, say
a = supA. Then for every ε > 0, there is an element x ∈ A with
a− ε < x.

Proof. Let ε > 0. Because a = supA is the smallest upper bound of A,
the number a − ε < a is not an upper bound of A. In other words,
there is an element x ∈ A with a− ε < x.

Roughly, the supremum of a set is arbitrarily close to some element
of the set. This intuitive phrasing is a bit misleading, since two distinct
numbers are never “arbitrarily close.” The loophole is that the element x
depends on the choice of ε in general. It is more accurate to say that
supA is arbitrarily close to the set A. If a ∈ A (that is, A contains its
supremum), then there is nothing to show; for each ε > 0, take x = a.
Proposition 2.27 is most interesting for sets that do not contain their
supremum.

On a number line, an upper bound of a set A is a point lying to
the right of A. Moving the upper bound to the left (but staying to the
right of A) “improves” the bound, and the supremum (if it exists) is
the location past which the point cannot be moved without passing at
least one point of A.

Upper bounds of AA
sup A

Figure 2.10: Upper bounds and the supremum.

If the set A ⊂ F is bounded above, then there are three logical possi-
bilities:
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• A has a maximum.

• A has no maximum, but has a supremum.

• A has no supremum.

Given the visual description of bounds and suprema, it may be diffi-
cult to imagine how a set that is bounded above could fail to have a
supremum. School intuition emphasizes the number line, and indeed
the elusive property possessed by the field of real numbers is that if
A is bounded above, then the third possibility is impossible. Remark-
ably, a set of rational numbers can be bounded above but fail to have
a (rational) supremum:

Proposition 2.28. Let A = {x ∈ Q | x2 ≤ 2} ⊂ Q. The set A is
non-empty and bounded above, but has no supremum.

Proof. Since 0 ∈ A, A is non-empty. Because there is no rational
square root of 2, the “≤” in the definition of A can be replaced by strict
inequality. Let x be a positive rational number, and let z = 2/x. By
Theorem 2.23, x2 > 2 iff z2 < 2, that is, 2/x ∈ A iff x 6∈ A. To show A
has no supremum, we first show that the set B = {x ∈ Q+ | x2 > 2}
has no smallest element.

Lemma 2.29. Let x = p/q be a positive rational number in lowest
terms, with x2 > 2, and set

y =
1

2

(
x+

2

x

)
=

1

2

(
p

q
+

2q

p

)
.

Then y is a positive rational number with y2 > 2 and y < x.

It is obvious that y is a positive rational number. To see that y2 > 2,
write x2 = (p2/q2) = 2 + ε (with ε > 0 by assumption) and calculate

y2 =
1

4

(
p2

q2
+ 4 +

4q2

p2

)
=

1

4

(
2 + ε+ 4 +

4

2 + ε

)
=

1

4

(
4 + 4ε+ ε2 + 8 + 4ε+ 4

2 + ε

)
= 2 +

1

4
· ε2

2 + ε

> 2.

Finally, 0 < ε = (p2/q2)− 2, so

x− y =
1

2

(
p

q
− 2q

p

)
=

1

2
· q
p

(
p2

q2
− 2

)
> 0,
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proving that y < x as claimed. This establishes the lemma.
Let −B = {x ∈ Q | −x ∈ B}. Lemma 2.29 and the remarks

preceding show that Q is the union of three disjoint sets: Q = −B ∪
A ∪ B. It follows that a rational number x is an upper bound of A iff
x ∈ B. But Lemma 2.29 implies that B has no smallest element, so A
has no supremum.

Note that A has no maximum (since the maximum would be the
supremum). The proof of Lemma 2.29 gives a direct proof, too. You
may find it helpful to work out the details.

2.4 Real Numbers
The concept of supremum is the correct generalization of “maximum”
for infinite sets. It is not difficult to believe that much of the calculus
of infinitesimals rests on the existence of suprema for all (non-empty)
sets that are bounded above. For that reason, Theorem 2.30 below is
central. The full proof would not contribute much of use for the rest
of the book, but the basic ideas nicely illustrate several ideas discussed
previously in the construction of the natural numbers and integers in
terms of sets. It is best to regard Theorem 2.30 as a license to proceed;
by adding a single axiom to the axioms for an ordered field, we acquire
at last a number system suitable for the calculus of infinitesimals. The
ordered field whose existence is asserted by Theorem 2.30 is the field
of real numbers.

Theorem 2.30. There exists an ordered field (R,+, ·, <) with the fol-
lowing property:

(Completeness) If A ⊂ R is non-empty and bounded above, then
supA ∈ R.

This field is unique up to an isomorphism of ordered fields, and contains
a copy of the rational field (Q,+, ·, <).

Proof. (Brief sketch) Dedekind’s idea was to define a single real number
to be a certain infinite set of rational numbers, which he called a “cut.”
The idea in hindsight is to associate to a real number the set of all
rational numbers strictly smaller than it. To phrase this in a way that
makes no reference to anything other than rational numbers, a cut of Q
is a non-empty set X ⊂ Q such that
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• X is bounded above and has no largest element;

• If x ∈ X and x′ < x, then x′ ∈ X.

The beauty of this construction is multifold: If X and Y are cuts, then
either X ⊆ Y or Y ⊆ X; the order relation on R is induced by inclusion
of sets. Furthermore, rational numbers correspond to cuts that already
have a supremum; for example, the set Q− of negative rational numbers
is a cut, and corresponds to the number 0.

Completeness is easy to see, since if A ⊂ R is bounded above
(namely, is a collection of cuts for which there is a single upper bound),
then the union of these cuts is itself a cut, and is readily seen to be the
supremum of A. Finally, addition is easy to define; the sum of two cuts
is the set of sums obtained by adding the elements of X to the elements
of Y . The one annoyance is that multiplication is slightly messy to de-
fine; taking the set of pairwise products in analogy to the definition of
addition does not work, because cuts contain negative numbers of large
absolute value. Once multiplication has been defined, there are many
details to check, namely that addition and multiplication of cuts satisfy
the field axioms, and that the order axioms are satisfied.

Cantor’s construction of the reals—outlined briefly in Chapter 4—is
completely different; his definition is more complicated than Dedekind’s,
but the field and order axioms are easier to establish.

At risk of belaboring a point, let us take stock of what Theorem 2.30
provides. There exists a field (R,+, ·) that extends the rational number
system. It is possible to compare two real numbers in the sense of the
order axioms O.1–O.3. Completeness says that any putative quantity
that is approximated arbitrarily closely from below by real numbers is
itself a real number. It is here where the rational numbers fail, for as
in Proposition 2.28 the diagonal of a unit square can be approximated
arbitrarily closely by rational numbers, but is not itself rational. This
deficiency is serious because the basic operation of analysis—taking a
“limit”—is often accomplished by approximation from below.

The uniqueness assertion in Theorem 2.30 means that any two im-
plementations of the axioms for a complete, ordered field are abstractly
equivalent. The same cannot be said of the axioms for an ordered field:
Q and R are ordered fields, but are not abstractly equivalent. For ex-
ample, every positive real number has a real square root, but not every
positive rational number has a rational square root.
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Infima

Everything that has been said about upper bounds has a version, with
suitable modifications, for lower bounds. Suppose A is a non-empty set
(in some ordered field) that is bounded below. If the set of lower bounds
has a maximum, then this maximum is (naturally) called the greatest
lower bound or infimum of A. An easy way to see the relationship
between upper and lower bounds is to consider, for a non-empty set A
in a field, the set −A = {−x : x ∈ A}. By Theorem 2.23, multiplication
by −1 reverses the order relation in an ordered field, so the negative
of an upper bound of A is a lower bound of −A. Propositions 2.27
and 2.28 have obvious restatements for infima, and completeness can
be formulated in terms of infima. Proposition 2.31 below lists a couple
of elementary relations between suprema and infima. The statement
should not be surprising, and the proof is left as an exercise.

Density of the rationals

Proposition 2.31. Let A ⊂ R be non-empty. Then sup(−A) =
− inf A and inf A ≤ supA, with equality if and only if A consists of
a single element.

It is fairly clear from the construction of Q that N is not bounded
above in Q. In fact, N is not bounded above in R; this fact, a special
case of the Archimedean property of R, is a consequence of complete-
ness, and is of central importance in the study of “limits.”

Theorem 2.32. For every a > 0 and every R ∈ R, there exists an
n ∈ N such that an > R.

Said another way, if a > 0, then the set aN = {an | n ∈ N} is not
bounded above in R. In a vaguely Taoist metaphor, “A journey of a
thousand miles (R) is taken step by step (one a at a time).”

Proof. Fix a real number a > 0 and suppose there were an upper bound
of aN. By completeness, there would exist a least upper bound, say R.
But then R − a would not be an upper bound of aN, so there would
be an n ∈ N with an > R− a. This in turn would imply a(n+ 1) > R,
and since n + 1 ∈ N this implies R is not an upper bound of aN,
contradicting R = sup aN.
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The reason for stating such an “obvious” fact is that there exist
ordered fields that contain the real field; in these fields, there exist
elements that are genuinely infinite or infinitesimal, and in such a field
the set N is bounded above. Such a “non-Archimedean” field is not
complete; adding more elements to R introduces new gaps.

The Archimedean property of R can be used to prove a fundamental
approximation property of rational and real numbers: Between two
distinct real numbers, there exists a rational number. In particular,
every real number is arbitrarily close to the set of rationals; we say the
set of rationals is dense in R. The geometric idea is simple enough: If
x < y, then y−x > 0. Choose a positive integer q such that 1

q
< y−x.

Consecutive elements of 1
q
Z are spaced more closely than x and y, so

at least one element must lie between x and y. For future use, a formal
statement and proof are given here.

Theorem 2.33. Let x and y be real numbers with x < y. There exists
a rational number r = p

q
such that x < r < y.

Proof. First consider the case 0 < x < y. By hypothesis, 0 < y − x, so
0 < z := 1/(y−x) by Theorem 2.23. The Archimedean property implies
there exists a positive integer q > z; thus 1/q < y − x. Now consider
the set A = {n ∈ N | x < n/q}. By the Archimedean property with
R = x and a = 1/q, A 6= ∅. Also, 0 6∈ A because 0 < x. Property N.3
implies the set A has a smallest element p > 0. Because p − 1 ∈ N is
not in A, it follows that (p− 1)/q ≤ x < p/q. But 1/q < y − x, so

p

q
=
p− 1

q
+

1

q
≤ x+

1

q
< x+ (y − x) = y,

proving that p/q < y.
If x < y < 0, we apply the argument above to the numbers 0 < −y <

−x, deducing existence of a rational r with −y < r < x. Theorem 2.23
says x < −r < y, which proves the theorem in this case. In the
remaining case, x < 0 < y, the conclusion of the theorem is obvious.

Corollary 2.34. Let x ∈ R, and let ε > 0 be arbitrary. There exists a
rational number r = p

q
such that |x− r| < ε.

This is an immediate consequence of Theorem 2.33: Let y = x+ ε,
for example.
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Completeness and Geometry

There is a subtle point about geometry that was not fully appreciated
until the 20th Century: Euclid’s Elements was not entirely based on
his axioms, but relied tacitly on completeness. Strictly speaking, many
of his theorems are incorrect as stated, though of course Euclid’s proofs
are correct once the foundations of geometry are properly developed.

The set of real numbers may be regarded axiomatically or geomet-
rically, but while the geometric picture is often more intuitively com-
pelling, it will always be necessary for us to translate assertions into the
language of the axioms in order to verify them. In this book, the role
of geometry is to foster understanding and discovery, while the field,
order, and completeness axioms support logical, deductive proof.

Axioms for the Real Field

From now on we view the field of real numbers as specified by axioms of
arithmetic, order, and completeness; these contain all the information
about R needed to develop the calculus of differentials and integrals,
and provide a clean logical foundation for the rest of the book. For the
record, these axioms are collected here.
Definition 2.35 The field of real numbers is a set R together with
binary operations “+” and “·” and a subset P satisfying the following
conditions:

• Addition axioms: (R,+) is a commutative group

– + is associative: (x+ y) + z = x+ (y+ z) for all x, y, z in R

– There is an element 0 in R with x+ 0 = x for all x in R

– For every x in R, there exists a y in R such that x+ y = 0

– The operation + is commutative: x+ y = y + x for all x, y
in R

• Multiplication axioms: (R×, ·) is a commutative group (R× :=
R \ {0})

– The operation · is associative: (xy)z = x(yz) for all x, y, z
in R

– There is an element 1 in R× with x · 1 = x for all x in R
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– For every x in R×, there exists a y in R× such that xy = 1

– The operation · is commutative: xy = yx for all x, y in R

• The distributive law: x(y + z) = xy + xz for all x, y, z in R

• Order axioms:

– Trichotomy: For each x in R, exactly one of x ∈ P , −x ∈ P ,
or x = 0 holds.

– Closure under +: If x ∈ P and y ∈ P , then x+ y ∈ P
– Closure under · : If x ∈ P and y ∈ P , then xy ∈ P

• Completeness: If A ⊂ R is non-empty and bounded above, then
supA ∈ R.

Representations of Real Numbers

In “real-world” applications (as well as in many mathematical appli-
cations) one needs some concrete way to write real numbers, similar
to the way of writing rational numbers as quotients of integers. The
most familiar scheme is undoubtedly decimal notation, which com-
pactly encodes a sequence of rational numbers that furnish successively
better approximations to a real number. For example, the expression
1.414213 . . . stands for the sequence

1

1
,

14

10
,

141

100
,

1, 414

1, 000
,

14, 142

10, 000
,

141, 421

100, 000
,

1, 414, 213

1, 000, 000
, . . . .

This notation has the minor drawback that certain pairs of expressions
correspond to the same real number: .99 = 1, for example.

Decimal notation is predicated on dividing by powers of 10, and
arose because humans have ten fingers (themselves called digits in bi-
ology). For each positive integer b there is an analogous “base b” nota-
tion.6 Arguably, the only “natural” notation is binary, or base 2, though
it takes a longer expression to get the same amount of accuracy (the
binary expression 0.000001 represents the rational number 1/64, which
is larger than the decimal 0.01). These issues are explored in detail in
Exercises 2.17, 2.18, and 2.19.

6Devotees of The Simpsons may recall that Homer counts in octal—base 8.
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A more natural form of representation is by continued fractions.
Every real number x can be written uniquely as

x = a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

,

with a0 an integer and ak positive integers for k ≥ 1. The algorithm
for generating the integers ak, and a few basic properties of continued
fractions, are given in Exercise 2.22.

On Mathematical Constants

With the advent of electronic calculators has come a belief that certain
constants are defined by their decimal expansion. This belief is non-
sense, and should be dispelled immediately. A non-repeating decimal
expansion contains an infinite amount of information unless some rule
is known to find successive digits. The symbol “

√
2” is not defined to be

1.4142135623 . . .; a definition must specify the thing being defined, but
the ellipsis omits an infinite number of digits. Instead, mathematicians
take a practical point of view: “

√
2” is a positive number whose square

is 2. (This immediately raises more questions: Does such a number
exist? Could more than one number have this property? How can a
decimal representation be found?) Real numbers like π, e, or 2

√
2 are

defined by properties, not as decimal representations; finite decimal
expressions are merely rational approximations. Definitions of specific
real numbers therefore usually hide surprisingly subtle theorems. That
there exists a unique positive real number t with t2 = 2 is a special
case of Example 4.47 (an even more general result is given by The-
orem 5.9), and it says something about this “obvious fact” that the
proof does not occur until Chapter 4. (A proof could be given now, but
the intervening material introduces concepts that will make the proof
both easier to understand and more generally applicable.) There are
other real numbers that we will encounter, at least some of which are
surely familiar: π (the area of a unit disk, or one-half the period of the
elementary trigonometric functions), e (the base of the natural loga-
rithm), γ (Euler’s constant), τ (the Golden Ratio), and so forth. Each
of them is characterized by a property, and in each case there is a the-
orem that the property does specify a unique real number. Sometimes
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one can prove that seemingly unrelated properties specify the same real
number, see Chapters 12, 13, and 15.

Intervals

Among the most important sets of numbers in calculus are “intervals”.
Intervals exists in an arbitrary ordered field, but there is a particularly
simple characterization of intervals of real numbers that does not hold
for most ordered fields (such as Q).
Definition 2.36 Let F be an ordered field. A set I ⊂ F is called an
interval if, for all x and y ∈ I with x < y, we have

x < z < y =⇒ z ∈ F.

An interval I is said to be bounded (in F) if there exists an element
R ∈ F such that −R < x < R for all x ∈ I, and is open if it contains
neither a minimum nor a maximum.

In words, a set I in an ordered field is an interval if every point
between a pair of points of I is also a point of I. The simplest examples
of intervals are the following intervals determined by a pair of elements
a and b ∈ F:

(a, b) = {x ∈ F | a < x < b}
[a, b] = {x ∈ F | a ≤ x ≤ b}

You may even have seen open and closed intervals defined as sets of
the form (a, b) or [a, b], and may wonder why Definition 2.36 is so
complicated. The reason is that in a general field—in fact, in every
ordered field except the real field—there exist open intervals that are
not of the form (a, b)! For example, the set

A = {x ∈ Q | x2 ≤ 2}

is an open interval in Q, but as we saw in Proposition 2.28, A is not of
the form (a, b), regardless of the choice of a and b ∈ Q. The real field
is special in this regard because of the completeness property:

Proposition 2.37. If I ⊂ R is a bounded, non-empty open interval,
then there exist real numbers a and b such that I = (a, b).
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Proof. Because I ⊂ R is bounded and non-empty, a := inf I and b :=
sup I exist. Because I is open, a and b are not elements of I, so a < b.
We seek to establish two inclusions:

I ⊂ (a, b) and (a, b) ⊂ I.

The first assertion is clear; if z ∈ I, then by definition of inf and sup
we have a ≤ z ≤ b. Since a and b are not elements of I, we must have
a < z < b, so z ∈ (a, b).

The second assertion is equally easy. Suppose a < z < b; we must
show that there exist x and y ∈ I with x < z < y. Now, ε := b− z > 0,
so by Proposition 2.27 there exists a point y ∈ I with y > b − ε =
b − (b − z) = z. A similar argument shows there is an x ∈ I with
x < z.

The proof makes it clear why the real field is the only ordered field in
which open intervals are so easily characterized: In every other ordered
field, there exists a bounded, non-empty set that has no supremum.

Square braces are used to denote inclusion of endpoints, as for the
closed interval [a, b] = {x ∈ R | a ≤ x ≤ b}. The half-open intervals
[a, b) and (a, b] are defined in the obvious way. When depicting intervals
geometrically, the convention is to use a filled dot “•” to denote an
included endpoint, and an open dot “◦” or no dot to denote an excluded
endpoint.

A-Notation

In the sciences, experimental results are never exact, and data are al-
ways presented with error intervals. For example, we can never say that
two marks on a metal bar are exactly one meter apart in a mathemat-
ical sense, only that they are (say) between 0.9999 and 1.0001 meters
apart. Indeed, real marks on a real metal bar themselves have width,
so the idea that a single number could accurately represent a physical
notion of distance is naive. Now, you may have come to believe that
mathematics is completely precise regarding numerical issues, but this
belief is also not realistic. What is the exact numerical value of π?
Does your calculator tell you? Could a physical device ever give you
all the decimals of π? In fact, how is π even defined, let alone calcu-
lated? These questions deserve answers (and will receive them in due
course) but for the moment we wish to investigate the inexact aspects
of numerical mathematics.
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Before calculators were common, most students of science and en-
gineering knew that π ' 3.1416. However, a philosophically careful
student usually had a difficult time trying to glean the precise meaning
of the symbol “'”, which (as everyone knows!) stands for is approxi-
mately equal to.

The mathematician’s interpretation of the expression “π ' 3.1416”
would do Goethe proud: π = 3.1416± 0.00005. More formally,

3.14155 ≤ π ≤ 3.14165, or |π − 3.1416| ≤ 0.00005.

Roughly, without giving more decimal places, we cannot say more ex-
actly what π is equal to. This way of quantifying our ignorance is so use-
ful that we introduce special notation for it: π − 3.1416 = A(0.00005).
The expression on the right is read “a quantity of absolute value at
most 0.00005”.

This “A notation” allows us to express relationships of relative size
succinctly; we can write 10A(2) = A(100) when we mean, “If |x| ≤ 2,
then |10x| ≤ 100.” Further convenience of A notation arises when we
perform calculations in which several terms are uncertain:(

2.5 + A(0.1)
)

+
(
1 + A(0.03)

)
= 3.5 + A(0.13)

and(
2.5 + A(0.1)

)(
1 + A(0.03)

)
= 2.5 + A(0.1) + A(0.075) + A(0.003)

= 2.5 + A(0.178) = 2.5 + A(0.2).

A notation furnishes a sort of “calculus of sloppiness”.
Naturally, you must be careful not to treat A notation exactly as

you would an ordinary equation; 1 = A(2) and 1.5 = A(2), but it is not
true that 1 = 1.5, nor that A(2) = 1. In English, this is reasonable: 1 is
a number of absolute value at most 2, but a number of absolute value
at most 2 is not (necessarily) 1. Similarly, A(0.178) = A(0.2), but we
may not conclude that 0.178 = 0.2 or A(0.2) = A(1.78). However, we
do have A(0) = 0.

There is a geometric interpretation of A notation. The expression
A(0.05) stands for an arbitrary number in the interval [−0.05, 0.05],
and the expression 3.14 + A(0.05) stands for an arbitrary number in
the interval

[3.14− 0.05, 3.14 + 0.05] = [3.09, 3.19].
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3.143 3.1 3.2

3.14 + A(0.05)

When we write A(0.1) = A(0.2), it means [−0.1, 0.1] ⊂ [−0.2, 0.2].
“A” notation works with “variable” expressions, too:

x = A(x), 2x = A(1 + x2), and
x2 − 1

x2 + 1
= A(1).

The first of these is obvious, while the second is true because

0 ≤ (1± x)2 = (1 + x2)± 2x for all real x,

so |2x| ≤ 1 + x2. The last is left to you, see Exercise 2.7.

The Extended Real Number System

The extended real number system is obtained by appending two ele-
ments to R, denoted +∞ and −∞. These points are not real numbers,
and do not lie on the number line. By declaration,

−∞ < x < +∞ for all x ∈ R.

If a set A ⊂ R is unbounded above, then we write supA = +∞. Simi-
larly, we write inf A = −∞ when A is not bounded below. If A = ∅ we
agree that supA = −∞ and inf A = +∞. (You should check that these
seemingly peculiar definitions are consistent with the logic of vacuous
hypotheses!) Thus every set of real numbers has a supremum and infi-
mum in the extended reals. Note carefully that arithmetic operations
with ±∞ are undefined; some expressions, such as +∞+ (−∞) cannot
be defined in a manner that is consistent with the field axioms.

If a and b are extended real numbers, then the corresponding open
interval is the set

(a, b) = {x ∈ R | a < x < b}.
In particular, R = (−∞,+∞).

Neighborhoods

The midpoint of a bounded interval (a, b) (with one or both endpoints
possibly included) is (a+ b)/2, and the radius is |b− a|/2, namely one-
half the length. (Compare Theorem 2.25.) It is often useful to specify
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an open interval by its midpoint and radius; the δ-interval about a is
the interval

Nδ(a) := (a− δ, a+ δ) = {x ∈ R : |x− a| < δ}
consisting of points whose distance to a is less than δ. The deleted
δ-interval does not contain a:

N×δ (a) := Nδ(a) \ {a} = {x ∈ R : 0 < |x− a| < δ},
see Figure 2.11. It is sometimes useful to regard a deleted δ-interval as
a pair of intervals, (a− δ, a) ∪ (a, a+ δ). Note that

x ∈ Nδ(a) iff x = a+ A(δ′) for some δ′ < δ.

Nδ(a)

a− δ a a + δ

N×
δ (a)

Figure 2.11: The open and deleted δ-intervals about a.

A neighborhood of a is a subset of R that contains some δ-interval
about a. An open interval is a neighborhood of each of its points; a
closed interval is not a neighborhood of its endpoints.

The set of all δ-intervals about a is used to study the behavior of
“functions” near a. Remarkably, though the intersection of all the δ-
intervals is {a}, the set of all such intervals captures information that
cannot otherwise be seen; the set of all δ-intervals about a is a sort of
“infinitesimal neighborhood” of a. The reason for considering deleted
intervals is to ignore the point a explicitly, concentrating on the “in-
finitely near” points. (In the real field R this language is contradictory,
but remember the Goethe quote!) A set A ⊂ R that contains some
deleted δ-interval about a is said to contain all points sufficiently close
to a.

Non-Standard Analysis

Though the traditional setting for calculus is the real field because of
the historical precedent set by the Ancient Greeks, calculus can be
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founded on a larger number system—the non-standard reals, discov-
ered by A. Robinson—that contains “infinitesimal” numbers, namely
positive numbers that are smaller than every positive real number, and
“infinities” that are larger than every real number. (These infinities are
considerably more subtle than the crude symbol +∞ introduced for
order purposes above. The field of non-standard reals is ordered and
“contains a copy of R,” but is not complete; indeed, it does not sat-
isfy the Archimedean property.) For complicated reasons, non-standard
analysis occupies a position out of the mainstream of modern mathe-
matics. Aside from the historical bias against it, there are two technical
reasons for prejudice: First, it is necessary to enlarge set theory itself in
order to construct the non-standard reals, and second, there is a theo-
rem (the Transfer Principle) to the effect that every theorem about the
real number system that has a “non-standard” proof also has a “real”
proof. In short, a lot of expense is required, and there is no logical pay-
off; there are no new theorems that cannot be proven with “standard”
techniques. Consequently, non-standard analysis is most widely known
among logicians and set theorists. However, the process by which new
mathematics is discovered is more trial-and-error than a rigid chain of
logical deduction. It has been argued by I. Stewart that non-standard
analysis is very useful as a conceptual tool for discovering theorems
about the real numbers that would otherwise not have been found! It
is not unlikely that non-standard analysis will have substantial impact
on the study of physical phenomena such as the onset of turbulence in
fluid flow or spontaneous symmetry breaking and phase changes.

2.5 Complex Numbers

Among the deficiencies of the real number system is the lack of general
solutions to polynomial equations with real coefficients; x2 + 1 = 0
has no real solution, for example. The naive attempt to remedy this
situation is to assume the existence of a square root of −1 and see
what logical conclusions follow. For historical reasons, a square root
of −1 is denoted i, for “imaginary unit.” As mentioned, the Greeks
regarded “numbers” as “lengths,” and there is indeed no length whose
square is −1. From this point of view, i is indeed imaginary! However,
the algebraic point of view is that “numbers” are merely elements of a
field, and nothing prevents existence of square roots of −1 in a general
field. (As we saw, an ordered field cannot contain such an element.)
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With a bit of imagination, one is led to consider expressions α =
a + bi with a and b real, and with arithmetic operations dictated by
i2 = −1 and the wish for the field axioms to hold. Complex numbers
were used formally this way for over 300 years until C. F. Gauss, in the
early 1800s, defined a complex number to be an ordered pair of real
numbers, with addition and multiplication rules

(a, b) + (c, d) = (a+ c, b+ d),

(a, b) · (c, d) = (ac− bd, ad+ bc).
(2.15)

These operations satisfy the field axioms, as may be checked by direct
calculation. The reciprocal of a non-zero complex number α = a+ bi is

1

α
=

a− bi
a2 + b2

.

The real number a corresponds to the complex number (a, 0), and the
operations (2.15) behave as expected:

(a, 0) + (c, 0) = (a+ c, 0), (a, 0) · (c, 0) = (ac, 0).

In words, there is a copy of R sitting inside C. The pair (0, 1) is
immediately seen to satisfy (0, 1)2 = (−1, 0), so the complex number
system contains a square root of −1. In our modern point of view,
Gauss constructed the field C of complex numbers from the field of real
numbers, which proved the logical consistency of existence of

√−1.
Complex numbers are represented geometrically as a number plane.

Addition and multiplication of complex numbers have beautiful geomet-
ric descriptions, see Figure 2.12. We will prove that this description is
correct in Chapter 15. Addition of a complex number α is given by
the parallelogram law, which translates the origin to α. Multiplication
by α ∈ C is the operation of rotating and scaling the plane about the
origin in such a way that 1 is carried to α. In particular, multiplication
by −1 corresponds to reflection in the origin (i.e., one-half of a full
rotation), while multiplication by i = (0, 1) is a counter-clockwise one-
quarter rotation of the plane. This picture imbues complex numbers
with an existence as “real” as that of real numbers.

There are actually two imaginary units, i and −i; by custom, i is
represented by the point (0, 1). The complex conjugate of α = a+ bi is
the complex number ᾱ = a− bi. Geometrically, conjugate numbers are
reflected across the horizontal axis. A short calculation shows that

(2.16) (α + β) = ᾱ + β̄, (α · β) = ᾱ · β̄.
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0 1

i

α

β
α + β

0 1

i

α

iα

−α

α2

α3

α4

Figure 2.12: The geometry of complex addition and multiplication.

In words, the field operations work the same way after conjugating:
There is no algebraic reason to identify the pair (0, 1) with i rather
than −i.

The norm (or absolute value) of a complex number is the distance
to the origin, or |α| =

√
αᾱ =

√
a2 + b2, and the distance between α

and β is |α−β|. This definition agrees with the Pythagorean theorem,
and satisfies the triangle and reverse triangle inequalities:

Theorem 2.38. For all complex numbers α and β,∣∣|α| − |β|∣∣ ≤ |α− β| ≤ |α|+ |β|.
The proof—which is deferred to Chapter 15, see Theorem 15.1—is

not difficult if organized carefully, but is not an obvious generalization
of the proof for real numbers. However, the geometric interpretation is
the same, with the added bonus that “triangles” in the complex plane
really are triangles.

Exercises

Exercise 2.1 The field F2 can be viewed as the set {[0], [1]}, where
[0] is the set of even integers and [1] is the set of odd integers. Find
the addition and multiplication tables for this field. Is there a square
root of −[1] in F2? (Hint: What is −[1]?) Using the correspondence
[0] ↔ False, [1] ↔ True, find Boolean operations that correspond to
addition and multiplication. �



82 CHAPTER 2. NUMBERS

Exercise 2.2 Recall that equation (2.2), the definition of addition,
is the base case for associativity. Similarly, the definition of multipli-
cation, equation (2.4), is the inductive base case of the distributive
law. Which well-known identity has equation (2.5), the definition of
exponentiation, as base case? �
Exercise 2.3 The discovery that two mathematical structures are “ab-
stractly the same” can lead to new discoveries, because things difficult
to see from one point of view may be easy to see from another.

Here is a whimsical example, due to Martin Gardner. Nine cards,
labelled 1–9, are placed in order on a table:

1 2 3 4 5 6 7 8 9
Two players alternate taking cards. The object is to draw three cards
that sum to 15. For example, if the first player draws 3, 8, 5, and 4
(in that order), then the cards {3, 4, 8} constitute a win (assuming the
second player did not win in the meantime). If neither player succeeds
the game is a draw.

Use the 3× 3 magic square

2 9 4
7 5 3
6 1 8

to show that this game is equivalent to tic-tac-toe, in the sense that
there is a correspondence between winning strategies in the two games.
�
Exercise 2.4 Let (ai) and (bj) be sequences, and let c be a number.
Use mathematical induction to prove the following statements.

(a)
n∑
k=0

(ak + bk) =
n∑
i=0

ai +
n∑
j=0

bj for all n ≥ 0.

(b)
n∑
i=0

(cai) = c
n∑
i=0

ai for all n ≥ 0.

(c)
( n∑
i=0

ai

)( m∑
j=0

bj

)
=

n∑
i=0

( m∑
j=0

aibj

)
for all m and n ≥ 0.
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�
Exercise 2.5 (a) Use induction to show that 1 + n ≤ 2n for every
n ∈ N, with equality iff n = 1.

(b) Show more generally that 1 + nr ≤ (1 + r)n for all r > 0 and
all n ≥ 1, with equality iff n = 1. This is a trivial consequence of the
Binomial Theorem, below. Here you should do induction.

(c) Suppose 0 < r < 1, and let ε > 0 be given. Prove that there
is an N ∈ N such that rN < ε. In words, “powers of r can be made
arbitrarily small by taking the exponent sufficiently large.”
Hint: If 0 < r < 1, then there exists x > 0 such that r = 1/(1 + x).
�
Exercise 2.6 Use induction on n to establish the following “power
sum” identities:

(a)
n∑
k=1

k =
n(n+ 1)

2
(b)

n∑
k=1

k2 =
n(n+ 1)(2n+ 1

6

(c)
n∑
k=1

k3 =
n2(n+ 1)2

4
=

(
n(n+ 1)

2

)2

The relationships in parts (a) and (c) may be viewed as consequences
of the following diagrams:

In the second, the four squares in the center are 1; successive layers
are larger, the kth layer consisting of 4k squares that are each k × k.
�
Exercise 2.7 Let x be a real number. Establish the following asser-
tions.

(a) If x = A(0.5), then 1 + x ≥ 0.5 and 1/(1 + x) = A(2).
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(b)
x2 − 1

x2 + 1
= A(1).

(c) If x = A(1), then x2 = A(x) and
(
1 + A(x)

)2
= 1 + 3A(x).

�
Exercise 2.8 Let A ⊂ R be non-empty. For c ∈ R, put c + A =
{c+ a | a ∈ A} and cA = {ca | a ∈ A}.
(a) Prove that inf A ≤ supA. What can you say if these numbers are

equal?

(b) If A ⊂ B, then inf B ≤ inf A ≤ supA ≤ supB.

(c) Prove that sup(c+ A) = c+ supA.

(d) Find an expression for sup(cA); the answer will depend on whether
c > 0, c < 0, or c = 0.

Illustrate each part with a sketch. �
Exercise 2.9 Let A and B be non-empty sets of real numbers. Prove
that

sup(A ∪B) = max(supA, supB), inf(A ∪B) = min(inf A, inf B).

Suggestion: Either show that the right-hand sides satisfy the condition
of being the sup/inf, or prove that

supA, supB ≤ sup(A ∪B) ≤ max(supA, supB).

Show that there can be no such formulas for the sup and inf of an
intersection of sets. Make this principle as precise as you can. �

Exercise 2.10 For each family of intervals, prove that the union or
intersection is as stated.

(a)
∞⋃
n=1

[−n, n] = R.

(b)
∞⋂
n=1

[0, 1 + 1/n) = [0, 1].
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(c)
∞⋂
n=1

(0, 1/n] = ∅.

�
Exercise 2.11 Complete the proof of Proposition 2.22 by showing that
the set P defined by (2.11) satisfies the three order axioms. �
Exercise 2.12 Prove Proposition 2.31. �

Annuities and Amortization

Exercise 2.13 Commerce has been a driving force behind mathemat-
ical discovery since Babylonian times. In this exercise you will find a
useful financial formula essentially from scratch.

When money is loaned, the lender usually charges the borrower a fee
(called interest) that is proportional to the amount owed. Typically,
the borrower pays the lender in installments of a fixed size at fixed
time intervals (monthly or yearly, say). Part of each installment goes
towards paying off the accrued interest, and part goes toward reducing
the amount borrowed (the principal). The problem is to determine the
size of each payment, given the amount borrowed, the interest rate, the
time required to pay off the loan, and the number of payments.

(a) Let r be the annual interest rate in percent (you may assume
0 < r < 100),7 and suppose n ≥ 1 payments are made each year. The
interest rate per period is r/n%, so the amount of interest accrued in a
given period is ρ := r/(100n) times the amount owed at the start of the
period. After interest is added, that period’s payment is subtracted,
giving the new amount owed.

Let Ai−1 be the amount owed at the start of the ith period, and
let P be the payment. Find Ai in terms of Ai−1, ρ, and P . (Use the
recipe at the end of the previous paragraph to compute the interest,
then subtract the payment.) What happens financially if P = ρAi−1?
If P < ρAi−1?

(b) Let A0 be the amount borrowed initially. Determine the amount
Ai owed after i payments have been made. (The indexing is consistent
with the first part.)
Hints: Your answer will depend on A0, ρ, P , and i. You might start
by calculating the first few Ai by hand until you recognize a pattern.

7This ensures that ρ < 1 below. In fact, charging a rate over about 30% is a
crime, called usury, though there is no mathematical reason to bound r.
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Then prove your pattern is correct using part (a) and induction on i.
Equation (2.10) should be helpful in getting the answer into closed
form. You are cautioned to compute at least A1, A2, and A3; there are
some likely-looking patterns that are wrong.

(c) The loan is to be paid off when i = kn; use this to find the
payment P in terms of the amount borrowed A0, the “interest per pe-
riod” multiplier ρ, and the total number N := kn of payments. Observe
that the payment is proportional to the amount borrowed, while the
dependence on the interest rate is more complicated.

Suppose $10,000 is borrowed at 4%, to be paid off in five years
with equal monthly payments. How large is each payment? How much
money is paid back in total? �

The Binomial Theorem and Applications

Let n ≥ 0 be an integer. The factorial of n, denoted n!, is defined
recursively by

(2.17) 0! = 1, n! = n (n− 1)! for n ≥ 1.

If n ≥ 1, then n! is the product of the positive whole numbers not
exceeding n. The convention for 0! is justified by Exercise 2.15. The
double factorial n!!, not to be confused with (n!)!, is defined by

(2.18) 0!! = 1!! = 1, n!! = n (n− 2)!! for n ≥ 2.

For example, 6!! = 6 · 4 · 2 and 7!! = 7 · 5 · 3 · 1.
Exercise 2.14 Show that n! = n!! (n− 1)!! and (2m)!! = 2mm! for all
m, n ∈ N, both informally and by mathematical induction. �

The next exercise introduces “binomial coefficients” and a few natu-
ral ways they arise. If k and n are non-negative integers with 0 ≤ k ≤ n,
then the binomial coefficient

(
n
k

)
, read “n choose k,” is defined to be

(2.19)
(
n

k

)
=

n!

k! (n− k)!
;

observe that
(
n
n

)
=
(
n
0

)
= 1 for n ≥ 0. By definition,

(
n
k

)
= 0 if k < 0 or

k > n. Though it is not immediately obvious, the binomial coefficients
are integers ; in fact, they have a useful combinatorial interpretation,
see part (b).
Exercise 2.15 (a) Show that if 0 ≤ k < ` ≤ n/2, then

(
n
k

)
<
(
n
`

)
.

(This can be done easily from the definition in more than one way.)
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Use the definition to show that

(2.20)
(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
for 1 ≤ k ≤ n,

and use this observation to make a table of the binomial coefficients
up to n = 5. If you write the coefficients for fixed n in a row, then
the entries in the next row are the sums of adjacent entries, and the
resulting diagram is called Pascal’s triangle. To get you started, the
first four rows are:

n = 0
1
2

· · · 0 0 1 0 0 · · ·
· · · 0 0 1 1 0 0 · · ·
· · · 0 1 2 1 0 · · ·
· · · 0 1 3 3 1 0 · · ·

Equation (2.20) essentially characterizes the binomial coefficients; know-
ledge of

(
n
k

)
for all k ∈ Z (and for some n ≥ 0) uniquely determines(

n+1
k

)
for all k ∈ Z. In particular, the binomial coefficients are integers,

because
(

0
k

)
is an integer for every k.

(b) Let n be a finite set having exactly n ≥ 0 elements; then 0 = ∅,
and for definiteness say n = {1, . . . , n} if n ≥ 1. Define B(n, k) to
be the number of subsets of n that have exactly k elements. Clearly
B(0, 0) = 1, while B(n, k) = 0 if k < 0 or k > n. By writing {1, . . . , n+
1} = {1, . . . , n} ∪ {n+ 1}, show that

B(n+ 1, k) = B(n, k) +B(n, k − 1) for n ≥ 0, k ≥ 1.

Use this to prove that B(n, k) =
(
n
k

)
for all integers k and n.

(c) An expression (a+ b)n with a and b (real or complex) numbers
and n ∈ N is a binomial. If this expression is multiplied out, the
result will be a sum of terms of the form ak bn−k, since each term in the
product has total degree n. Prove the Binomial Theorem:

(2.21) (a+ b)n =
n∑
k=0

(
n

k

)
ak bn−k.

Give as many arguments as you can; at least one should be a formal
proof by induction, but there are other ways of bookkeeping, such as
counting the number of times the monomial ak bn−k appears in the
product. Use the Binomial Theorem to prove that

n∑
k=0

(
n

k

)
= 2n,

n∑
k=0

(−1)k
(
n

k

)
= 0.
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(d) Consider the unit square grid in the first quadrant.
...

...
...

...
...

...
...

...
...

...
...

...
...

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·(i, j)

Let C(i, j) be the number of paths that join the origin to the point (i, j)
by a sequence of upward and rightward steps along the grid. Argue that
C(i, j) = C(i− 1, j) +C(i, j − 1) for i, j ∈ N, and that C(i, 0) = 1 for
all i ≥ 0.

Find a binomial coefficient that is equal to C(i, j). (Suggestion:
How many steps does it take to get from (0, 0) to (i, j)? How many
of these steps are horizontal/vertical? This should allow you to guess
the answer; then you can verify the correctness of your guess, either by
changing variables so the recursion relation for C(i, j) becomes equa-
tion (2.20), or by induction on the number of steps.)

(e) Using a piece of graph paper, draw a “mod 2 Pascal’s triangle”
whose entries are 0 or 1 according to whether the corresponding bino-
mial coefficient is even or odd. Filled/empty squares can be substituted
for 0’s and 1’s. Try to include at least 32 rows. �

Representing Real Numbers as Decimals

Exercise 2.16 Let 0 < r < 1, and let a ∈ R. Equation (2.10) asserts
that

n∑
i=0

a ri = a
1− rn+1

1− r .

Use Exercise 2.5 (c) to show that

(2.22) sup
n∈N

n∑
i=0

a ri =
a

1− r for 0 < r < 1.

Evaluate this for a = 0.9 and r = 0.1. �
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Intuitively, equation (2.22) gives a method for finding the “sum of
infinitely many terms,” provided these terms form a geometric progres-
sion. In fact, there is no “infinite addition”; a supremum is involved.
Nonetheless, the standard notation is that

∞∑
i=0

ari =
a

1− r for 0 < r < 1.

Setting a = r = 1/2 in equation (2.22) gives the suggestive result
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+ · · · = 1,

Exercise 2.18 (c) gives a more substantial application.

Exercise 2.17 This exercise outlines the steps needed to fit decimal
arithmetic into the axiomatic description of R. You should use only
the axioms for R and N, though as always you are free to use all your
knowledge to guess answers and strategies in advance.

In a decimal expression such as 314.1592, the location of a digit to
the left or right of the decimal point determines a corresponding power
of 10 by which the digit is multiplied. Specifically, if a1, . . . , an and
b0, b1, . . . , bm are digits (that is, elements of the set {0, 1, 2, . . . , 9}) then
the expression bm · · · b1b0.a1a2 · · · an stands for the (positive) rational
number

m∑
j=0

bj 10j +
n∑
i=1

ai 10−i.

The story is a bit more complicated if there are infinitely many non-
zero ai; this eventuality is treated in part (c).

(a) Prove that every real number x can be written, in exactly one
way, as a sum N + d for N an integer and 0 ≤ d < 1.
Comments: It may help to consider the cases x ≥ 0 and x < 0 sep-
arately. You will probably need the Archimedean property of R and
Property N.3. The usual notation is N =: bxc and d = x mod 1.
When x is positive, N and d are called the integer part and decimal
part of x; when x < 0, N and d are not the integer part and decimal
part. For example, if x = −3.14159, then N = −4 and d = 0.85841,
while the integer and decimal parts are −3 and −0.14159.
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(b) Show that every natural number N can be written uniquely as

(∗) bm · · · b1b0 :=
m∑
j=0

bj 10j, bj ∈ {0, 1, 2, . . . , 9}, bm 6= 0.

Comments: This may be so ingrained a truth that it will be difficult to
decide what needs to be proven. Remember that the natural numbers
are defined in terms of iterated successorship; there is nothing intrin-
sically “base 10” about N. This question is intended more to get you
thinking than to have you provide a complete proof, which could be
lengthy depending on your level of skepticism. Here are some issues
you should consider: Given a natural number N , is there some power
of 10 larger than N? A largest power of 10 that is smaller than N? If
so, how many times can this power be subtracted from N before the
difference becomes negative? Does this reduce the quest to a simpler
case? How do you determine which of two representations (∗) is larger?

(c) Show that every expression

(†) 0.a1a2 · · · an :=
n∑
i=1

ai 10−i, ai ∈ {0, 1, 2, . . . , 9}

is a rational number in the interval [0, 1). If infinitely many of the ai’s
are non-zero, then define

(‡)
∞∑
i=1

ai 10−i := sup
n∈N

n∑
i=0

ai 10−i.

Show that every expression (‡) represents a real number in [0, 1]. Prove,
conversely, that every real number x with 0 ≤ x ≤ 1 can be represented
by an expression of the form (‡).
Comments: That the expression in (†) is smaller than 1 should be an
easy induction on n, the number of digits. The only other subtle part
is to show that every real number in [0, 1] has a decimal expansion; you
may not want to write out all the details, but should at least convince
yourself it can be done. The idea is similar to that of part (b); it may be
helpful to imagine the unit interval subdivided into tenths, hundredths,
and so forth. A decimal representation of x can then be “read off” the
location of x.
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(d) Decimal representations in (‡) are not unique; for example,
1.00 = 0.99. Show that this is essentially the only ambiguity in the
following sense. Two decimal expressions

∞∑
i=1

ai 10−i and
∞∑
i=1

a′i 10−i

represent the same real number in [0, 1) iff

• ai = a′i for all i ∈ N, or

• There is an n ∈ N such that ai = a′i for 1 ≤ i < n, an = a′n+1 ≤ 9,
and ai = 0, a′i = 9 for i > n.

For example, 0.2499 = 0.25. In the second case it may be necessary to
reverse the roles of ai and a′i. �
Exercise 2.18 This continues Exercise 2.17, but can be done indepen-
dently since the results of that exercise are familiar grade-school facts.

(a) Show that every rational number has a decimal representation
that either terminates (is finite) or is eventually repeating (after finitely
many decimal places, there is a finite string of digits that repeats ad in-
finitum, as in 1/12 = .0833). In fact, show that if p/q is in lowest terms
and has eventually repeating decimal expansion, then the repeating
string of digits is of length at most q − 1.
Hint: The decimal expansion of a rational number can be found by long
division of q into p, and there are only finitely many possible remainders
at each step of the process.

(b) Prove that every terminating or eventually repeating decimal
represents a rational number.
Hints: This is clear for terminating decimals, see also Exercise 2.17 (c).
For repeating decimals, it is enough to show that

0.a1a2 · · · aNa1a2 · · · aN
represents a rational number (why?), and this can be accomplished with
Exercise 2.16 (c), using r = 10−N and a = .a1a2 · · · aN ∈ Q.

(c) Write .1212 and .87544544 as rational numbers in lowest terms.
Comments: Part (c) is of course meant to ensure you understand
part (b). In summary, this exercise shows that irrational numbers have
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non-terminating, non-repeating decimal representations, and these are
unique. Rational numbers whose repeating digits are not all “9” and not
all “0” also have unique decimal representations. Terminating rationals
have exactly two representations. �
Exercise 2.19 If b ≥ 2 is a natural number, then everything done
in Exercise 2.17 has an analogue using powers of b rather than powers
of 10. The resulting notation is said to be “base b,” though the special
cases b = 2, 3, 8, and 16 are called binary, ternary, octal, and hex-
adecimal respectively. Formulate the analogous claims for each part of
that exercise (particularly, what symbols are needed, and what ratio-
nal number does a base-b expression stand for?), and convince yourself
that their proofs are straightforward modifications of the arguments for
decimal notation.

Write the decimal number 64 in ternary, octal, and hexadecimal
notation. Write the fraction 1/3 in ternary and binary. �

Continued Fractions

For typographical simplicity, an expression

(2.23) a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

with ak ∈ Z for all k, ak > 0 if k > 1, and an > 1 will be denoted
[a1; a2, . . . , an]. With these restrictions, the expression in (2.23) is called
a finite continued fraction, and may be regarded as analogous to a finite
decimal expression. The next exercises investigate the possibility of ap-
proximating real numbers by finite continued fractions, which leads to
“infinite” continued fractions, analogous to infinite decimals. Continued
fractions have a few theoretical advantages over decimals: the repre-
sentation of x ∈ R is unique, is finite iff x ∈ Q, and does not depend on
a choice of base b. Continued fractions also provide, in a sense, “opti-
mal” approximations to irrational numbers. The next two exercises are
concerned with rational numbers and finite continued fractions; Exer-
cise 2.22 treats irrational numbers and infinite continued fractions.
Exercise 2.20 Suppose throughout that 0 < q < p, and that p and q
have no common divisor.
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(a) Set r0 = p and r1 = q, and recursively define rk for k ≥ 2 by

(2.24) rk−1 = akrk + rk+1, 0 ≤ rk+1 < rk.

(Cf. equation (2.25) below.) Define n to be the largest index for
which ak 6= 0. Prove that ak > 0 for 1 ≤ k ≤ n, and that

p

q
= [a1; a2, a3, . . . , an].

Conclude that every rational number x has a unique finite contin-
ued fraction representation. (It is clear that every finite continued
fraction represents a rational number.)

(b) Use part (a) to find the continued fraction representations of 5/7,
8/5, and 355/113.

(c) Express the continued fraction of q/p in terms of [a1; a2, . . . , an],
the continued fraction of p/q.

(d) Does increasing an make [a1; a2, a3, . . . , an] larger or smaller (or
is the question more subtle than this, and if so, what’s the real
answer)?

If you get stuck on the last part, do the next exercise. �
Exercise 2.21 Fix a rational number x = [a1; a2, . . . , an], and for
1 ≤ k ≤ n define rk = [ak; ak+1, . . . , an].

(a) Prove that rk+1 = 1/(rk − ak) for 1 ≤ k < n. Cite an appropriate
result from this chapter to conclude that if rk+1 is made larger,
then rk decreases, and vice versa.

(b) If an = rn is made larger, does x = r1 increase or decrease?

There is nothing to this problem but elementary algebra, but the result
will be very useful shortly. �
Exercise 2.22 Let x ∈ R, and as in Exercise 2.17 let bxc denote the
greatest integer that is no larger than x. We wish to investigate the
possibility of writing

x = [a1; a2, a3, . . .] = a1 +
1

a2 +
1

a3 +
. . .
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with ak integers and ak > 0 for k ≥ 1. Briefly putting aside the
question of what these infinite expressions mean, define for each positive
integer n the numbers

xn = [a1; a2, a3, . . . , an], rn = [an; an+1, an+2, . . .].

(a) Prove that x1 < x3 < x5 < · · · < x6 < x4 < x2, namely that

x2k−1 < x2k+1 < x2k+2 < x2k for all k ≥ 1.

You should be able to read most of this off part (b) of the previous
exercise. Show formally that rk+1 = 1/(rk − ak) for k ≥ 1, cf.
Exercise 2.21 (a).

(b) Given x ∈ R, recursively define integers ak, pk, and qk, and real
numbers yk, as follows: Set y1 = x, p−1 = q0 = 0, and p0 = q−1 =
1. Then define, for k ≥ 1,

ak = bykc
pk = ak pk−1 + pk−2

qk = ak qk−1 + qk−2

yk+1 =
1

yk − ak

(2.25)

Prove inductively that for all n ≥ 1, an > 0, qn < qn+1 and
pn < pn+1, xn = pn/qn, and show formally that yn = rn.

(c) Prove inductively that |x− xn| < 1/(qnqn+1) for n ≥ 1. This gives
a quantitative measure of the approximation of x by xn.

(d) Prove that “continued fractions are the best rational approxima-
tions to x” in the following sense:∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
iff

p

q
=
pn
qn

for some n ∈ N.

By part (a), the supremum of the numbers x2k+1 exists, and the in-
fimum of the numbers x2k exists. In fact, these bounds are equal,
and their common value is defined to be the infinite continued fraction
[a1; a2, a3, . . .]. We return to continued fractions in Chapter 4, when it
will be easier to investigate these questions. �
Exercise 2.23 This exercise investigates the well-known relationship
between “periodic” continued fractions and roots of quadratic polyno-
mials.
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(a) Let x =
√

2; calculate pn and qn for 1 ≤ n ≤ 6. Find a pattern in
the list a1, a2, a3, . . . and prove your guess is correct. Calculate
x2
n for 1 ≤ n ≤ 6. You should not use an electronic calculator for

any of this; it is enough to observe that 1 <
√

2 < 1.5. You will
probably find it helpful to make a table like the following (with
enough columns):

n = −1 n = 0 n = 1 n = 2 n = 3 · · ·
an − − · · ·
pn 0 1 · · ·
qn 1 0 · · ·
yn − − · · ·
xn − − · · ·

(b) Repeat for x =
√

3.

(c) Let a and b be positive integers. Show that the continued frac-
tion [a; b, a, b, a, . . .] satisfies a quadratic polynomial with integer
coefficients.

The integers appearing in the continued fraction of x can be used as a
measure of “how irrational” x is. Rational numbers have finite continued
fractions, while irrational roots of quadratic polynomials with rational
coefficients have “periodic” continued fractions with period 2. �



96 CHAPTER 2. NUMBERS



Chapter 3

Functions

The concept of “function” is absolutely central to all of modern math-
ematics, and in particular is one of the most important concepts in
calculus. The colloquial sense of the word—“Your exam grade is a
function of the effort you put into studying,” or “Your standard of liv-
ing is a function of income”—is similar to the mathematical one, and
expresses a relation of dependence of one thing upon another. Functions
are useful for modeling real-world relationships in mathematical terms.

Mathematically, a function may be regarded as a “rule” that assigns
an “output” value (lying in some specified set) to each “input” (lying in
another specified set); this is the common interpretation of a function
as a “black box”. Analysis is usually concerned with functions whose
output is a real number and whose input is a finite list of real numbers,
classically called “variables”. The term “variable” is avoided in this
book because it encourages denoting two entirely different concepts—
numbers and functions—by the same symbol. In the author’s view,
“variables” are a linguistic concept rather than a mathematical one.
Nonetheless, the term is sometimes convenient, and is used occasionally.
In case of confusion, the definition is always the last word.

3.1 Basic Definitions

A function f : X → Y (read “f from X to Y ”) consists of three things:

• A non-empty set X, called the domain of f , whose elements are
the “inputs” of f ;

• A non-empty set Y , called the range of f , whose elements are the

97
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“potential outputs” of f ;

• A “rule” for assigning a unique element y ∈ Y to each element
x ∈ X. The element y is called the value of f at x and is often
written y = f(x).

These three pieces of information are conceptually analogous to the
axioms for the natural numbers: They specify properties of functions
that are used in practice. By contrast, the formal definition consists of
an implementation of these properties using nothing but sets. This is
our final definition at the level of sets; everything subsequent is defined
using properties at the level of axioms.
Definition 3.1 Let X and Y be non-empty. A function f : X → Y is
a subset Γf = Γ ⊂ X × Y such that for each x ∈ X, there is a unique
y ∈ Y with (x, y) ∈ Γ.

Many functions in this book are “real-valued” functions (meaning
Y ⊂ R) of a “real variable” (meaning X ⊂ R). For these functions,
the graph can be viewed as a subset of the Cartesian plane R × R,
Figure 3.1.

X

Y

Γ

X × Y

Figure 3.1: A function as a graph.

The greatest practical difference between this definition and the
usual calculus book definition is that the domain and range are an
essential part of f . Changing the domain—even by removing a single
point—results in a different function. A function does not consist solely
of a rule or formula; an equation like f(x) = x2 does not define a
function; see Example 3.2.
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The set Γ is called the graph of f . By our definition, a function
is its graph. We usually speak of “a function f ” that “has graph Γ”,
though according to the definition we might well say “the function Γ”.

Elements of the domain are called points and are said to be mapped
to elements of Y by f ; this is sometimes denoted f : x 7→ y or x 7→ y =
f(x). Procedurally, begin with x, and find the unique y ∈ Y such that
(x, y) ∈ Γ, Figure 3.2.

X

Y

x

y

Γ

X × Y

Figure 3.2: A function as a mapping.

We use the terms “function” and “mapping” to denote the same con-
cept, though “function” suggests something real-valued while “mapping”
does not.

Graphs and Procedures

Functions may be regarded “statically” or “dynamically.” The graph of
a function (statically) captures all features of the function in a single
picture. Sometimes it is preferable to regard a function as a black
box, so that x ∈ X is a “variable” and the output y = f(x) changes
(dynamically) as x varies. In this picture, each x is a potential input,
but the set of all inputs is not considered simultaneously.

For a physical example, consider a particle moving on a vertical
number line, Figure 3.3. The domain is the set of t for which the
motion is being considered, and the range is taken to be the entire
real number line R. In the dynamic picture, individual time values are
taken, and the particle is regarded as moving up or down as t increases.
In the static picture, the “history” of the particle is its world line, which
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t0

f(t0)

t1

f(t1)

t2

f(t2)

t3

f(t3)

Figure 3.3: Static (bold) and dynamic interpretations of a function.

is exactly the graph of f . It is important to remember that these are
two different views of the same mathematical situation, though it is
often more convenient to look at a specific problem in one way or the
other.

Surjectivity and Injectivity

A function has, by fiat, a unique value for every point x in the do-
main X. However, nothing in the definition asserts that every point y
in the range Y is actually a function value. The set of all values of a
function is its image, f(X) = {y ∈ Y : y = f(x) for some x ∈ X} ⊂ Y :

X

Y

f(X)

Γ

X × Y

Figure 3.4: The image of a function.
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A function f maps X onto Y if Y = f(X), that is, if the image is
the entire range. “Onto” is used as an adjective (“f is onto”), though
the term surjective—coined by N. Bourbaki1—has the same meaning.
The function depicted in Figure 3.4 is not surjective.

Most calculus books define the “range” of a function to be what
we call the “image”; as a result, surjectivity is a superfluous concept.
When working with a single function, it is often harmless to set the
range equal to the image. However, when dealing with several functions
whose images differ, it is important to distinguish the range from the
image.

Injectivity

Though each x determines a unique y, nothing in the definition guaran-
tees that each y in the image corresponds to a unique x; more than one
point in the domain may be mapped to the same y ∈ Y , see Figure 3.5.

X

Y

x2x1

y

Γ

X × Y

Figure 3.5: Distinct points can map to the same point in the image.

If every y in the image is the value of f for a unique x ∈ X, then
the function f is one-to-one, or injective. In other words, injectivity
means that “if f(x1) = f(x2), then x1 = x2”. This is also useful in the
contrapositive form “if x1 6= x2, then f(x1) 6= f(x2),” or in the form “it
does not happen that x1 6= x2 and f(x1) = f(x2)”.

1Boor bah KEY: The pen name of an influential group of French mathematicians.
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The Vertical and Horizontal Line Tests

Suppose f : [a, b]→ [c, d], and let R = [a, b]× [c, d] be the rectangle in
the x-y plane determined by the inequalities a ≤ x ≤ b and c ≤ y ≤ d.
The graph of f is a subset Γ ⊂ R that “passes the vertical line test”,
namely, that intersects each vertical line x = x0 (with a ≤ x0 ≤ b)
exactly once. Indeed, a vertical line meets the graph at least once
because to every point of the domain is associated a function value,
while the line intersects the graph at most once because a function
is single-valued. These properties are guaranteed by the third clause
above.

The conditions of injectivity and surjectivity have analogous geo-
metric interpretations involving horizontal lines. Suppose Γ ⊂ R is
the graph of a function f . Then f is onto iff each line y = y0 (with
c ≤ y0 ≤ d) intersects Γ at least once, while f is one-to-one iff every
horizontal line intersects the graph at most once.

A function that is both one-to-one and onto is a bijection. The
remarks above imply that the graph of a bijection f : [a, b] → [c, d]
intersects each line y = y0 (c ≤ y0 ≤ d) exactly once; we might say
the graph “passes the horizontal line test”. Remember that whether or
not a function is injective or surjective depends not only on the “rule”
defining the function, but also on the domain and range.

−1 0 1

1

Figure 3.6: Functions associated to the squaring rule.

Example 3.2 Here are four different functions, all “defined” by the
squaring rule f : x 7→ x2, but having different domains and/or ranges.
Each of the functions below is obtained by excising a (possibly empty)
portion of Figure 3.6.

• X = [−1, 1] and Y = [−1, 1]. This function is not injective, since
for example −1 6= 1 but f(−1) = f(1). Neither is the function
surjective because, for example, y = −1 is not the square of a real
number, hence is not in the image.
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• X = [−1, 1] and Y = [0, 1]; the bottom half of the figure is re-
moved. This function is onto, because every real number y ∈ [0, 1]
is the square of some real number x ∈ [−1, 1] by Theorem 5.8.
As above, this function is not injective.

• X = [0, 1], Y = [−1, 1]; the left half is removed. This function is
not onto, as in the first example. However, this function is one-
to-one, because the two square roots of a positive real number are
negatives of each other, and only one of them is in the domain
of f . Formally, if f(x1) = f(x2), then

0 = f(x1)− f(x2) = x2
1 − x2

2 = (x1 − x2)(x1 + x2).

Now, if x1 and x2 are points in the domain of f , then x1 +x2 > 0,
so the previous equation implies x1 = x2. Thus f is injective.

• X = [0, 1], Y = [0, 1]; only the upper right quadrant remains.
This function is a bijection, as is easily checked from assertions
above.

To emphasize one last time, changing the domain (and/or range) yields
a different function. �

Monotone Functions

Let X be a set of real numbers, such as an interval. A function f :
X → R is said to be increasing if for all x1 and x2 in the domain, x1 <
x2 implies f(x1) < f(x2). Geometrically, the graph “slopes upward
to the right”. If n is a positive integer, then the nth power function
f : [0,+∞)→ R defined by f(x) = xn, is increasing by Theorem 2.23.
Similarly, a function f : X → R is decreasing if x1 < x2 implies
f(x1) > f(x2). A function that is either increasing or decreasing is
strictly monotone.

Application of an increasing function preserves inequalities. For
example, the squaring function is increasing on the set of positive reals
and (1.7)2 = 2.89 < 3 < 3.24 = (1.8)2, so if there exists a positive real
number

√
3 whose square is 3, then 1.7 <

√
3 < 1.8, see Figure 3.7.

Note that a strictly monotone function is injective. (Prove this from
the definition if it’s not obvious!) Similarly, application of a decreasing
function reverses inequalities. Theorem 2.23 says that the reciprocal
function is decreasing on the set of positive real numbers: If 0 < x1 <
x2, then 1/x1 > 1/x2.
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1.6 1.7 1.8 1.9
2.8

2.9

3

3.1

3.2

3.3 y = x2

Figure 3.7: An increasing function preserves order relations.

A function f is non-decreasing if x1 < x2 implies f(x1) ≤ f(x2). An
increasing function is certainly non-decreasing, but not conversely. For
example, a constant function is non-decreasing, but not increasing. You
should have no trouble writing down a definition of a non-increasing
function. A function that is either non-decreasing or non-increasing is
monotone.

Preimages

Let f : X → Y be a function. If B ⊂ Y , then the preimage of B
under f is the set of all points of X that are mapped into B by f :

(3.1) f [−1](B) = {x ∈ X | f(x) ∈ B} ⊂ X,

see Figure 3.8. Preimages satisfy some useful, easily-verified properties:

Proposition 3.3. Let f : X → Y be a function. If A ⊂ X and B ⊂ Y ,
then

f
(
f [−1](B)

)
= B and A ⊂ f [−1]

(
f(A)

)
.

The second inclusion is generally proper.

Proof. Exercises 3.2 and 3.3.

The preimage of B may be empty even if B is non-empty (if f is not
onto), and the preimage of a one-point set may consist of more than
one point (if f is not one-to-one). Consequently, if f is not bijective
there is no way to regard f [−1] as a mapping from Y to X.
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X

Y

B

f [−1](B)

Γ

X × Y

Figure 3.8: The preimage of a set B under f .

Restriction and Extension

One of the simplest things that can be done to a function is to make its
domain smaller without changing the range; remember that this gives
a different function. If f : X → Y is a function and A ⊂ X is non-
empty, then the restriction of f to A, denoted f |A, is formally defined
as Γ∩ (A× Y ), see Figure 3.9. Loosely, the restriction is “given by the
same rule as f , but is only defined for points of A.” Said yet another
way, f |A : A→ Y is the function defined by

(3.2) f |A(x) = f(x) for x ∈ A.

Restriction therefore amounts to forgetting about part of f , or throwing
away information. See Exercise 3.6 for relationships between injectivity,
surjectivity, and restriction.

Extension

Let f : A→ R be a function and B ⊃ A. An extension of f to B is a
function F : B → R that agrees with f on A, that is, with F |A = f .
Extensions are never unique, but in real problems there are usually
additional constraints, subject to which an extension may be unique or
may not exist at all.



106 CHAPTER 3. FUNCTIONS

X × Y

A× Y

XA

Y

Figure 3.9: Restriction of a function.

Notational Cautions

When a function is defined by a formula such as

f(x) =
x+ 1

x− 1
, g(z) =

√
1− z2, or h(t) = log t,

and the domain and range have not been specified explicitly, it is cus-
tomary to agree that the range is the set R of real numbers, while
the domain is the “natural domain,” consisting of all real numbers for
which the expression is a real number. When working with functions of
a complex variable, this laxity is often inadequate; the domain must be
specified carefully. In any case, it is better to be slightly over-careful
than ambiguous.

It is badly ambiguous to talk about “the function x2” for two reasons:

• The domain and range have not been specified (less serious);

• There is no mention of “an independent variable” (a grave omis-
sion).

Failing to declare the name of the independent variable is an extremely
common error, because many students have learned by osmosis that
x always stands for the “independent variable”. The reverse point was
carried to humorous extreme by a graffito in the Berkeley math build-
ing:

√
3 > 2 for sufficiently large 3.

We are so used to the symbol “3” denoting a particular real number
that it is ridiculous to ascribe it another meaning. Unfortunately, the
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convention of letting x denote the “independent variable” cannot rea-
sonably be followed universally, as we shall see in later chapters. The
rule x 7→ x2 is quite different from the rule t 7→ x2, yet there are real-life
situations where one wants to consider a constant function of t whose
value is everywhere x2. The rule x 7→ x2 is a procedure, namely to take
a number and square it, while x2 is merely a number, albeit the one
that happens to arise as output when x is the input. It would be more
accurate to denote the “squaring rule” by

7−→ 2
,

with the understanding that an arbitrary expression representing a
number can be put into the box. This notation avoids welding the
letter x to a specified role, but is too unwieldy for general use. In any
case, the rules x 7→ x2, t 7→ t2, and ξ 7→ ξ2 are mathematically iden-
tical in the absence of further knowledge about the letters x, t, or ξ.
Though x often denotes a “generic” input and y denotes the correspond-
ing function value, it is equally permissible to reverse their roles, or to
use some more complicated expression as the input. It is the relation-
ships between input and output values that a function specifies, not
the notation. The distinction between notation and meaning is one of
the most difficult psychological points to absorb about mathematics.

The common construction “x = x(t)” should be used with extreme
care, or (better) avoided altogether. On the left, x is a number; on the
right, x is a function. Calling x a “variable” leads to murky syntax:
Is x a function or a number? Is “f(x)” a function value or a ‘composite
function’? The problem is compounded the more functions are present,
and can easily result in two different functions being assigned the same
name. In the best of circumstances this causes needless confusion, but
if it happens while you are using a symbolic manipulation program,
you will come to grief: A computer program cannot distinguish objects
except by their literal name.

Functions are “Black Boxes”

A function is completely specified by its domain, range, and the values
it takes on points of the domain. While this statement sounds vacuous
as an abstraction, it can be counterintuitive in practice. For example,
each of these three formulas defines the absolute value function on R:
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|x| = √x2;

|x| =
{

x if x ≥ 0

−x if x < 0
|x| =

{
x2 if x = −1, 0, or 1√
x2 otherwise

It is easy to find infinitely many other collections of formulas that de-
fine exactly the same function. None of them is more correct than the
others, though the second of them happens to be the definition. This
example is a little silly (though note the first formula, an identity that
is often misremembered) because at this stage we have very few ways
of defining functions other than as collections of algebraic formulas,
so verifying equality of two functions is likely to be a matter of al-
gebra. In subsequent chapters, functions with complicated definitions
(involving limits and suprema, such as derivatives, definite integrals,
and infinite sums) are studied; the so-called “Fundamental Theorem
of Calculus” asserts that certain pairs of functions are equal. It of-
ten happens that one function has an interesting interpretation (but a
complicated definition) while the other is easy to calculate (but has no
interesting interpretation). Knowledge that these functions are equal
is valuable information. To emphasize: “Equality” of functions f and g
means that f and g have the same domain and the same range, and
that f(x) = g(x) for all x in the domain; the values f(x) and g(x) may
be arrived at by completely different means.

3.2 Basic Classes of Functions

This section presents several interesting classes of functions. Some of
them (such as polynomials and vectors) may be familiar; if so, you
should try to mesh your existing knowledge with the framework of sets
and functions explained so far.

Polynomials and Rational Functions

A polynomial function on a non-empty set A ⊂ R is a function p : A→
R defined by a formula

(3.3) p(x) =
n∑
k=0

ak x
k = a0 + a1 x+ a2 x

2 + · · ·+ an x
n
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with ak ∈ R for k = 0, . . . , n. Polynomial functions are important
for many reasons. Not least is the fact that a polynomial function is
evaluated using nothing but addition and multiplication.

The expression on the right-hand side of (3.3) is called a “polyno-
mial (in x),” and should be distinguished from a polynomial function
(which has a specified domain A). The number ak is called the coeffi-
cient of xk; the coefficient a0 is often called the constant term. In the
representation (3.3), it is usually assumed that an 6= 0, in which case
the polynomial p is said to have degree n and an is called the top degree
or leading coefficient. A polynomial is monic if the leading coefficient
is 1.

Lemma 3.4. Let p : R→ R be the polynomial function given by (3.3).
If p(x) = 0 for all x, then ak = 0 for all k.

Proof. We will do induction on deg p, the degree of p. The result is
obvious if p(x) = a0 is a constant polynomial, i.e., if deg p = 0. Suppose
the conclusion of the lemma holds for every polynomial of degree n, and
let p be of degree (n+ 1). Write

p(x) =
n+1∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ an+1x
n+1.

By hypothesis, 0 = p(0) = a0, so we have

0 = p(x) =
n+1∑
k=1

akx
k = x(a1 + a2x+ · · ·+ an+1x

n) =: xq(x)

for all x; thus q(x) = 0 except possibly when x = 0. If we show that
q(0) = 0, then we can apply the inductive hypothesis to conclude that
the remaining coefficients of p are all zero.

We prove the contrapositive: If a1 = q(0) 6= 0, then q(x) 6= 0
for some x. The idea is that for |x| “very small”, the value q(x) is
“approximately” a1. Precisely, the reverse triangle inequality asserts
that

(∗) |q(x)| = |a1+a2x+· · ·+an+1x
n| ≥ ∣∣|a1|−|x|·|a2+· · ·+an+1x

n−1|∣∣.
To get a lower bound, we seek an upper bound on |x| · |a2 + · · · +
an+1x

n−1|. The triangle inequality implies

(∗∗) |x| · |a2 + · · ·+ an+1x
n−1| ≤ |x| · (|a2|+ · · ·+ |an+1| |x|n−1

)
.
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If we pick x such that |x| < 1, then the right-hand side of (∗∗) is
no larger than |x| · (|a2| + · · · + |an+1|

)
. If in addition we take |x| <

|a1|/2
(|a2|+ · · ·+ |an+1|

)
, then the right-hand side of (∗∗) is no larger

than 1
2
|a1|. This, in turn, implies that the right side of (∗) is at

least 1
2
|a1|.

To summarize, we have shown that if |a1| > 0, then

0 < |x| < min
(

1,
|a1|

2
(|a2|+ · · ·+ |an+1|

)) =⇒ |q(x)| ≥ |a1|
2

> 0.

This is the desired contrapositive.

For each fixed number a, a polynomial can be written in powers
of x − a. You can think of x and u := x − a as being two different
coordinate systems; writing a polynomial in powers of x − a describes
the same polynomial to an observer in the “u world”. For example,
1 + x2 = 5 + 4u+ u2 if u = x− 2. The general formula

n∑
k=0

ak x
k =

n∑
k=0

bk (x− a)k

determines the bk in terms of the ak by expanding and equating like
powers of x. The polynomial representation on the right is said to be
in powers of x − a. (Note that k is a dummy index, so the individual
terms on the two sides of this equation are not equal; the summation
signs cannot be dropped.) The top degree coefficients are always equal:
an = bn. In Chapter 14 we will obtain a fast calculational procedure
for finding the bk in terms of the ak, see Example 14.12.

Arithmetic Operators as Functions

The domain of a function need not be a set of real numbers. Addition
and multiplication can be viewed as real-valued functions whose domain
is the set R×R of ordered pairs of real numbers; s and p : R×R→ R
(for “sum” and “product”) are defined by

s(x, y) = x+ y, p(x, y) = x · y.
The systematic study of functions of “several variables” is undertaken
in more advanced courses. It is easy to define the concept of “functions
of several variables,” but developing calculus for them is more difficult,
and requires a solid understanding of calculus in one variable.
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Lagrange Interpolation Polynomials

A common question on intelligence tests is to give the first few terms
of a finite sequence—such as 1, 2, 3, 5, or ⊗⊕⊕⊗⊗⊗—and to ask for
the next term, or for the rule that generates the sequence. Ironically,
such questions are non-mathematical, because no matter what pattern
is given, there are infinitely many ways of continuing. These tests
do demonstrate the remarkable ability of the human brain to discern
patterns, even when no pattern is logically implied.

Suppose we wish to find a polynomial p that produces the numerical
sequence above, in the sense that

(∗) p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5.

While there are infinitely many polynomials that satisfy these four
equations, there is a unique such polynomial of degree 3 or less. This is
not exactly obvious, but can be seen as follows. Imagine first that we
had at our disposal four cubic polynomials e1, e2, e3, and e4 satisfying

e1(1) = 1 e1(2) = 0 e1(3) = 0 e1(4) = 0

e2(1) = 0 e2(2) = 1 e2(3) = 0 e2(4) = 0

e3(1) = 0 e3(2) = 0 e3(3) = 1 e3(4) = 0

e4(1) = 0 e4(2) = 0 e4(3) = 0 e4(4) = 1

Then p(x) = e1(x)+2e2(x)+3e3(x)+5e4(x) would be a cubic polynomial
satisfying (∗), since for example (reading down the third column)

p(3) = e1(3) + 2e2(3) + 3e3(3) + 5e4(3)

= 0 + (2 · 0) + (3 · 1) + (5 · 0) = 3.

In fact, given the “magic polynomials” {ei}4
i=1 we could generate an

arbitrary sequence of four numbers, just by filling in the blanks:

(∗∗) p(x) = e1(x) + e2(x) + e3(x) + e4(x).

Now, how could we find the ei? This is easier than it looks; the poly-
nomial ẽ1(x) = (x− 2)(x− 3)(x− 4) is non-zero at 1, and is zero at the
other three numbers. Dividing by (1 − 2)(1 − 3)(1 − 4) = −6 adjusts
the value at 1 and gives e1:

e1(x) =
(x− 2)(x− 3)(x− 4)

(1− 2)(1− 3)(1− 4)
= −x

3 − 9x2 + 26x− 24

6
,
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see Figure 3.10. Analogous reasoning tells us that

e2(x) =
(x− 1)(x− 3)(x− 4)

(2− 1)(2− 3)(2− 4)
,

e3(x) =
(x− 1)(x− 2)(x− 4)

(3− 1)(3− 2)(3− 4)
,

e4(x) =
(x− 1)(x− 2)(x− 3)

(4− 1)(4− 2)(4− 3)
.

Of course, these polynomials can be multiplied out, but the form given
makes it clear that these are the sought-after magic polynomials.

1 2 3 4

y = e1(x) (solid)

y = e2(x) (dashed)

Figure 3.10: Interpolating four points with a cubic polynomial.

Once you have digested this solution, you will realize that the ar-
gument proves much more:

Theorem 3.5. Let B = {bi}ni=1 be a set of n distinct real or complex
numbers, and let C = {ci}ni=1 be an arbitrary set of n numbers. There
exists a unique polynomial p of degree at most n− 1 such that

(3.4) p(bi) = ci for all i = 1, . . . , n.

The polynomial p whose existence is asserted by Theorem 3.5 is
called the Lagrange interpolation polynomial for the given data {bi}
and {ci}. Existence of interpolating polynomials proves that every finite
sequence of numbers can be generated by a polynomial of sufficiently
large degree.
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Proof. You should have little trouble convincing yourself that the key
is to find a set of n “magic polynomials” {ei}ni=1, each of which has
degree n−1, is equal to 1 at bi, and is zero at all the other bj. This is a
straightforward generalization of the argument above for four distinct
points. The obvious generalization of (∗∗) allows you to interpolate an
arbitrary sequence of n numbers.

The only new ingredient in the theorem is the uniqueness asser-
tion. Suppose q is another polynomial of degree at most n − 1 that
satisfies (3.4). Then the difference, p − q, is a polynomial of degree
at most n − 1 that has n distinct roots, namely the bi. This implies
that p− q is identically zero, so p = q.

Piecewise Polynomial Functions

A function f on a closed, bounded interval is piecewise polynomial
if the domain can be divided into a finite collection of intervals such
that f is polynomial on each subinterval. An example is the function
f : [−2, 2]→ R defined by

f(x) =


0 if −2 ≤ x < −1

x2 if −1 ≤ x ≤ 1/4

x− x5 if 1/4 < x ≤ 1

1/2 if 1 < x ≤ 2

The graph is depicted in Figure 3.11, which also illustrates the use of
circles and spots to denote open or closed intervals.

−2 −1 0 1 2

Figure 3.11: A piecewise-polynomial function.

Formal Power Series

A polynomial may be regarded as an expression p(x) =
∑∞

k=0 ak x
k in

which all but finitely many of the coefficients ak are zero. The degree
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is the largest index for which the corresponding coefficient is non-zero.
With this notation, the sum and product of two polynomials is

∞∑
k=0

ak x
k +

∞∑
k=0

bk x
k =

∞∑
k=0

(ak + bk)x
k,

( ∞∑
k=0

ak x
k
)
·
( ∞∑
k=0

bk x
k
)

=
∞∑
k=0

( k∑
i=0

ai bk−i
)
xk.

(3.5)

The meaning of the first equation should be clear, while the second
says that to multiply two polynomials, we multiply every summand of
the first by every summand of the second, then gather like powers of x:
The coefficient of xk is

k∑
i=0

ai bk−i = a0bk + a1bk−1 + a2bk−2 + · · ·+ ak−1b1 + akb0.

In particular, the sum or product of polynomials is a polynomial. These
equations have an obvious analogue for polynomials centered at a.

If we drop the assumption that at most finitely many coefficients are
non-zero, then equation (3.5) still makes sense (calculation of each coef-
ficient involves only finitely many arithmetic operations). Expressions
of the form p(x) =

∑∞
k=0 akx

k, called formal power series, can be added
and multiplied unambiguously. A formal power series does not define
a function of x in an obvious way, because it makes no sense to add in-
finitely many numbers together. Instead, a formal power series should
be regarded as an infinite list (ak)

∞
k=0 of coefficients; equation (3.5) ex-

plains how to add and multiply two such lists. Formal power series are
useful in many contexts. To give but one example, note that

(1− x)(1 + x+ x2 + x3 + · · · ) = 1.

Whether or not this equation has any meaning when x is assigned a
specific numerical value is another matter entirely. It is sometimes
possible to “add up” the terms of a formal power series (possibly with
restrictions on x), thereby creating functions that are not polynomial.
Such a function is said to be “(real) analytic”. The functions studied
before the Nineteenth Century—polynomials, rational functions, expo-
nentials, logarithms, trigonometric functions, and a host of more exotic
creatures encountered in classical analysis—are analytic. Mathemati-
cians of the day tacitly assumed “functions” were analytic. The most
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famous and prolific mathematician of the Eighteenth Century, L. Eu-
ler2 was a profound genius at manipulating power series. Many of the
spectacular results we encounter later in the book are due to Euler.

Polynomial Division, and Factorization

Let F be a field. A polynomial p with coefficients in F is said to
factor over F if there exist non-constant polynomials p1 and p2 with
coefficients in F that satisfy p1p2 = p. For example, over R we have

x2 − 2 = (x−
√

2)(x+
√

2), x3 − 2x− 4 = (x− 2)(x2 + 2x+ 2),

x4 − 1 = (x− 1)(x+ 1)(x2 + 1).

A polynomial without factors is irreducible (over F). The first example
is irreducible over Q, while the quadratic x2 + 1 = (x + i)(x − i) is
irreducible over R but factors over C. Enlarging a field makes it “easier”
to factor polynomials.

There is a polynomial division algorithm with remainder, analogous
to integer division with remainder. The following special case is ade-
quate for our purposes in Chapter 15. The general case is similar, see
Exercise 3.12.

Theorem 3.6. Let p be a polynomial with coefficients in a field F, and
let a ∈ F. There exists a unique polynomial q with coefficients in F
and of degree less than deg p such that

p(x) = (x− a)q(x) + p(a).

Proof. It suffices to prove the theorem when p is monic, since we may
absorb a multiplied constant in q. We proceed by induction on the
degree of p. The theorem is obvious if p is constant: take q = 0.

The statement, “If p is monic and of degree k, then there exists a
polynomial q of degree at most k − 1 such that p(x) = (x − a)(q(x) +
p(a),” is our inductive hypothesis at level k. Suppose that p is a monic
polynomial of degree (k + 1); the polynomial p(x) − (x − a)xk is of
degree at most k (since we have subtracted off the term of highest
degree). After factoring out the leading coefficient, we may apply the
inductive hypothesis to find a q of degree at most (k − 1) such that
p(x)− (x− a)xk = (x− a)q(x) + p(a), or

p(x) = (x− a)
(
xk + q(x)

)
+ p(a).

2Pronounced “Oiler”.
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This is the inductive hypothesis at level k + 1.

Corollary 3.7. A polynomial p is evenly divisible by (x−a) iff p(a) = 0.

A number a ∈ F is a root of p if p(a) = 0. Corollary 3.7 says there
is a correspondence between roots and linear factors.

Rational Functions

A quotient of polynomials determines a “rational function.” More pre-
cisely, if A ⊂ R, then a function f : A → R is a rational function
if there exist polynomials p and q such that q(x) 6= 0 for all x ∈ A,
and f(x) = p(x)/q(x) for all x ∈ A. The polynomial q can be made
non-vanishing on A by restriction (if necessary). Usually it is assumed
that p and q have no non-constant factor in common, in which case the
fraction p/q is said to be reduced. The expression (1 − x)/(1 − x2) is
not reduced, while 1/(1 + x) and (1 + x2)/(1− x2) are reduced.

The natural domain of f(x) = (1 − x)/(1 − x2) is the set of real
numbers for which the denominator does not vanish, namely R\{±1}.
In this example, we can cancel a common factor, obtaining the function
g(x) = 1/(1 + x), whose natural domain omits only x = −1. Observe
that f(x) = g(x) for x 6= 1, but formally f(1) = 0/0, while g(1) = 1/2:
Canceling the common factor allows us to assign a value to f(1). How-
ever, not canceling allows implicit restriction of the domain, which is
sometimes useful. When finding the natural domain of a rational func-
tion f = p/q, ask where q(x) = 0 without canceling common factors.

Implicit and Algebraic Functions

A function need not be given “explicitly” by a formula in one variable,
but may be specified “implicitly” by a relation in two variables. For
example, the equation x2 + y2 − 1 = 0 defines two functions, f(x) =
±√1− x2 for |x| ≤ 1. If we set y = f(x), then the implicit relation
x2 + y2 − 1 = 0 is satisfied for all x in the domain of f .

Let R = (a, b)×(c, d) be a rectangle in the plane, and let F : R→ R
be a function. We say that the equation F (x, y) = 0 defines an implicit
function in R if there exists a unique function f : (a, b) → (c, d) such
that

F (x, y) = 0 for (x, y) ∈ R⇐⇒ y = f(x) for x ∈ (a, b).
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Several rectangles are depicted in Figure 3.12; each “good” rectangle
determines an implicit function, and each “bad” rectangle fails to. To
emphasize, whether or not an equation defines an implicit function
depends not only on the equation, but on the rectangle R in the plane.
It is not terribly important to take an open rectangle.

R1 (Good)

R2 (Good)

R3 (Bad)

R4 (Bad)

R5 (Bad)

R6 (Bad)

F (x, y) = (x2 + y2)2 − (x2 − y2) = 0

Figure 3.12: The zero locus of an algebraic equation, and implicit func-
tions.

Example 3.8 The equation x2 +y2−1 = 0 defines an implicit function
in the rectangles [−1, 1]×[0, 1], (0, 1)×(0, 2), and [−0.1, 0)×(−1.1, 0.8),
but not in the square [−1, 1]× [−1, 1], nor in the rectangle [1− δ, 1]×
[−1, 1], no matter how small δ > 0 is. You should draw a sketch and
convince yourself of these assertions. �

Algebraic Functions

Let F : R ×R → R be a polynomial function; this means that there
exist constants aij, with i, j ∈ N, and only finitely many aij non-zero,
such that

(3.6) F (x, y) =
∞∑

i,j=0

aij x
iyj for all (x, y) ∈ R×R.

The zero locus of F is Z(F ) = {(x, y) | F (x, y) = 0} ⊂ R×R.
Definition 3.9 Let f : (a, b) → (c, d) be a function. If f is defined
implicitly in the rectangle (a, b) × (c, d) by a polynomial function F ,
then we say f is an algebraic function.
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Every rational function is algebraic (Exercise 3.8), but not con-
versely; as shown above, the function f(x) =

√
1− x2 for −1 < x < 1,

0 ≤ y < ∞ is algebraic. Generally, it is impossible to express an alge-
braic function using only the four arithmetic operations and extraction
of radicals, not merely as a practical matter, but as a theoretical one.

Characteristic and Step Functions

Let X be a non-empty set, and let A ⊆ X (possibly empty). The char-
acteristic function of A inX (sometimes called the “indicator function”)
is the function χA : X → R defined by

(3.7) χA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

0

1

A

y = χA(x)

The characteristic function answers—for each x ∈ X—the question,
“Are you an element of A?” and converts the response into binary
(“Yes” = 1, “No” = 0). Boolean operations are converted into arith-
metic modulo 2, see Exercises 2.1 and 3.4. A computer scientist might
take the range to be the finite field F2 = {0, 1} rather than R, to exploit
the power of mod 2 arithmetic.

Let I ⊂ R be an interval. A step function is a function f : I → R
that takes only finitely many values, and whose preimages are all finite
unions of points and intervals. As an example, for k = 1, . . . , n, let Ik
be an interval, χk the indicator function of Ik, and ck a real number,
and assume the intervals Ik are pairwise disjoint. The function

(3.8) f(x) =
n∑
k=1

ckχk(x) =

{
ck if x ∈ Ik
0 if x 6∈ Ik for all k

is a step function. In other words, a step function is not merely piece-
wise polynomial, but is “piecewise constant”. Step functions are fun-
damental to the theory of integration (Chapter 7), both because they
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can be “integrated” using only addition and multiplication, and be-
cause they can be used to approximate very large classes of functions.
Exercise 3.5 characterizes step functions along the lines of (3.8).

Vectors and Sequences

The simplest functions are those whose domain is a finite set. The
prototypical set with n elements is the initial segment n := {1, . . . , n}.
A function x : n → R is a collection of n ordered pairs, {(k, xk) |
1 ≤ k ≤ n}. The same data is encoded as an ordered n-tuple x =
(x1, x2, . . . , xn), often called a vector. Existence of Lagrange interpola-
tion polynomials shows that every vector is a polynomial function; this
observation is mostly a curiosity.

The set of all real-valued functions on n is denoted Rn. A function
whose domain is a point is essentially a single real number, so the
set R1 of functions {1} → R may be viewed as the ordinary number
line. A function x : {1, 2} → R is an ordered pair (x1, x2), and the
set R2 of all such functions may be viewed as the Cartesian plane; the
point (−2, 3) is the function defined by x(1) = −2 and x(2) = 3, for
example. Similarly, the set of real-valued functions on 3 = {1, 2, 3}may
be regarded as Cartesian space. There is no mathematical reason to
stop at domains with three points, but the spaces of functions become
difficult to visualize.

The remarks above hide a subtle point. If A ⊂ R is an infinite set,
say the closed unit interval [0, 1], then the set of real-valued functions
on A is absolutely vast; roughly, there is one coordinate axis for each
element of A, and these are in some sense mutually perpendicular!
On the other hand, a single element of this set (that is, a function
f : A → R) can be pictured as a graph in the plane. In other words,
the set of graphs in the plane is vast. One says that a real-valued
function on n depends on “finitely many parameters” or that the space
of real-valued functions on n “has n degrees of freedom.” Stretching
language a bit, a single function f : [0, 1] → R depends on infinitely
many parameters, and the space of real-valued functions on [0, 1] has
infinitely many degrees of freedom.

Sequences

Let X be a non-empty set. A function a : N→ X is called a sequence
in X, and is also denoted (ak)

∞
k=0 ⊂ X. Conceptually, a sequence is an
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infinite ordered list of (possibly non-distinct) points in X. As suggested
by the notation, an ordered n-tuple is just a finite sequence.

A sequence of numbers may be defined by a formula, such as ak =
1/(k + 1) or ak = (−1)k, or by a recursive specification as in

(3.9) a0 = 2, ak+1 =
1

2

(
ak +

2

ak

)
for k ≥ 0.

(Compare Lemma 2.29; this sequence gives successively better approx-
imations to

√
2.) In practice, sequences often arise recursively, and

finding a closed formula is highly desirable (if sometimes difficult or
impossible). Further examples are given in the exercises.

Sequences are among the most important technical tools of calcu-
lus. Cantor’s construction of the real field is based on sequences of
rational numbers. Generally, if one wants to study an object, perhaps
an irrational number like π, a function like cos, or the area enclosed
by a curve in the plane, a natural approach is to consider a sequence
that “approximates” the target object in some sense. The hope is to
use properties of the approximators to deduce properties of the “limit”
object.

“Pathological” Examples

Very strange functions can be specified by collections of rules or formu-
las. The important thing is that to every point of the domain must be
associated exactly one value.

Example 3.10 The characteristic function of Q in R is defined by

χQ(x) =

{
1 if x is rational
0 if x is irrational

Because the rationals are dense in the reals, see Theorem 2.33, the
graph looks something like
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Descriptively, the graph is like two horizontal lines, with the under-
standing that each vertical line only hits the graph at one point. Of
course, the actual graph contains infinitely fine detail, and unlike in the
picture there are no “consecutive” points. �

Example 3.11 Every real number is either rational or irrational, and
every rational number has a unique representation as p/q in lowest
terms. Define a function f : R→ R by

(3.10) f(x) =

{
1/q if x = p/q in lowest terms,
0 if x is irrational.

Figure 3.13 depicts the graph of f ; a fully accurate picture is impossible
because printed points cannot resolve the arbitrarily fine details in the
graph. The white band near the horizontal axis results because no
points with q > 40 are shown. �

−2 −1 0 1 2

Figure 3.13: The denominator function.

Example 3.12 By Exercise 2.18, every real number has a decimal
expansion, and this expansion is unique if we agree to write non-zero
terminating decimals (such as 0.25) with an infinite string of 9’s instead
(as in 0.2499). With this convention in mind (and writing “x” for “the
decimal expansion of x”), define f : (0, 1)→ Z by

f(x) =

{
k if the digit 7 occurs exactly k times in x,
−1 if the digit 7 occurs infinitely many times in x.

Since every real x has a unique decimal expansion, the number of oc-
currences of the digit 7 is well-defined. However, for a specific choice
of x, it is likely to be impossible to calculate f(x); the value f(π − 3)
is believed to be −1, but this is not known.
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To convey how “chaotically” the values of f are distributed, we
sketch an argument that in every open interval (a, b)—no matter how
small—the function f achieves arbitrarily large values. In the interval
(0, 10−10), for instance, we find the numbers with decimal expansion
x = 0.0 · · · 07 · · · 79 . . . having (at least) ten zeroes, followed by a string
of k 7’s and an infinite string of 9’s; for this number, f(x) = k. It should
be clear that essentially the same reasoning applies to an arbitrary
interval. The graph of this function can be represented as a collection
of horizontal lines, at height −1, 0, 1, 2, and so forth, subject to the
proviso that the lines are not really “solid”: Each vertical line intersects
the graph exactly once. �

3.3 Composition, Iteration, and Inverses
If f : X → Y and g : Y → Z are functions (particularly, the image
of f is contained in the domain of g), then the composition of g and f
is the function g ◦ f : X → Z, read “g of f ,” defined by (g ◦ f)(x) =
g
(
f(x)

)
for all x ∈ X. In words, apply f to x, then apply g to the

output. Composition of functions is associative, but is not generally
commutative; one composition may be defined while the other is not,
but even if both compositions are defined, they are usually unrelated.
For example, if f(x) = x+ 1 (“adding one”) and g(x) = x2 (“squaring”),
then

(g ◦ f)(x) = g(x+ 1) = (x+ 1)2 = x2 + 2x+ 1,

(f ◦ g)(x) = f(x2) = x2 + 1.

Iteration

If f : X → X, that is, the domain and range of f are the same set, then
f may be composed with itself, over and over. (It is not necessary that
f be onto; why not?) The nth iterate of f is the function f [n] defined
by “composing f with itself n times.” The formal recursive definition is

(3.11) f [0] = IX , f [n+1] = f ◦ f [n] for n ≥ 0.

Thus f [1] = f , f [2] = f ◦ f , f [3] = f ◦ f ◦ f , and so on.
The sequence defined by equation (3.9) is obtained by iterating

f(x) =
1

2

(
x+

2

x

)
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regarded as a mapping from (0,+∞) to itself. In this example, x0 = 2,
and xk+1 = f(xk) for k ≥ 0. Generally, let f : X → X, and let an
“initial point” x0 ∈ X be given. The sequence (xn)∞n=1 defined by xk =
f [k](x0) consists of subsequent locations of x0 under repeated applica-
tion of the mapping f (its “forward history”), and the set {xk}∞k=0 ⊂ X
is the orbit of x0 under iteration of f . Simultaneous consideration of
all points of X gives a discrete dynamical system; the set X is regarded
as a “space” and its points are “mixed” by the mapping f . Of special
interest are points x ∈ X with f(x) = x, the fixed points of f . We will
see why in Chapter 4.

Inversion

If a function f : X → Y is regarded as an operation or procedure, it is
often desirable to “undo” the effect of f by applying another function,
that is, to recover the input x for each output value y = f(x). Not
every function is amenable to “inversion”. A function f : X → Y is
said to be invertible if there exists a function g : Y → X such that

(3.12) f ◦ g = IY , that is, (f ◦ g)(y) = y for all y ∈ Y ,
and

(3.13) g ◦ f = IX , that is, (g ◦ f)(x) = x for all x ∈ X.
These two equations are “dual” to each other in the sense that simul-
taneously exchanging f with g and X with Y converts each equation
into the other. Also, they are logically independent, and the properties
they specify have already been encountered:

Proposition 3.13. Let f : X → Y be a function. There exists a
function g satisfying equation (3.12) if and only if f is onto, and there
exists a function satisfying equation (3.13) if and only if f is one-to-one.

The proof amounts to reformulation of the definitions; you will learn
more by trying to prove this yourself than you will simply by reading
the proof below. To understand intuitively what the proposition means,
consider an analogy. Suppose you are moving to a new apartment, and
have bought printed labels ( “kitchen”, “bathroom”, “garage”, etc.) from
the moving company. You have several types of possessions (dishes,
glasses, towels, clothes, books. . . ), and each item gets put into a box
that bears a label. Your mathematician friend is packing boxes while
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you run errands: Each box is labeled according to the room in which
its contents belong.

The types of item to be packed are points of X, the types of labels
are points of Y , and your friend’s labeling scheme is a function f . Your
goal is to identify your possessions by looking only at the labels on the
boxes, namely to recover points of X from their function values. In
this situation, the two halves of Proposition 3.13 address the following
questions:

• For each type of room label, is there a corresponding box? A
function g as in (3.12) exists iff the labeling function is surjective.

• Can you determine each box’s contents just by looking at the
label? A function g as in (3.13) exists iff the labelling function is
injective.

Proof. If there is a function satisfying equation (3.12), then every y ∈ Y
is in the image of f , since the element x := g(y) ∈ X is mapped to y
by f . Conversely, if f is onto, then for each y ∈ Y , the set f [−1]({y})
is non-empty (by definition). So for each y ∈ Y , it is possible to pick
an element x ∈ f [−1]({y}), and a family of such choices is nothing but
a function g : Y → X. By construction, equation (3.12) holds.

Now suppose f is one-to-one. Pick an element x0 ∈ X arbitrarily,
and define the function g : Y → X by

g(y) =

{
x where f(x) = y, if y ∈ f(X),

x0 otherwise.

This prescription defines a function (i.e., is single-valued) because f is
one-to-one, and it is clear that for this function g, equation (3.13) holds.
Conversely, suppose equation (3.13) holds, and let x1 and x2 be ele-
ments of X for which f(x1) = f(x2). We want to show that x1 = x2.
But this is clear, since

x1 = g
(
f(x1)

)
= g
(
f(x2)

)
= x2

by equation (3.12).

A function g satisfying equation (3.12) is called a right inverse of f ,
or a branch of f−1, while a function g satisfying equation (3.13) is a
left inverse of f . Left inverses arise rarely, because you can replace the
range of a function with its image, whereupon the function becomes
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surjective. By contrast, branches of f−1 arise naturally in algebra and
trigonometry.

A single function may have several left inverses or several right in-
verses; however, if a function f has both a left inverse g and a right
inverse h, then g = h:

g = g ◦ (f ◦ h) = (g ◦ f) ◦ h = h.

In this event, Proposition 3.13 shows that f is a bijection. Thus, a
bijection and an invertible function are the same thing. Conceptually,
a bijection is nothing but a renaming: elements of X are objects of
interest, while elements of Y are “labels,” and a bijection f : X → Y
associates a unique label to each object, and a unique object to each
label. Bijections between infinite sets can look strange at first. The
following examples give a small sampling of interesting bijections.
Example 3.14 The identity map IX : X → X is invertible for every
non-empty set X, and is its own inverse. If a ∈ R, then the function
x 7→ x + a, called translation by a, is a bijection, whose inverse is
translation by −a. If a 6= 0, then the function x 7→ ax, called scaling
by a, is a bijection whose inverse is scaling by 1/a. The analogous
functions are bijections in an arbitrary field. Every one-to-one function
is a bijection onto its image. For example, the function f : Z → Z
defined by f(n) = 2n is a bijection between the set of integers and the
set of even integers. Observe that an infinite set can be put in one-to-
one correspondence with a proper subset of itself. �

Example 3.15 A logarithm is a bijection L : (0,∞)→ R such that

L(xy) = L(x) + L(y) for all x, y ∈ R.

The existence of logarithms is deduced in Chapter 12. Historically, log-
arithms were important because they convert multiplication into addi-
tion, provided there is an effective means of going between x ∈ (0,∞)
and L(x) ∈ R. Before the age of electronic computers, the conversion
was done by means of logarithm tables and slide rules. Logarithms are
of great importance in pure mathematics, the sciences, and engineering;
stellar magnitudes, loudness (measured in decibels), and acidity (pH)
are all measured using logarithmic scales. �

Example 3.16 There are calculational methods for finding inverses
of functions defined by formulas. In high school courses the usual pre-
scription is to “exchange x and y in the equation y = f(x), and then
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solve for y.” Equivalently, solve y = f(x) for x. This is essentially
correct, though care must be taken with domains and ranges, as this
example illustrates.

Let f : [−1, 0] → [0, 1] be defined by f(x) = x2. This function
is one-to-one and onto. Formal solution for x gives x = ±√y. This
“equation” (really a pair of equations) does not determine f−1, though
it narrows down the possibilities enough that the inverse can be found
by inspection. Because the domain of f is [−1, 0], the range of f−1

must be this same interval. Therefore, f−1 = −√ , since by definition
the square root function takes non-negative values. �

Example 3.17 The “obvious” bijection between the set {a, . . . , z} and
the set {1, . . . , 26} ⊂ N can be used to encode and transmit messages as
numbers. Decoding a message amounts to inverting the bijection that
encoded the message originally. A more sophisticated code would allow
for both capital and lowercase letters, punctuation, and numerals. The
so-called ASCII character encoding (known as “ISO 8859-I” outside the
United States) is just such a correspondence, and is widely used for text
storage. �

Inversion of Monotone Functions

A strictly monotone function is injective, hence is a bijection to its
image. If f is increasing, then f−1 is also increasing: Let y1 < y2 be
elements of the image, and let xi = f−1(yi). One of the inequalities
x1 < x2 or x1 > x2 must hold. Because f is increasing, the second
possibility cannot occur. Thus, if y1 < y2, then f−1(y1) < f−1(y2). The
same argument proves that if f is decreasing, then f−1 is decreasing.
Note well that an injective function is generally not monotone.

Permutations and Cardinality

Recall that for n ∈ N, the corresponding initial segment n is the set
{1, . . . , n}. A bijection from n to itself is called a permutation on n let-
ters. There are n! permutations on n letters. It is fairly clear intuitively
(and can be proven by mathematical induction) that there exists an in-
jection i : n→m if and only if n ≤ m.

G. Cantor’s idea for comparing the “sizes” of infinite sets generalizes
this; two sets X and Y have the same cardinality if there is a bijection
f : X → Y . More generally, “the cardinality of X is no larger than
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the cardinality of Y ” iff there is an injection i : X → Y . (By Propo-
sition 3.13, this is equivalent to existence of a surjection p : Y → X.)
As in Example 3.14, the cardinality of an infinite set can be the same
as that of a proper subset. By definition, a set X is countable if there
exists a bijection f : N→ X, and is at most countable if either finite or
countable. Cantor believed at first that all infinite sets are countable.
Later he proved the contrary, both by a general argument (see Theo-
rem 3.18) and in a spectacular special case (Theorem 3.19). Cantor’s
work met with acrimonious disapproval from several mathematicians of
the late 19th Century, but is now known to be fundamentally sound.

Theorem 3.18. Let X be a set, and let P(X) be its power set, the set
of all subsets of X. Then there is no surjection p : X → P(X); every
set has strictly smaller cardinality than its power set.

Proof. Cantor showed that if p : X → P(X) is an arbitrary function,
then there exists an element of P(X) that is not in the image. The
mapping p associates to each x ∈ X a subset p(x) ⊂ X . For each x, it
makes sense to ask whether or not x ∈ p(x), and the answer is either
“yes” or “no” (depending on x and p). Consider the set

A = {x ∈ X | x 6∈ p(x)} ⊂ X;

the set A ∈ P(X) depends on p, but is unambiguously defined.
For each x ∈ X, either x ∈ A, or x 6∈ A. If x ∈ A, then x 6∈ p(x), so

p(x) 6= A as sets (one contains x and the other doesn’t). On the other
hand, if x 6∈ A, then x ∈ p(x), and again p(x) 6= A. In summary, if
x ∈ X, then p(x) 6= A, namely, p is not surjective.

This theorem shows that for every set—possibly infinite—there is
another set with strictly larger cardinality! One can perhaps sympa-
thize with those mathematicians who felt that only madness or lin-
guistic fog (infinite progressions of larger and larger infinities) lay in
this direction. The following theorem, again due to Cantor, shows that
there are “more” irrational numbers than rational numbers.

Theorem 3.19. The set of rational numbers is countable; the set of real
numbers is not countable. Specifically, there is a bijection f : N→ Q,
but there does not exist a surjection p : N→ R.

Proof. (Sketch) Conceptually, a bijection f : N → Q is a method of
listing all the elements of Q. We first construct a surjection from N
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to the set of pairs (p, q) of integers with q > 0, see Figure 3.14, then
“strike off” pairs that are not in lowest terms. This gives the desired
bijection. Note carefully that the ordering of Q by < does not give a
bijection, since there is no such thing as a pair of “consecutive” rational
numbers.

p

q

−4 −3 −2 −1 0 1 2 3 4
1

2

3

4

5

Figure 3.14: Constructing a bijection from N to Q.

According to most peoples’ intuition, there are more rational num-
bers than natural numbers, because there are infinitely many rationals
between each pair of natural numbers. The bijection depicted in Fig-
ure 3.14 shows that this intuition is incorrect; when counting infinite
sets, the order in which elements are enumerated matters, because an
infinite set can be put into bijective correspondence with a proper sub-
set.

To prove that R is not countable may seem impossible after the
argument above; if we fail to find a bijection, perhaps we were simply
not clever enough! As you will notice, the argument we use here is
completely different. It is enough to show that some subset of R is not
countable. Consider the set X of real numbers that are represented by
a decimal containing only the digits 0 and 1, and let f : N → X be
an arbitrary map. List the elements in the image as in (3.14), which
depicts a “typical” choice of f :

f(1) = 0.1101110 . . .

f(2) = 0.0100100 . . .

f(3) = 0.1101100 . . .

f(4) = 0.1010010 . . .

 x = .0011 . . .(3.14)
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To show that f is not onto, it is enough to construct a number x that
is not in the image of f . Consider the kth decimal of the kth number
f(k); if this decimal is 0 then take the kth decimal of x to be 1 and
vice versa. Then x ∈ X since its decimal expansion contains only 0s
and 1s, but x is not in the image of f because x and f(k) differ in the
kth decimal. We have shown that f is not onto; since f was arbitrary,
there is no surjection f : N→ X, a fortiori no surjection N→ R.

Most people who follow this proof for the first time immediately
ask, “Why not add the new number to the list?” To understand why
this is an irrelevant point, you must interpret the claim correctly: An
arbitrary map f : N→ X is not onto. The function f is specified before
the number x is constructed. You may well appreciate the feelings of
Cantor’s detractors, but this theorem is perfectly consistent with the
definitions.

Isomorphism

Two mathematical structures that are “abstractly equivalent” are usu-
ally regarded as being “the same.” For each mathematical structure,
there is a concept of isomorphism that defines precisely what is meant
by “abstract equivalence.” Mathematical structures encountered previ-
ously include sets, commutative groups, fields, and ordered fields. The
next example explains isomorphisms in detail for sets and commutative
groups.

Two sets X and Y are isomorphic if and only if there exists a bi-
jection φ : X → Y . Intuitively, a set has no attributes other than “the
number of elements” (which may be finite or infinite). The map φ is
an isomorphism between X and Y , and as mentioned above “renames”
elements of X. The sets

X = {0, 1}, Y =
{
∅, {∅}}, and Z = {True,False}

are mutually isomorphic. If X and Y are isomorphic sets having more
than one element, then there are many isomorphisms between them,
and there is usually no reason to select one over another. If X = Y ,
however, then the identity map IX is in a sense the “natural” choice
of isomorphism. You might say3 that two sets with the same number
of elements are isomorphic, but some sets are more isomorphic than
others.

3With apologies to G. Orwell.
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The situation is similar, but more interesting, when considering sets
with additional structure. In this case, an “isomorphism” should “pre-
serve the additional structure.” Suppose (G,+) and (H,⊕) are com-
mutative groups. This means that G is a non-empty set, and that +
is a way of “adding” two elements of G to get a third, subject to ax-
ioms A.1–A.4 on page 51. Similar comments hold for H and ⊕. An
isomorphism between (G,+) and (H,⊕) is a bijection φ : G→ H such
that

(3.15) φ(x+ y) = φ(x)⊕ φ(y) for all x, y ∈ G.

Equation (3.15) says that the operations + and ⊕ correspond under φ;
adding in G and then relabelling (the left-hand side) is the same as rela-
belling and then adding in H (the right-hand side). As far as properties
of commutative groups are concerned, (G,+) and (H,⊕) are indistin-
guishable. Their sets of elements and/or their operations of “addition”
may look very different, but abstractly the structures are the same. A
logarithm (Example 3.15) is an isomorphism L between the multiplica-
tive group of positive real numbers, (R+, ·), and the additive group of
real numbers, (R,+).

The concept of isomorphism extends to more complicated mathe-
matical structures in a straightforward way. An ordered field (F,+, · , <
) consists of a non-empty set F, two operations + and ·, and a relation <
on F subject to axioms. The ordered field (F ,⊕,�,≺) is isomorphic
to (F,+, · , <) (as an ordered field) if there exists a bijection φ : F→ F
such that analogues of equation (3.15) hold for the arithmetic opera-
tions, and such that the order relations correspond in the sense that
x < y if and only if φ(x) ≺ φ(y). As above, isomorphic ordered fields
are abstractly indistinguishable, so far as questions about ordered fields
are concerned.

Once these concepts are understood, it is possible to make the state-
ment of Theorem 2.30 (“existence and uniqueness of the real numbers”)
precise. First of all, there exists a complete, ordered field (R,+, ·, <).
To say “R contains Q” means there is an injection i : Q→ R that is an
isomorphism (of ordered fields) onto its image. Uniqueness means that
every complete ordered field (R,⊕,�,≺) is isomorphic to (R,+, · , <)
as an ordered field.
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3.4 Linear Operators

A great deal of conceptual economy is obtained by introducing some ter-
minology from linear algebra. The fundamental operations of calculus—
integration and differentiation—may be treated as “functions” whose
domains are spaces of functions.

Vector Spaces

Let X ⊂ R and let F (X,R) denote the set of real-valued functions
on X. When X is a finite set, the space F (X,R) of functions is
(essentially) Rn and we regard the general element as “a list of real
numbers indexed by points of X”.

The operations of interest to us are addition of functions and “scalar
multiplication”. If f and g are elements of F (X,R) and if c is a real
number, then we define functions f + g and cf ∈ F (X,R) by

(f + g)(x) = f(x) + g(x)

(cf)(x) = c · f(x)
for all x ∈ X.(3.16)

The set F (X,R) together with these algebraic operations is an
example of a vector space. There is an axiomatic definition similar to
the definition of a field, which you will encounter in a linear algebra
course.

A non-empty subset V ⊂ F (X,R) is a vector subspace if two con-
ditions hold:

• (Closure under addition) If f and g ∈ V , then f + g ∈ V
• (Closure under scalar multiplication) If f ∈ V , then cf ∈ V for

all c ∈ R

For example, the set of polynomial functions on X is a vector sub-
space of F (X,R), as is the set of step functions. The set of indicator
functions on X is not a vector subspace: The sum of two indicator
functions is not generally an indicator.

Linear Mappings

Let V and W be vector subspaces of F (X,R). A mapping L : V → W
takes a function f as input and returns a function Lf as output. It is
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customary to write Lf instead of L(f) to avoid excessive parentheses.
A mapping L : V → V is called an operator on V .

A mapping L : V → W is linear if

L(f + g) = Lf + Lg

L(cf) = c · Lf for all f and g in V , all real c.(3.17)

You may regard a linear mapping as one that “respects the vector space
structure”. A linear functional4 is a linear mapping T : V → R.

Example 3.20 Fix a ∈ R and define an operator La : F (R,R) →
F (R,R) by Laf(x) = f(x− a). The effect of La is to “shift” f to the
right by a in the domain. Linearity is immediate, as you should check.

�

y = f(x) y = Laf(x)

Figure 3.15: The translation operator.

Example 3.21 A closely related example is the reflection operator R,
defined by Rf(x) = f(−x). Geometrically, R reflects the graph of f
about the vertical axis. �

y = f(x) y = Rf(x)

Figure 3.16: The domain-reflection operator.

4In mathematics, “functional” is a noun!
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Example 3.22 Fix x ∈ X; the evaluation functional evx : F (X,R)→
R is defined by evx(f) = f(x), namely “evaluation of f at x”. The def-
inition of addition and scalar multiplication of functions says that evx
is a linear functional. �

The operator S defined by Sf(x) = f(x)2 is not linear; for example,
multiplying f by 2 and applying S multiplies the output by 22 = 4.

Symmetries of Functions

The reflection and translation operators introduced above lead us to
some interesting classes of functions.

Even and Odd Functions

Let A ⊂ R be an interval of the form [−a, a] for some a > 0. A function
f : A→ R is even if

(3.18) f(−x) = f(x) for all x ∈ A,
and is odd if

(3.19) f(−x) = −f(x) for all x ∈ A,
see Figure 3.17. The terminology arises from monomial functions x 7→

−2 −1 0 1 2

Odd

Even

Figure 3.17: Even and odd functions.

xk for k a positive integer; the “parity” of a monomial in the above
sense is the same as the parity of the exponent k as an integer, since

(−x)k = (−1)kxk =

{
xk if k is even,
−xk if k is odd.

Evenness and oddness are “global” properties: They depend on the
behavior of f on the entire domain.
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There is a beautiful interpretation in terms of the reflection operator
of Example 3.21: A function is even iff Rf = f (f is invariant under R)
and is odd iff Rf = −f (f is anti-invariant under R). For every
function f , the operator R exchanges f and Rf , since R(Rf) = f .

Lemma 3.23. The spaces of even and odd functions on A = [−a, a]
are vector subspaces of F (A,R).

Proof. This is a restatement of linearity of R: If f and g are even and
c is real, then

R(f + g) = Rf +Rg = f + g, R(cf) = c ·Rf.
Thus f + g and cf are even, so the set of even functions is a vector
subspace of F (A,R). The proof for odd functions is essentially identi-
cal.

Since a sum of even functions is even, a polynomial is even if every
term has even degree. The converse is also true, see Proposition 3.24
below. These remarks are true if “even” is replaced everywhere by “odd.”

Every constant function on R is even. The only constant function
that is odd is the zero function; in fact, the zero function is easily
seen to be the only function that is both even and odd. The “signum”
function

(3.20) sgn(x) =


x

|x| if x 6= 0

0 if x = 0
=


1 if x > 0

0 if x = 0

−1 if x < 0

is odd.

1

0

−1

Figure 3.18: The signum function.

Most functions are neither even nor odd. However, every function f
on a symmetric domain can be expressed (uniquely) as the sum of an
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even function feven and an odd function fodd. Indeed, the functions
defined by

feven(x) = 1
2

(
f(x) + f(−x)

)
fodd(x) = 1

2

(
f(x)− f(−x)

)(3.21)

are easily shown to have the required properties. These formulas are
arrived at by writing f = feven + fodd and using equations (3.18)
and (3.19). Observe that f is even exactly when its odd part fodd

is the zero function, and that f is odd iff its even part is identically
zero. In terms of R, equation (3.21) says

feven = 1
2
(f +Rf), fodd = 1

2
(f −Rf).

To obtain an even function from f we average f and Rf , and to obtain
an odd function we average f and −Rf : The even and odd parts of f
are obtained by “weighted averaging over the action of R”.

To complete the discussion of parity of functions, we characterize
even and odd polynomials.

Proposition 3.24. Let p : R → R be a polynomial function. Then p
is even iff every term of p has even degree, and p is odd iff every term
has odd degree.

Concisely (if less transparently), p is even iff there exists a polyno-
mial q with p(x) = q(x2) for all x ∈ R, and p is odd iff there exists a
polynomial q with p(x) = x q(x2) for all x ∈ R.

Proof. Suppose p is a polynomial, and let pe and po denote the sum of
the even-degree terms and the sum of the odd-degree terms. As noted
previously these polynomial functions are respectively even and odd,
and their sum is p. They must be the even and odd parts of p by
uniqueness.

Periodic Functions

Let ` be a non-zero real number. A function f : R → R is periodic
with period `—or `-periodic—if

(3.22) f(x− `) = f(x) for all x ∈ R.

In terms of the translation operator T` from Example 3.20, f is `-
periodic iff T`f = f .
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By induction, f(x+n`) = f(x) for all n ∈ Z; consequently the graph
of an `-periodic function consists of “waveforms” of length `, repeated
ad infinitum. The restriction of an `-periodic function to an interval
of length ` is called a period. Clearly a periodic function is completely
specified by each of its periods. Conversely, given a function on a half-
open interval of length `, there is a unique periodic extension to an
`-periodic function.

Figure 3.19: A periodic function, and one complete period.

Example 3.25 The Charlie Brown function cb : R→ R is the peri-
odic extension of the absolute value function on [−1, 1), see Figure 3.20.
Note that cb is piecewise polynomial, in fact, piecewise linear. �

−3 −2 −1 0 1 2 3

Figure 3.20: The Charlie Brown function.

Positive and Negative Parts

Let f be a real-valued function whose domain is an arbitrary set X.
The positive part of f is the function f+ : X → R defined by

f+(x) = max
(
f(x), 0

)
=

{
f(x) if f(x) ≥ 0

0 if f(x) < 0
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Similarly, the negative part of f is defined by f−(x) = min
(
f(x), 0

)
.

You should sketch the positive and negative parts of the function in
Figure 3.19 to ensure you understand the definition.

Note that f(x) = f+(x) +f−(x) for all x; every real-valued function
is a difference of non-negative functions. This observation has amusing
and important applications later. For example, we will be able to show
that functions in a certain large class can be written as a difference of
monotone functions.

Exercises

Exercise 3.1 After typing a long letter, you realize that you have
systematically exchanged the words “there” and “their.” Luckily your
text editor can replace all occurrences of a string with another string.
You first replace “there” with “their,” and then replace “their” with
“there.” Does this have the desired effect? Interpret the consequences
of these replacements as functions from the set {there, their} to itself.
Are these functions one-to-one? How could you successfully exchange
all occurrences of “there” and “their” using replacement? �
Exercise 3.2 Prove Proposition 3.3. You must establish three in-
clusions of sets, using only the definitions of functions and preimages.
�
Exercise 3.3 Give an example of a function f : X → Y and a specific
A ⊂ X such that the inclusion A ⊂ f [−1]

(
f(A)

)
is proper.

Hints: Your function must not be one-to-one. Figure 3.8 may help.
�
Exercise 3.4 Let A and B be subsets of R, and let χA and χB be
their indicator functions, equation (3.7). Establish the following:

(a) 1− χA = χ(R\A), the indicator of Ac.

(b) min(χA, χB) = χA∩B = χA · χB.
(c) max(χA, χB) = χA∪B = χA + χB −min(χA, χB).

(d) χA + χB (mod 2) = χA4B. (See Exercise 1.2)

In words, Boolean operations on sets and characteristic functions are
closely related. �
Exercise 3.5 This exercise characterizes step functions.
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(a) For k = 1, . . . , n, let Ik be an interval, χk the characteristic function
of Ik, and ck a real number. Use Exercise 3.4 and induction on n
to prove that

(‡) f(x) =
n∑
k=1

ckχk(x)

is a step function on R. The difference between this and equa-
tion (3.8) is that the intervals need not be pairwise disjoint here.

(b) Can every step function be written in the form (‡)? If so, prove
it; if not, what properties of the sets Ik need to be modified?

(c) Is the representation from part (b) unique? If so prove it; if not,
what properties of the sets Ik need to be modified?

It may help to sketch some functions of the form c1χ1 + c2χ2 for which
the sets I1 and I2 are, or are not, disjoint. �
Exercise 3.6 In each part, f : X → Y is a function and A ⊂ X.
Determine whether each of the following implications is valid (give a
proof) or not (find a counterexample).

(a) If f is injective, then f |A is injective.

(b) If f |A is injective, then f is injective.

(a) If f is surjective, then f |A is surjective.

(a) If f |A is surjective, then f is surjective.

It may help to consider contrapositives. �

Rational and Algebraic Functions

Exercise 3.7 Let S1 ⊂ R2 denote the unit circle, and let X ⊂ S1 be
the complement of the point (0, 1). Define a function p : R→ X as in
Figure 3.21. Geometrically, join (0, 1) ∈ S1 to (t, 0) by a straight line,
and let p(t) = (x, y) be the point of intersection with the circle.

(a) Use similar triangles to find a formula for (x, y) in terms of t.
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t′

p(t′)

(0, 1)

p(t) = (x, y)

x2 + y2 = 1

t

y

x

Figure 3.21: Stereographic projection.

(b) Show that p is one-to-one and onto, both geometrically and al-
gebraically. Find a formula for p−1 (i.e., express t in terms of x
and y.) The mapping p−1 is called stereographic projection.

(c) Use part (b) to prove that t is rational iff x and y are rational.
Thus, stereographic projection characterizes “rational points” on
the circle.

(d) Show that under stereographic projection, the mapping f(t) = 1/t
corresponds to reflection of the circle through the horizontal axis.
If you can, give both an algebraic and a geometric proof.

(e) Show that the rational mapping f(t) = (t− 1)/(t+ 1) corresponds
to a one-quarter rotation counterclockwise of the circle.
Hint: The rotation maps (x, y) 7→ (−y, x).

Part (d) suggests that one might say 1/0 =∞ and 1/∞ = 0. Compare
with the section on projective infinite limits in Chapter 4. �

Exercise 3.8 Prove that every rational function is algebraic. (For-
mally this is trivial, but be sure to account for the exact definitions,
including domains and ranges.) �
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Exercise 3.9 Let F (x, y) = 1+y+xy+xy2. Find all algebraic functions
implicitly defined by F , and sketch the zero locus Z(F ). (Suggestion:
Use the quadratic formula.) �
Exercise 3.10 Let F (x, y) = (x2 + y2)2− (x2− y2). Find all algebraic
functions defined by F , and locate their graphs in Figure 3.12. �
Exercise 3.11 Sketch the loci x(1 + x)(k + x) − y2 = 0 for k = −1,
0, and 1. (It may help to sketch the graph y = x(1 + x)(k + x) first.)
�
Exercise 3.12 Let F be a field, and let p and d be non-constant
polynomials over F, with deg d < deg p. Prove that there exist unique
polynomials q and r over F (for quotient and remainder) such that

p(x) = d(x)q(x) + r(x).

Hint: Mimic the proof of Theorem 3.6. �

Inverses

Exercise 3.13 Let f : R → [0,∞) be the squaring function. The
function

√
whose value at x is the non-negative square root of x is

a branch of f−1. Show that −√ is another branch of f−1. Find all
branches of f−1 for this function. (There are many “discontinuous”
branches of f−1.) �
Exercise 3.14 In this exercise, you will establish a bijection between a
bounded interval and R. Define f : (−1, 1)→ R by f(x) = x/(1−x2);
see Figure 3.22 for the graph of f .

(a) Set y = f(x) and solve for x.
Suggestion: Multiply by (1−x2) and rearrange to get the quadratic
equation yx2 +x−y = 0. If y 6= 0, the quadratic formula applies.

(b) In part (a), you found two formal inverses of f , corresponding to
the two signs of the radical in the quadratic formula. You know
that f−1 must take values in the domain of f , namely in the
interval (−1, 1). Which choice of sign is the correct one? What
happens when y = 0? Identify each choice of sign with a portion
of the graph in Figure 3.22.
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−1 0 1

y = x
x2−1

x

y

Figure 3.22: A function inducing a bijection from a bounded interval
to R.

(c) At this stage, a putative formula for f−1 has been found. Verify
that the formula you found really does give a two-sided inverse
of f . That is, verify equations (3.12) and (3.13) directly, or prove
by general reasoning that they hold.
Suggestion: If y > 0, then 1 + 4y2 < 1 + 4y + 4y2 = (1 + 2y)2, so

0 <
−1 +

√
1 + 4y2

2y
< 1.

�

Symmetries of Functions

Exercise 3.15 Find the even and odd parts of p(x) = x(x− 1)2. Find
the positive and negative parts of p; write your answer as a piecewise-
polynomial function. �
Exercise 3.16 Find the even and odd parts of p(x) = (1− x)4.
Hint: Use the binomial theorem to expand p. �
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Exercise 3.17 Suppose f is even and g is odd. What can you say
about their product fg? What if both are odd? Prove all your claims.
�
Exercise 3.18 Complete the proof of Lemma 3.23 by proving that the
set of odd functions is closed under addition and scalar multiplication.
�

In each of the following exercises, T` is the translation operator,
defined by T`f(x) = f(x− `).
Exercise 3.19 Let f = χQ be the characteristic function of Q, and
let ` be rational. Show that f is `-periodic. �
Exercise 3.20 Prove that the set of `-periodic functions is a vector
subspace of F (R,R). �
Exercise 3.21 A function is “`-antiperiodic” if T`f = −f . Prove that
such a function is 2`-periodic. �
Exercise 3.22 Suppose f is `-periodic. Prove that the even and odd
parts of f are `-periodic. �
Exercise 3.23 Suppose f is 1-periodic, and that g is `-periodic.

(a) Prove that if ` is rational, then f + g is periodic.
Suggestion: Write ` = p/q in lowest terms.

(b) Assume that 1 and ` are the smallest positive periods of f and g.
Prove that if ` is irrational, then f + g is not periodic.

Part (b) requires serious use of the structure of Q. �



Chapter 4

Limits and Continuity

The concept of “limit” distinguishes analysis (the branch of mathemat-
ics encompassing the calculus of differentials) from algebra. The histor-
ical motivation and main practical use of limits is to assign meaning to
expressions like “0/0” or “0 · ∞” in a wide variety of situations. As we
saw in Chapter 1, describing motion at “an instant of time” leads to dif-
ference quotients of the form (distance traveled)/(elapsed time)=0/0,
while Archimedes’ “method of exhaustion” (which allowed him to “dis-
sect” a disk into a rectangle, see Chapter 13) amounts to adding up the
areas of infinitely many “infinitely thin” triangles or rectangles, whose
total area is formally 0 · ∞.

A limit is a number that, under certain hypotheses, is assigned to
a function f at a point a. However, unlike the function value f(a),
which requires consideration of just a single point in the domain, the
limit of f at a (if it exists) encodes the behavior of f “near” a, and
therefore cannot be determined by considering the values of f at only
finitely many points! For “continuous” functions (including polynomial,
trigonometric, and exponential functions) the “limit of f at a” agrees
with f(a). In general there may be a limit at a point where the function
value is undefined, or the function value and limit at a point may both
exist but be unequal. Before we give any precise definitions, let us
consider two simple but illustrative examples:

f(x) = x, g(x) =

{
1 if x 6= 0

0 if x = 0
, x ∈ R.

143
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−1 0 1

y = f(x)

−1 0 1

y = g(x)

It is immediately computed that f(0) = g(0) = 0; each of these func-
tions vanishes at the origin. If instead we try to quantify the behavior
near the origin, it is believable that (in some sense, which we have not
yet made precise) for |x| ' 0 we have f(x) ' 0 and g(x) ' 1. It is
a very good philosophical exercise to ponder exactly what might be
meant by such an assertion. A few minutes’ thought should convince
you that consideration of only finitely many function values cannot pos-
sibly capture the behavior of f “near” (but not at) a. Instead, to study
the behavior of f “near” a we restrict f to arbitrary open intervals
about a and consider the image of the restriction. It is therefore in our
best interest to develop notation suitable for studying sets of function
values. The first tool is A notation, which we met in Chapter 2. Two
auxiliary notations, “big O” and “little o” (introduced below), will also
play prominent roles.

Throughout this chapter, f : X → R is a real-valued function whose
domain is a set of real numbers, usually an interval. We will use the
order properties of R in defining the concept of limit and in proving
theorems about limits. It is possible to define limits without an ordering
of the domain, but there is additional technical overhead that we wish
to avoid.

4.1 Order of Vanishing

In analysis, we are allowed to be a little sloppy; we often don’t care if we
can solve an equation exactly (whatever this may mean), we only care
that a solution is known to exist, and is (say) between 3.14 and 3.1416.
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There are calculi (a.k.a., calculational procedures) that allow us to ig-
nore fine details that don’t interest us, and concentrate on coarse details
that do.

Review of A Notation

Recall that the expression f = A(ε), read “f is of absolute value at
most ε”, means that |f(x)| ≤ ε for all x in the domain of f . More
generally, if g is a function whose domain contains the domain of f ,
then to say f = A(g) means |f(x)| ≤ |g(x)| for all x. For example, we
have x2 = A(x) on (−1, 1), since x2 ≤ |x| for −1 < x < 1.

Our first extension of this terminology allows us to restrict the do-
main of f by an unspecified amount.
Definition 4.1 If ε > 0, then we say that f = A(ε) locally at a
(or near a) if there exists some deleted open interval N×δ (a) on which
f = A(ε). If there exists an M > 0 such that f = A(M) near a, then
we say f is locally bounded at a.

Note that this condition explicitly ignores what happens at a; we
might have |f(a)| > ε, or f(a) might not even be defined.

The smaller ε is, the more restrictive the condition f = A(ε). For
example, if f and g are the functions introduced above, then for each
ε ≥ 1 we have g = A(ε) locally at 0, while if ε < 1 it is not true that
g = A(ε) near 0. If we ask similar questions about f , we find a possibly
surprising answer: If an ε > 0 is given to us, then on the open interval
Nε(0) = (−ε, ε) we have f = A(ε). In other words, we have f = A(ε)
locally at 0 for every ε > 0. Observe carefully that this is not the same
thing as saying f = A(0) locally at 0!

There is a potentially confusing point in the last paragraph: In
asking whether or not f = A(ε) locally at a, we are first given ε > 0,
then we choose an interval. Many concepts of analysis similarly depend
on one or more “choices” being made, and it is crucially important that
the choices be made in an agreed-upon order.

In Chapter 2 we saw informally how A notation is used in calcula-
tions. Now we are in a better position to justify these manipulations.
If the statements below seem obvious, remember that f = A(ε) is not
an equation, but an abbreviation for “f is of absolute value less than ε”.

Proposition 4.2. If r1 and r2 are positive real numbers, then

A(r1) + A(r2) = A(r1 + r2)

A(r1) · A(r2) = A(r1r2)
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In particular, if x > 0 and ε > 0, then x + A(ε) = A(x + ε) and
xA(ε) = A(xε).

Proof. The first assertion is the triangle inequality, but if you are not
careful, the inequality can seem to go the wrong way. If x = A(r1) and
y = A(r2), then |x + y| ≤ |x| + |y| ≤ r1 + r2, which means x + y =
A(r1 + r2), as claimed. Under the same assumption, |xy| = |x| |y| ≤
r1r2, which proves xy = A(r1r2).

Note carefully that A(r1 +r2) = A(r1)+A(r2) is false. Just because
a quantity is no larger than 1 does not mean it is the sum of two
quantities each no larger than 1/2.

The expression x = a+A(δ) means that x is a number of the form
a plus a number of absolute value at most δ. This is equivalent to
saying x ∈ [a− δ, a+ δ]. Similarly, if f is a function, then f = b+A(ε)
means the image of f is contained in the interval [b − ε, b + ε]. Note
also that as the number h ranges over an interval about 0, the number
x = a + h ranges over an interval about a. Thus x = a + A(δ) and
x− a = h = A(δ) mean the same thing. These are standard idioms for
A notation that you should master.
Example 4.3 The reciprocal function f(x) = 1/x, x 6= 0, is locally
bounded at a for every a 6= 0, but is not locally bounded at 0. (It
does not matter that 0 is not in the domain, because local boundedness
“ignores a”.) To see that f is locally bounded at a 6= 0, assume first that
a > 0, and let δ = a/2, Figure 4.1. By the previous paragraph, x =
a+A(δ) means x ∈ [a

2
, 3a

2
], or that 0 < a

2
≤ x ≤ 3a

2
. Theorem 2.23 (iv)

implies 0 < 2
3a
≤ x ≤ 2

a
, which means f = A(2/a) on the interval of

radius a/2 centered at a. The case a < 0 is similar: take δ = −a/2 > 0.
�

In Chapter 3, we saw examples of functions (such as the function
that counts the number of “7”s in the decimal expansion of its input)
that are not locally bounded at a, no matter which a we are given. This
is striking behavior, given that such a function has a well-defined, finite
value at each point of R. You should appreciate that local properties
are qualitatively different from pointwise properties.

O Notation

A notation allows us to compute with quantities that are not known
exactly, but for which we have bounds on the absolute value. Often,
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a
2

3a
2

Na/2(a)

2
a

2
3a y = 1

x

Figure 4.1: Bounding the reciprocal function.

we want to be even more sloppy, and ignore multiplied constants. In
this view, we would say that near x = 0, x and 10x are “roughly the
same size”, while 1 is definitely larger and x2 is definitely smaller. If you
have used a computer algebra program, you have probably encountered
so-called “O notation”.
Definition 4.4 Let f and g be real-valued functions whose domains
contain some set X. We say that f = O(g) on X (read “f is big-oh
of g on X”) if there exists a positive real number C such that |f(x)| ≤
C|g(x)| for all x ∈ X.

When using O notation, it is important to mention the set X, or at
least to keep in mind that there is a restriction on where the inequality
holds. For example, we have O(x2) = O(x) on [0, 1040] (take C = 1040),
but not on R.

O notation is more symmetric than A notation. Both O(1) = O(10)
and O(10) = O(1) are true, for instance. There is an obvious definition
of “f = O(g) locally at a”, which you should give. We have x = O(1),
10x = O(x), and x2 = O(x) locally at a for each a ∈ R (why?). We do
not have x = O(x2) near 0, however.

As with A notation, we can use O notation to calculate with in-
equalities:(

1 +O(x)
)2

= 1 + 2O(x) +O(x)2 = 1 +O(x) +O(x2) on R.

In particular,
(
1 + O(x)

)2
= 1 + O(x) near 0, and is O(1) near a for
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each a ∈ R. Some important properties of O notation are summarized
here.

Proposition 4.5. Let h > 0, and let k < ` be positive integers. Then

O(hk) +O(h`) = O(hk)

O(hk) ·O(h`) = O(hk+`)

}
near h = 0

If f is a bounded function, then f ·O(hk) = O(hk).

You will have no difficulty proving these assertions. To see how
these properties work in practice, suppose f is a function such that

(4.1) f(x+ h) = f(x) +O(h) near h = 0, for all x in the domain.

Such a function is locally O(1) at each x, since for each x we have

f(x+ h) = f(x) +O(h)

= f(x) + A(1) = A
(|f(x)|+ 1

)
= O(1) near h = 0,

(remember that x is fixed). Further, if f and g satisfy (4.1), then f + g
and fg do as well:

(f + g)(x+ h) = f(x+ h) + g(x+ h)

= f(x) +O(h) + g(x) +O(h)

= f(x) + g(x) +O(h) = (f + g)(x) +O(h),

and

(fg)(x+ h) =
[
f(x) +O(h)

][
g(x) +O(h)

]
= f(x)g(x) +

[
f(x) + g(x)

]
O(h) +O(h2)

= (fg)(x) +O(h) near 0.

Here are some examples that will be useful in Chapter 8.
Example 4.6 The binomial theorem of Exercise 2.15 implies that

(4.2) (x+ h)n = xn + nxn−1h+O(h2) near h = 0, for all n ∈ N.

The binomial theorem says precisely what the O(h2) term is equal to,
but for many purposes we need only the information furnished by (4.2).
For example, we deduce that

(x+ h)n − xn
h

= nxn−1 +O(h) near h = 0.
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This is useful, because while we cannot set h = 0 on the left, we can
on the right, thereby obtaining an evaluation of 0/0 is this situation!
�

Example 4.7 Suppose f is a function that satisfies the following
condition: There exists a real number f ′(0) such that

f(h) = f(0) + f ′(0)h+O(h2) near h = 0.

Intuitively, “f is linear up to quadratic terms” at 0. A physicist might
write this as f(h) ' f(0) + f ′(0)h for h ' 0, but our expression has an
explicit, precise interpretation. Now, suppose f and g both satisfy this
condition. We immediately calculate that

(f + g)(h) = f(0) + g(0) +
[
f ′(0) + g′(0)

]
h+O(h2)

and

(fg)(h) =
[
f(0) + f ′(0)h+O(h2)

][
g(0) + g′(0)h+O(h2)

]
= f(0)g(0) +

[
f ′(0)g(0) + f(0)g′(0)

]
h+O(h2),

which proves that f + g and fg also satisfy the condition, and (as a
fringe benefit) tells us what (f+g)′(0) and (fg)′(0) are. �

As these examples demonstrate, O notation formalizes “back of the
envelope” calculations scientists perform all the time to estimate the
predictions of a theory or the outcome of an experiment. More examples
are given in the exercises.

o Notation

Our final notational definition looks superficially like O notation, but
encapsulates a remarkably subtle, non-trivial property. A single ex-
pression in o notation contains infinitely many A expressions.
Definition 4.8 Let f be a real-valued function. We say f = o(1) at a
if

(4.3) f = A(ε) locally at a for every ε > 0.

If g is a function that does not vanish on some deleted interval about a,
then we say f = o(g) locally at a if f/g = o(1) locally at a.

We saw earlier that the identity function of R is o(1) at 0; informally,
x = o(1) at x = 0. Note that x could be replaced by any other letter;
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we can (and will) use that fact that h = o(1) at h = 0. The condition
f = o(1) at a captures the intuition “f(x) can be made arbitrarily
small by taking x sufficiently close to a”, while f = o(g) at a means
that “f(x) is vanishingly small compared to g(x) for x close to a”. It
is not necessary for f to be defined at a for these assertions to make
sense.

The notations o and O stand for order (of vanishing). It is conve-
nient to use O and o notations in both theoretical (without variables)
and calculational (with variables) settings. The respective notations
are slightly different, and you should strive for fluency in both. For in-
stance, the expressions “f = o(1) at x” (no variables) and “f(x+ h) =
o(1) at h = 0” (with variables) mean the same thing. To get a feel for
these criteria and their relationships, you should verify the following
claims (and, for good measure, translate each into “variables” or “no
variables” language, as appropriate):

• If f = o(1) at x, then f = O(1) near x.

• If f(x+ h) = O(h) near h = 0, then f(x+ h) = o(1) at h = 0.

• h2 = o(h) at 0; in fact, O(h2) = o(h) at 0.

• For each positive integer k, o(hk) = O(hk) near 0.

The prototypical vanishing behavior at a is exhibited by the kth
power function g(x) = (x − a)k for k ∈ N, which we think of as “van-
ishing to order k” at a. More generally, we say that

“f vanishes to order ≥ k at a” if f = O
(
(x− a)k

)
near a

“f vanishes to order > k at a” if f = o
(
(x− a)k

)
near a

We will see shortly that this terminology is natural, and conforms to
our intuition about inequalities of integers.

For all functions that one meets in real life (specifically, for “real
analytic” functions, which we meet in Chapter 11), the conditions

f = O
(
(x− a)k+1

)
and f = o

(
(x− a)k

)
are essentially equivalent. In other words, “most” functions vanish to
integer order, except possibly at isolated points. As we saw in Chap-
ter 3, however, there are lots of “perverse” examples of functions, and
in general, being o(1) is much less restrictive than being O(h).
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The rules for manipulating o expressions in algebraic calculations
are similar to those for O notation, but the proofs are more subtle. This
is to be expected, since “f = o(1)” means “f = A(ε) for every ε > 0”,
a condition that involves infinitely many criteria.

Theorem 4.9. Let f and g be functions defined on some deleted inter-
val about a. If f = o(1) and g = o(1) at a, then f + g = o(1) at a. If
f = o(1) and g = O(1) at a, then fg is o(1) at a.

Informally, the theorem says

o(1) + o(1) = o(1), o(1) ·O(1) = o(1).

In particular, c · o(1) = o(1) for every real c.

Proof. We are assuming that f = A(ε) for every ε > 0, and similarly
for g. Remember that ε is itself a “variable”, standing for an arbitrary
positive number. If convenient, we may call it something else, such
as ε/2.

We wish to show that f + g = o(1). Let ε > 0. Because f = o(1),
there exists an open interval about a on which f = A(ε/2). Similarly,
there exists an open interval on which g = A(ε/2). On the smaller of
these intervals (i.e., on their intersection, see Figure 4.2), we have both
f = A(ε/2) and g = A(ε/2), and consequently

f + g = A(ε/2) + A(ε/2) = A(ε).

We have shown that if ε > 0, then there exists an open interval about a
on which f + g = A(ε); this means precisely that f + g = o(1).

f = A(/2)

g = A(/2)

Both are A(/2)
a

Figure 4.2: Ensuring two conditions on a single open interval.

To establish the second part, begin with the assumption that g =
O(1) at a. This means there exists a real number M > 0 and an open
interval about a such that |g(x)| ≤ M for all x in the interval. Now
fix ε > 0. Because f = o(1) at a, and because ε/M is a positive real
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number, there is an open interval about a on which f = A(ε/M). As
before, consider the smaller open interval; on this interval, we have
both f = A(ε/M) and g = A(M), so

fg = A(ε/M) · A(M) = A(ε).

We have shown that if ε > 0, then fg = A(ε) on some open interval
about a. Since ε > 0 was arbitrary, we have shown that fg = o(1)
at a.

The proof illustrates a standard trick of analysis, depicted in Fig-
ure 4.2. If finitely many conditions are given, each holding on some
interval about a, then by taking the intersection of these intervals we
find a single interval on which all of the conditions hold. A finite set of
intervals at a corresponds to a finite set of positive real numbers (their
radii), and the intersection corresponds to the smallest number in the
set. By contrast, this trick does not generally apply when there are
infinitely many conditions, because the intersection of infinitely many
open intervals about a need not be an open interval! To see why, con-
sider the interval N1/n(a) of radius 1/n about a. Let us determine
which real numbers x are in all of these intervals as n ranges over the
set of positive integers. Certainly x = a is, by definition. However, if
x 6= a, then x is not in the intersection: There exists an n such that
1/n < |x − a| by the Archimedean property of R, and this inequality
means x 6∈ N1/n(a). Consequently, the intersection of these open in-
tervals is the singleton {a}. To give a more analytic (less geometric)
explanation, recall that an infinite set of positive real numbers always
has an infimum, but may not have a minimum, and the infimum of a
set of positive reals can be zero.

4.2 Limits
We are almost ready to introduce the concept of “limit”. There is one
last technical point that must be raised, regarding domains of functions.
So far, we have made no serious assumptions about the domain X of
our functions f . However, the language of o has a minor peculiarity.
Suppose the domain of f is the single point {0}. We might still ask, “Is
f = o(1) near 1?” The answer is “yes”, because in the open interval of
radius 1 about 1 there are no points of the domain of f , so vacuously we
have “f = A(ε) near 1 for every ε > 0”. We would like to eliminate such
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vacuous assertions from our considerations. Also, we want to ignore the
value of f at a in defining “limits”, since we hope to use the concept of
limit even when f is not defined at a. Both of these issues are neatly
resolved.
Definition 4.10 Let X ⊂ R. A point a ∈ R is a limit point of X
if every deleted interval about a contains a point of X. A point of X
that is not a limit point of X is an isolated point.

The concept of limit point is more subtle than it first appears. For
example, whether or not a is a limit point of X is logically independent
of whether or not a ∈ X. If a is a limit point of the domain of f , then
the condition “f−f(a) = o(1) at a” is non-vacuous. Inversely, if a is not
a limit point of the domain of f , then the condition is vacuous. You
should have no trouble verifying a slightly stronger condition, which
justifies the term “isolated point” for a point of X that is not a limit
point of X:

Lemma 4.11. Let X ⊂ R, and let a be a point of R. If a is not a limit
point of X, then there exists a deleted interval about a that contains no
point of X.

Example 4.12 Let X = (0,+∞) be the set of positive real numbers.
We claim that the set of limit points of X is the set of non-negative
reals. To establish this claim, we will show that every point of [0,+∞)
is a limit point of X, and every point not in [0,+∞) is not a limit
point. The “interesting” point is 0, which is not a point of X, but is a
limit point of X.

If a ≥ 0, then for every ε > 0, the point x = a + ε/2 > a is in
the intersection of X with N×ε (a). This means a is a limit point of X,
and establishes the first inclusion. To prove the other direction, suppose
a < 0; we wish to show a is not a limit point of X. Because the distance
from a to X is |a|, the deleted interval of radius ε = |a|/2 > 0 is disjoint
from X. Because there exists such a deleted interval, the point a is
not a limit point of X, as we wished to show. It is a good exercise
to translate this geometric argument into the language of inequalities.
�

Example 4.13 Our second example is X = Z, the set of integers.
This set has no limit points at all! (In particular, a point of X need
not be a limit point of X, even if X has infinitely many elements.) If
a ∈ X, then the deleted interval of radius 1 contains no point of X,
so a is not a limit point of X. If a 6∈ X, then there exists an integer n
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such that n < a < n + 1 (make sure you can justify this “obvious”
assertion using only the axioms of N and R!), so taking ε to be the
smaller of a − n and n + 1 − a, we see that the deleted interval of
radius ε > 0 contains no point of X, and again a is not a limit point
of X. �

Example 4.14 Our third example is X = Q, the set of rational num-
bers. Recall (Theorem 2.33) that every open interval of reals contains a
rational number. It follows easily that every real number is a limit point
of Q: If a ∈ R and ε > 0, then the open interval (a, a + ε) ⊂ N×ε (a)
contains a point of Q. �

As a test of your understanding, determine (with proof!) the set of
limit points of the interval (0, 1), and of the set X = {1/n | n > 0}:

0 1
· · ·

Most of the points of X are not depicted here; at the left edge the
tick marks that represent them run together. It may help to break the
problem into cases. First treat the cases a < 0 and a > 1; then consider
the points of X itself, keeping in mind what X looks like as you “zoom
in” close to 0; next consider points 0 < a < 1 that are not elements
of X; and finally consider 0. If you feel that you are landing a plane in
fog, remember that the definitions are your radar.

Finally we can introduce limits. We want to say a real number `
is a “limit” of f at a if f = ` + o(1) at a. The fine print is that we
wish to avoid a vacuous statement (so we require that a is a limit point
of the domain of f), and we wish to ignore the value of f at a (hence
we restrict to a deleted interval). The completely unraveled definition
is the “ε-δ criterion” well-known to all students of analysis. We have
packed it into o notation in order to clarify the conceptual content.
Definition 4.15 Let f : X → R be a function, and let a be a limit
point ofX. The real number ` is said to be a limit of f at a if f = `+o(1)
at a. In this situation, we write ` = lim(f, a) or ` = lim

x→a
f(x).

If “ lim(f, a) = `” is false for every real number `, then we say that
the limit of f at a does not exist. The way we have set up the definition,
it does not make sense to ask whether or not lim(f, a) exists unless a
is a limit point of the domain of f .

Limits are often explained informally by saying “ ‘` is a limit of f
at a’ means that ‘the function values f(x) can be made arbitrarily close
to ` provided x is sufficiently close to a’.” If you have studied limits
elsewhere, you have likely see the following definition:
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The real number ` is a limit of f at a if, for every ε > 0,
there exists a δ > 0 such that 0 < |x − a| < δ implies
|f(x)− `| < ε.

It is straightforward to see that this condition is equivalent to Defini-
tion 4.15. The phrase “0 < |x − a| < δ implies |f(x) − `| < ε” means
that f = ` + A(ε) on the deleted δ-interval about a. The clause “for
every ε > 0, there exists δ > 0” means, in this context, that “for every
ε > 0, there is a deleted interval. . . ”. The definition above therefore
means that f = `+ o(1) at a.

The expression “ lim(f, a) = `” looks like an equation, but you should
be wary of treating it as such; remember that the expression “f = o(g)”
is not an equation, but an abbreviation. Explicitly, the problem is that
more than one number could conceivably arise as a limit of f at a. The
first order of business is to dispel this worry:

Lemma 4.16. If ` and m are constant functions on some deleted in-
terval about a, and if `−m = o(1) at a, then ` = m. In words, if two
real numbers are arbitrarily close, then they are equal.

Proof. Strangely, the hypothesis consists of infinitely many statements,
namely that ` − m = A(ε) at a for each ε > 0, but no finite number
of these assumptions imply the conclusion! Instead, consider the con-
trapositive: If ` 6= m, then there exists ε > 0 such that ` − m is not
A(ε). With a moment’s thought, this is obvious: If ` − m 6= 0, then
take ε = |`−m|/2 > 0. By hypothesis, we have |`−m| = 2ε on every
deleted interval about a, and 2ε > ε because ε > 0.

Theorem 4.17. Let f be a function. If lim(f, a) = ` and lim(f, a) =
m, then ` = m.

Informally, f has at most one limit at a, and it makes sense to
speak of the limit of f at a (provided we agree the limit may not exist).
Theorem 4.17 also justifies treating the expression “lim(f, a) = `” as an
equation of real numbers when the limit exists, and we will do so from
now on.

Proof. Suppose f = ` + o(1) and f = m + o(1) at a. This means that
f − ` = o(1) and m − f = o(1) at a. Adding, we have ` −m = o(1)
at a, which implies ` = m by Lemma 4.16.
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The notations

(4.4) lim
x→a

f(x) = ` and lim(f, a) = `

are read, “The limit of f(x) as x approaches a is equal to `” and “the
limit of f at a is `”. The latter is more concise in abstract situations as
it avoids introduction of the spurious “x.” It should be emphasized that
while “ limx→a x2” is permissible (because “x → a” makes it clear that
“x2” is the function value at x), the expression “ lim(x2, a)” is ambiguous
because “x2” does not define a function. The two likeliest meanings are
limx→a x2 = a2 and limt→a x2 = x2.

In order to use limits, we need the “usual tools”: theorems that give
general properties of limits, examples of functions that do and do not
have limits, and easy calculational methods for finding and working
with limits.
Example 4.18 Two limits are immediate: If c is a real number, then
limx→a c = c, and limx→a x = a for all a. In o notation, c = c+o(1) and
x = a+o(1) near x = a. The first is obvious, because 0 = o(1), and the
second is clear because h = o(1) at h = 0. �

Theorem 4.19. Let f and g be functions having the same domain X.
If lim(f, a) = ` and lim(g, a) = m, then lim(f + g, a) and lim(fg, a)
exist, and are equal to `+m and `m respectively. If in addition m 6= 0,
then lim(f/g, a) exists, and is equal to `/m.

Proof. (Sums) The hypothesis is that f = ` + o(1) and g = m + o(1)
at a; by Theorem 4.9, we have f + g = `+m+ o(1) at a, which means
lim(f + g, a) = `+m = lim(f, a) + lim(g, a).

(Products) Under the same hypotheses, we have

fg =
(
`+ o(1)

)(
m+ o(1)

)
by hypothesis

= `m+ (`+m)o(1) + o(1) · o(1)

= `m+ o(1) Theorem 4.9.

This means lim(fg, a) = `m = lim(f, a) · lim(g, a).
(Quotients) This is a little more involved, but the only new ingredi-

ent is the technique of Example 4.3, see Figure 4.1. Assume first that
m > 0, and let ε = m/2 > 0. Because g = m+ o(1), there is a deleted
interval about a on which g = m+ A(ε), which by choice of ε means

m

2
< g <

3m

2
, or

2

3m
<

1

g
<

2

m
.
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In other words 1/g = O(1) near a. Direct calculation gives

1

g
− 1

m
=
m− g
gm

= −(g −m) · 1

g
· 1

m

= o(1) ·O(1) ·O(1) = o(1),

or 1/g = (1/m) + o(1) at a. Multiplying by f = ` + o(1), we have
f/g = `/m+ o(1), as was to be shown.

Corollary 4.20. Let p and q be polynomials with no common factor,
and let f = p/q be the corresponding rational function. If q(a) 6= 0,
then lim(f, a) = p(a)/q(a). In particular, if p : R→ R is a polynomial
function, then lim(p, a) = p(a) for all a ∈ R.

In words, limits of rational functions are obtained by evaluation.
For example,

lim
x→a

1 + x+ x5

4− x2
=

1 + a+ a5

4− a2

if a 6= ±2.

Proof. Every monomial function x 7→ an x
n is a product of a constant

and n copies of the identity function, and therefore satisfies the con-
clusion by the “products” part of Theorem 4.19. The same is true of
polynomials by the “sums” part of the theorem, and for rational func-
tions by the “quotients” part. To formalize this argument completely,
you would do several arguments by mathematical induction. It is worth
proving the assertion for monomials carefully, to get a feel for what is
involved.

Corollary 4.21. Suppose lim(f, a) = ` exists, but that g has no limit
at a. Then f + g has no limit at a, and if ` 6= 0, then fg has no limit
at a.

Proof. Let h = f + g; the theorem asserts that if h has a limit at a,
then so does g = h+ (−f). This is the contrapositive of the corollary.
The claim about fg is Exercise 4.5.

The fact that limits and pointwise evaluation are the same thing for
rational functions might suggest that the concepts are always the same.
Philosophically, almost the exact opposite is true. Theorem 4.22, the
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locality principle, makes precise the assertion that limits cannot be de-
termined by looking at finitely many function values. This “blindness”
to finite amounts of data seems paradoxical, but there is no logical in-
consistency. The real lesson is that the number line is more complicated
than first meets the eye.

Theorem 4.22. Let f and g be real-valued functions whose domains
contain some deleted interval about a ∈ R, and assume that f(x) = g(x)
except possibly at finitely many x. Then lim(f, a) = lim(g, a) in the
sense that either both limits exist and are equal, or else neither limit
exists.

Proof. Let {b1, . . . , bn} be the list of distinct points at which f(x) 6=
g(x). We may as well assume none of the bi is a, since we are interested
only in behavior of f and g on deleted intervals about a. Let δ > 0 be
the minimum of |bi − a| for 1 ≤ i ≤ n, namely the distance from a to
the closest of the bi. (It is here that finiteness is used; if there were
infinitely many bi, we could not guarantee δ > 0.) On the deleted
interval N×δ (a), f and g are the same function, so for the purposes of
Definition 4.15, f = g.

Another useful, fundamental property is that “limits respect ≤”.
You should note carefully that information about limits at a single
point tells you something about functions on an open interval.

Theorem 4.23. Suppose f and g have the same domain, that lim(f, a)
and lim(g, a) exist, and that f(x) ≤ g(x) for all x in some deleted
interval about a. Then lim(f, a) ≤ lim(g, a).

Proof. Though the statement given in the theorem arises frequently in
applications, the contrapositive is more natural to prove: If lim(f, a) >
lim(g, a), then there is a deleted interval about a on which f > g.

Consider the function h = f − g, which has limit

` := lim(f, a)− lim(g, a) > 0

by Theorem 4.19. We will show there exists a deleted neighborhood of a
on which h > 0. Let ε = `/2 > 0. Because h = ` + A(ε) locally at a,
there exists a deleted interval about a on which h > ` − ε = `/2 > 0.
This already proves the theorem, but it is worth mentioning that not
merely is h > 0 near a, but h has a positive lower bound, or is bounded
away from zero. This extra piece of information is often useful.
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If the hypothesis is strengthened to “f(x) < g(x) for all x in some
deleted interval,” it does not follow in general that ` < m (though
of course ` ≤ m, by the theorem). You should examine the proof to
see why not, and find a pair of functions f < g for which lim(f, 0) =
lim(g, 0).

A related result is the so-called “squeeze theorem” (or “pinching
theorem”). Several interesting limits are evaluated by finding simple
upper and lower bounds and applying the squeeze theorem.

Theorem 4.24. Suppose f ≤ h ≤ g on some deleted interval about a,
and that lim(f, a) and lim(g, a) both exist and are equal to `. Then
lim(h, a) exists and is equal to `.

Proof. Fix ε > 0, and choose δ > 0 so that f = `+A(ε) and g = `+A(ε)
on the deleted δ-interval about a. Combining this with the hypothesis
that f ≤ h ≤ g locally at a, we have −ε ≤ f − ` ≤ h − ` ≤ g − ` < ε
on N×δ (a), so h = ` + A(ε) locally at a. Since ε > 0 was arbitrary,
lim(h, a) = `.

Example 4.25 Let sgn : R→ R be the signum function. The locality
principle implies that if a 6= 0, then

lim
x→a

sgn(x) = sgn(a) =
a

|a| =

{
1 if a > 0,

−1 if a < 0.

Near 0, however, sgn takes the values 1 and −1; these do not lie in any
interval of length less than 2, so if ε ≤ 1 the condition sgn = ` + A(ε)
is false for every real `. This means that lim(sgn, 0) does not exist.
�

Example 4.26 Here are two relatively involved examples. The first
has no limit at a for every point a in the domain. The second has a limit
at every point while at first glance it seems to have a limit nowhere.

Consider the function χQ : R → R, the characteristic function of
the set of rational numbers, and fix a real number a. In every deleted
interval about a, there are both rational and non-rational real numbers,
so the function χQ takes both values 0 and 1. No matter how the
potential limit ` is chosen, if ε < 1/2 then we do not have χQ = `+A(ε)
locally at a, because the “target” interval (`− ε, `+ ε) has length < 1.
This means χQ has no limit at a, for every real number a.
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The second example is the “denominator” function f of Exam-
ple 3.11. An enlarged portion of the graph is depicted in Proposi-
tion 4.28 below. This function bears a certain resemblance to the char-
acteristic function of Q, though the function values are smaller when
the denominator is smaller. In order to study the limit behavior of f ,
it is convenient to consider the set

Q(N) := {p/q ∈ Q : |q| ≤ N} =
N⋃
q=1

1
q
Z

of rational numbers whose denominator is at most N , and to write Q
as the union of these sets as N ranges over the positive integers.

We showed in Example 4.13 that the set Z of integers has no limit
point, and an obvious modification of the argument proves that simi-
larly, the set 1

q
Z has no limit point. The following remark shows that

the set Q(N) itself has no limits point.

Lemma 4.27. Let A1, . . . , AN be subsets of R that have no real limit
point. Then their union has no limit point.

Proof. Let a be a point of R. Because A1 has no limit point, there
exists a deleted interval I1 about a that contains no point of A1, by
Lemma 4.11. Arguing similarly, we have finitely many deleted intervals
I2, . . . , In, such that Ik contains no point of Ak. The intersection of
the Ik is a non-empty deleted interval about a that contains no point
of A1∪· · ·∪An. In particular a is not a limit point of A1∪· · ·∪An.

Proposition 4.28. Define f : R→ R by

f(x) =

{
1/q if x = p/q in lowest terms,
0 if x is irrational.

Then lim(f, a) = 0 for every a ∈ R.
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0 1

Proof. Recall that Q is the union over N ≥ 1 of the sets Q(N). By
definition of f , elements of Q(N) are exactly the real points x for
which |f(x)| ≥ 1/N . This fact accounts for the narrow band near the
horizontal axis in the figure; only points with N < 100 are shown.

Let a be an arbitrary real number. Fix ε > 0, and choose N ∈ N so
that 1/N < ε. By Lemma 4.27, there exists a deleted interval about a
that contains no point of Q(N). Since this interval omits all points x
for which f(x) ≥ 1/N , we have f = A(ε) locally at a. But ε was
arbitrary, so we have shown that f = o(1) at a for every a.

Limits are unmistakably “new” information about a function that
cannot be seen by considering individual function values. The previous
example uses the full power of the limit definition, and shows how the
definition can depart from intuition. Though the denominator function
is non-zero at infinitely many points, its limit exists and is equal to
zero at every real number a. Proposition 4.28 can be stated as a sort of
approximation principle: If a real number a is approximated by rational
numbers x 6= a, then the denominators must grow without bound. This
is true even if a ∈ Q! �

The Limit Game

There is a game-theoretic interpretation of limits that many people
find helpful, presumably because the human brain is better wired to
understand competition than existential quantifiers. Imagine a two-
player game, with participants Player ε (“your opponent”) and Player δ
(“you”). A referee specifies in advance a function f , a point a that is
a limit point of the domain of f , and a real number ` (the putative
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limit). Player ε goes first, choosing a positive number ε. This number
is a “tolerance” on function values, and specifies the radius of a target
centered at `. To “meet” the tolerance (or hit the target) for a point x
in the domain of f means that |f(x)− `| < ε; making ε smaller makes
the target more difficult to hit.

Now it is your turn: You want to choose a “launching radius” (δ > 0)
so that every “shot” x that originates in the deleted δ-interval about a
hits the target. Clearly, a smaller choice of launching radius does not
make your accuracy any worse. If you succeed, then you win the round,
and we say that f = `+ A(ε) locally at a; otherwise Player ε wins.

The equation lim(f, a) = ` means that “You have a winning strategy
against a perfect player”: No matter how small Player ε makes the
target (remember, its size is positive), you can win the game. The
distinction between winning one round and having a winning strategy
against a perfect player is the distinction between having f = `+A(ε)
for a particular ε > 0, and having f = `+ A(ε) for arbitrary ε > 0.

As mentioned previously, it is crucial that ε plays first. Whether
or not you have a winning strategy is determined by the function f ,
the location a, and the putative limit `; it does not depend on the
choice of ε. If Player ε blunders, then you may win a round even if
“lim(f, a) = `” is false, compare Example 4.25. As risk of being overly
repetitive, winning a round is not as good as having a winning strategy
against a perfect player.

If you find the game-theoretic interpretation helpful, you may wish
also to consider the following variant: The game starts exactly as before,
with the referee’s choice of f , a, and `. Your opponent chooses ε > 0,
and you choose δ > 0, but now your opponent chooses an x in the
domain of f that satisfies 0 < |x − a| < δ. If |f(x) − `| < ε then
you win the round, and otherwise you lose. Again, “lim(f, a) = `” is
equivalent to your having a winning strategy against a perfect player.

There are other mathematically interesting “limit games” that arise
from small changes in the rules. For example, the referee might specify
` = f(a); or might not specify the number a, requiring you to win
simultaneously for all a ∈ A with the choice ` = f(a); or might require
that you win for all a ∈ A with ` = f(a) and with a single choice of δ.
We will meet these and other limit games in due course.

The “limit game” is idealized in an important way: A putative limit `
is specified in advance. In an actual situation, little or nothing is known
about `. The definition will only say whether or not the limit is equal
to `, not whether or not the limit actually exists. Almost nothing is
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a

f
lim(f, a+)

lim(f, a−)

Figure 4.3: One-sided limits of f at a.

learned if the attempt to show lim(f, a) = ` fails; the referee supplied
the “wrong” number `, but there may be no “right” number. In the
game analogy, if you think there is a target centered at `, and you
shoot accurately but miss, you cannot deduce that there is no target,
only that you aimed at the wrong location. There are procedures for
proving existence of a limit without actually knowing what ` is; such
a theorem is a kind of “radar” that detects a target without locating
it. This knowledge alone can be useful for a couple of reasons. First,
there are theorems for finding a limit if it is known that one exists (and
additional hypotheses are satisfied); perhaps even more importantly,
it means that new functions can be defined as limits extracted from
given functions. Derivatives, integrals, and power series—three pillars
of calculus—are of this type.

One-Sided Limits

The limit of f at a takes into account the behavior of f on deleted
intervals about a. The deleted interval N×r (a) is the union of two open
intervals, (a − r, a) and (a, a + r), and it is sometimes desirable to
study f on each interval separately.

If the function f is defined on the interval (a, a+ r) for some r > 0,
and if (after restriction to this open interval) f = `+ o(1) near a, then
we say the limit from the right of f at a (or “from above”) exists, and
write

lim(f, a+) = ` or lim
x→a+

f(x) = ` or lim
x↘a

f(x) = `

You should translate this condition into an ε-δ game, and should formu-
late the analogous definition for limits from the left (i.e., “from below”)
at a. The notation for limits from the left is as expected:

lim(f, a−) = ` or lim
x→a−

f(x) = ` or lim
x↗a

f(x) = `.
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If lim(f, a) = `, then both one-sided limits exist and are equal to `.
You should have no trouble showing that, conversely, if both one-sided
limits of f at a exist and are equal to `, then lim(f, a) = `. Despite
this close correspondence, one-sided limits arise naturally in important
situations, especially when we wish to prove existence of a limit without
having specific information about f , see Theorem 4.30.
Example 4.29 Let sgn : R → R be the signum function. Be-
cause sgnx = 1 for all x > 0, we have lim(sgn, 0+) = 1; similarly,
lim(sgn, 0−) = −1. Combined with the observations of the previous
paragraph, we deduce once again that lim(sgn, 0) does not exist, com-
pare Example 4.25. �

Limits of Monotone Functions

Monotone functions have simple limit behavior; this is disguised in
the completeness property of R and accounts for the crucial role of
completeness in analysis. Theorem 4.30 is stated for non-decreasing
functions (increasing functions in particular). There is an obvious ana-
logue for non-increasing functions. This result is clear evidence that
the concept of “supremum” is the correct generalization of “maximum”
for bounded sets with infinitely many elements.

lim(f, x+)

f(x)

lim(f, x−)
x

Figure 4.4: One-sided limits of a monotone function.

Theorem 4.30. Let A = (a, b) be an open interval, and let f : A→ R
be a non-decreasing function. Then the one-sided limits lim(f, x±) exist
for all x ∈ A.
Proof. To show a function has a limit, it is necessary to have a candidate
limit. For a non-decreasing function, the inclination is to guess that
the limit from below at x is the “maximum” of all function values f(y)
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with y < x. (We don’t want to allow y = x since “limits at x do not
see the function value at x.”) Unfortunately, the set {f(y) | y < x}
generally has no maximum; all we know is that the set is non-empty
and bounded above (by f(x) itself, since f is non-decreasing). However,
these conditions are exactly enough to imply the set has a supremum,
and we are led to guess that if f : (a, b)→ R is non-decreasing, then

`− := lim(f, x−) = sup{f(y) | a < y < x},
`+ := lim(f, x+) = inf{f(y) | x < y < b}.(4.5)

This guess is not only correct, but easy to establish from the definitions.
Fix ε > 0; by definition of supremum, `− − ε is not an upper bound
of {f(y) | a < y < x}, so there is a z < x with `− − ε < f(z) ≤ `−.
Let δ = x− z; then δ > 0, and because f is non-decreasing, z < y < x
implies f(z) ≤ f(y) ≤ `−. But z = x − δ, so the previous implication
can be written

x− δ < y < x =⇒ `− − ε < f(y) ≤ `−,

which trivially implies |f(y)−`−| < ε. This means the limit from below
at x is `−, as claimed. The other one-sided limit is established by an
entirely similar argument, see Exercise 4.19.

Limits at Infinity

Recall that the extended real numbers are obtained by adjoining two
non-real points, +∞ and −∞, to R and extending the order relation so
that −∞ < x < +∞ for all real x. The symbols ±∞ do not represent
real numbers, and for now arithmetic operations with them are unde-
fined. Intuitively, −∞ and +∞ are the “left and right endpoints of R.”
We have so far considered limits of functions at (finite) limits points.
For many practical and theoretical applications, we wish to define and
use limits at ±∞. For example, long-time behavior of a physical system
is often modeled by a limit at +∞.

The analogue of a deleted interval at +∞ is an interval of the form
(R,+∞) for some R ∈ R; the interval shrinks as R gets larger, that is,
“closer to +∞.” Similarly, a deleted interval about −∞ is an interval of
the form (−∞, R). Everything in this section has an analogue at −∞,
but to simplify the exposition, we shall explicitly mention only +∞.

The definitions and theorems for limits carry over to this new situa-
tion without change. Let f be a real-valued function whose domainX is
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a subset of R. We say that +∞ is a limit point ofX ifX is not bounded
above; intuitively, X contains points arbitrarily close to +∞. In low-
level detail, +∞ is a limit point of X iff for every R ∈ R, there exists
a point x ∈ X with x > R. It makes sense to say f = A(ε) near +∞;
this means that if we restrict f to a deleted interval about +∞, the
image is contained in [−ε, ε], just as in the finite case. Similarly, we
may say f(h) = O(1/h) near +∞, or f = o(1) at +∞. The precise
interpretations are left to you.
Definition 4.31 Let f : X → R be a function whose domain is not
bounded above. A real number ` is a limit at +∞ of f if, for every
ε > 0, f = `+ o(1) at +∞.

As for limits at finite points, limits at +∞ are unique (if they exist),
so it is permissible to treat the expressions

lim
x→+∞

f(x) = ` and lim(f,+∞) = `

as equations of real numbers. We will take for granted that theorems
established for limits at finite points carry over to limits at ±∞.
Example 4.32 Every constant function has the obvious limit at +∞;
the identity function I(x) = x has no limit at +∞. (Arguably the limit
is +∞, and with an appropriate definition this is a theorem. However,
for a function to have infinite limit is a special case of having no real
limit.)

A limit at +∞ fails to exist for a different reason when f : R→ R
is a non-constant periodic function: The function “cannot decide what
value to approach”. Formally, let x and y be points with f(x) 6= f(y).
On every interval (R,+∞), f achieves the values f(x) and f(y), but
there is no number ` such that every interval about ` contains both
f(x) and f(y). �

Example 4.33 Recall that a (real) sequence is a function a : N →
R, usually denoted (ak)

∞
k=0. A sequence (ak) converges to ` ∈ R if

limk→∞ ak = `. This condition is discussed in detail in Section 4.4.
�

The reciprocal function f(x) = 1/x for x ∈ (0,+∞) is easily seen
to approach 0 as x → +∞: If ε > 0, then f = A(ε) on the interval
(1/ε,+∞). More generally, if k ≥ 1 is an integer, then limx→+∞ 1/xk =
0:

lim
x→+∞

1

xk
=

(
lim

x→+∞
1

x

)k
= 0k = 0,
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the first equality being “the limit of a product is the product of the
limits.” This equality can be established formally by mathematical
induction. Alternatively, you can use the squeeze theorem.

Using these preliminary results, we can find the limits of rational
functions at +∞. In the next example, dividing the numerator and
denominator by x4 and using Theorem 4.19 gives

lim
x→+∞

1− 2x+ 3x2

x+ x4
= lim

x→+∞
(1/x4)− (2/x3) + (3/x2)

(1/x3) + 1
=

0− 2 · 0 + 3 · 0
0 + 1

,

so the limit is 0. In general, the limit exists iff the numerator has
degree no larger than the denominator, and the limit is non-zero iff the
numerator and denominator have the same degree:

Theorem 4.34. Let p and q be polynomials with no common factor,
say

p(x) =
n∑
k=0

ak x
k, q(x) =

m∑
k=0

bk x
k, an, bm 6= 0.

If n < m, then lim(p/q,+∞) = 0, while if n = m the limit exists and
is equal to an/bn. If n > m the limit does not exist.

Proof. Intuitively, the largest-degree terms are the only ones that mat-
ter, and the proof essentially exploits this idea. First, the denominator
has at most finitely many zeros, so the quotient is defined on some inter-
val (R,+∞). Divide the numerator and denominator by their highest
respective powers of x; the resulting expression is

p(x)

q(x)
= xn−m ·

(
n∑
k=0

ak x
k−n
)/(

m∑
k=0

bk x
k−m

)
.

The terms in parentheses individually have limits because they are sums
of monomials that have limits; the numerator approaches an, the de-
nominator approaches bm, so their quotient approaches an/bm by The-
orem 4.19.

If n ≤ m, then the claim is immediate since the “leftover” term xn−m

approaches 0 if n < m and is identically 1 if n = m. If n > m, then
this term has no limit at +∞, so the quotient p/q has no limit by
Corollary 4.21.

If the domain of f contains some interval of the form (R,+∞), and
if lim(f,+∞) = `, then the line y = ` is called a horizontal asymptote
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of the graph of f . Theorem 4.34 says the graph of a rational function
p/q has a horizontal asymptote provided the degree of the numerator
does not exceed the degree of the denominator.

Infinite Limits

There are two contexts in which “infinity” may be treated as a “limit.”
In the first of these, two points (+∞ and −∞) are appended to R,
and we distinguish between large positive function values and large
negative1 function values. In the second context, only a single point,
called∞, is appended to R, and we may no longer speak of order rela-
tions involving ∞. Each technique is useful in different situations, and
each will be studied in turn. To avoid a certain amount of repetition,
all functions in this section are assumed to have unbounded domain.

Extended Real Limits

The definition of finite limits makes sense because we know what is
meant by the condition f = `+A(ε). If we replace ` by +∞, this is no
longer true, because we cannot perform algebraic operations with +∞.
In order to proceed, we must reformulate the definition of finite limits
in a way that makes sense “when ` = +∞”. To say that lim(f, a) = `
means that for every interval I about ` there exists a deleted inter-
val about a such that the image of the restriction of f is contained
in I. This looks good, because we know what is meant by an interval
about +∞, and the condition does not mention algebraic operations
with `.

Definition 4.35 Let f be a function. We say the limit of f at a is +∞
(or “the limit of f(x) as x approaches a is +∞”) if, for every R ∈ R,
there exists a deleted interval about a on which f > R. This condition
is written lim(f, a) = +∞ or lim

x→a
f(x) = +∞.

It is a peculiarity of language that if lim(f, a) = +∞, then lim(f, a)
does not exist; existence of a limit means the limit is a real number. Of
course, it is possible for a limit not to exist without the limit being +∞;
think of the signum function at 0, or the characteristic function of Q
in R.

1This is somewhat of an oxymoron, but is standard usage. “Large” refers to
“large absolute value.”
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If f can be made arbitrarily large negative by restricting to some
deleted interval about a, then we say lim(f, a) = −∞ or limx→a f(x) =
−∞. The precise condition is—aside from one small change—identical
to that in Definition 4.35: The conclusion is “f < R” instead of “f > R.”

Certain arithmetic operations involving +∞ can be defined in terms
of limits. An equation like “(+∞) + (+∞) = +∞” is an abbreviation
of, “If f and g have limit +∞ at a, then f + g has limit +∞ at a.” In
this sense, the following are true (` denotes an arbitrary positive real
number):

+∞± ` = (+∞) + (+∞) = (+∞) · `
= (+∞) · (+∞) = +∞, ±`

(+∞)
= 0.

(4.6)

The proofs are nearly immediate from the definition and are left to you
(see Exercise 4.16). The following expressions are indeterminate2 in
the sense that the “answer,” if it exists at all, depends on the functions
f and g, not merely on their limits:

(+∞)− (+∞), 0 · (+∞),
`

0
,

0

0
,

(+∞)

(+∞)
.

Here are some typical counterexamples, with a = 0:

• (+∞)−(+∞) f(x) = 1/|x| and g(x) = 1/|x|−` for ` a fixed real
number; each function has limit +∞ at 0, but their difference has
limit `. If instead f(x) = 1/x2, then the difference has limit +∞.
If lim(f, 0) = +∞ and (say) g = f − χQ, then lim(g, 0) = +∞
but lim(f − g, 0) does not exist.

• 0 · (+∞) f(x) = `x2, g(x) = 1/x2; their product has limit `.
If instead f(x) = ±|x|, the product has limit ±∞. If f(x) = x,
then the product has no limit at 0.

Projective Infinite Limits

Limits such as limx→0 1/x do not exist, even allowing ±∞ as possible
values of the limit; in a sense, 1/x approaches −∞ as x → 0 from
below, but 1/x → +∞ as x → 0 from above. This sort of thing
happens whenever f = p/q is a rational function for which q has a root

2Or “not consistently definable.”
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of odd order at a (assuming as usual that p and q have no common
factors). One way around this annoyance is to append only a single ∞
to R. This amounts to “gluing” −∞ to +∞ in the extended reals, and
is preferable when dealing with rational functions. A deleted interval
about ∞ is the complement in R of a closed, bounded interval [α, β],
and the set R∪{∞} together with this notion of “interval about∞” is
the real projective line, denoted R̂ or RP1. In this context, a function f
is said to have limit ∞ at a if, for every R > 0, there exists a deleted
interval about a on which |f | > R. The difference between this and
Definition 4.35 is that here we do not care if f is positive or negative,
only that it has large absolute value.

There are natural geometric situations in which a single “point at∞”
is better than two. Consider lines through the origin described by their
slopes. A line of large positive slope is nearly vertical, but the same is
true of a line with large negative slope. It makes sense to interpret lines
of slope ∞ as vertical lines, and not to distinguish +∞ and −∞. If
we identify the real number m with the line of slope m through (0, 0),
then every non-vertical line corresponds to a unique real number, and∞
corresponds to the vertical axis, see Figure 4.5.

−2

−1

0

1

2

0
1

y = x

y = −x

• m = 1

Figure 4.5: Lines through the origin in the plane.

The allowable arithmetic operations with ∞ are different from the
allowable operations with ±∞. For example, the expression ∞ +∞
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is indeterminate since “+∞ = −∞.” The advantage gained is that
most divisions by 0 are unambiguous. Precisely, suppose f and g are
rational functions (g not identically zero) and that lim(f, a) = ` 6= 0
and lim(g, a) = 0. Then lim(f/g, a) = ∞; briefly, `/0 = ∞ for ` 6= 0.
With similar hypotheses, `/∞ = 0 and ` + ∞ = ∞ for all ` ∈ R.
The expressions 0/0, 0 · ∞, and ∞/∞ are indeterminate; they can be
assigned arbitrary value by appropriate choice of f and g.

The proof of Theorem 4.34 shows that if f is a rational function,
then lim(f,−∞) and lim(f,+∞) exist and are equal. A very satisfac-
tory picture arises by viewing the domain of f as R̂ rather than a subset
of R: The value of f is∞ when the denominator is zero, and the value
at∞ is the limiting value (which may itself be∞). In short, a rational
function can be viewed as a mapping f : R̂→ R̂, see Exercise 4.18.

4.3 Continuity
Suppose f is a function defined on an interval about a. There are two
numbers—the function value, f(a), and the limit, lim(f, a)—that re-
spectively describe the behavior of f at a and near a (the limit does
not always exist, because the behavior of f near a may be “too com-
plicated” to describe with a single number). For rational functions,
we have seen that these two numbers agree.3 This happy coincidence
warrants a name: A function whose domain is an open interval is “con-
tinuous at a” if lim(f, a) = f(a), and is simply called “continuous” if it
is continuous at each point of its domain. To define continuity at an
endpoint of a closed interval requires one-sided limits. Rather than give
a slew of special definitions, we formulate the criterion a bit differently,
in a way that makes sense for all functions, regardless of their domain.
Definition 4.36 Let A ⊂ R be non-empty. A function f : A→ R is
said to be continuous at a ∈ A if the following condition holds:

For every ε > 0, there exists a δ > 0 such that if x is a point
of A with |x− a| < δ, then |f(x)− f(a)| < ε.

Otherwise f is discontinuous at a. If f is continuous at a for every
a ∈ A, then we say f is continuous (on A).

It is no longer necessary to stipulate x 6= a, since if x = a the
conclusion |f(x) − f(a)| < ε is automatic. Let us compare this with

3This is even true when the value is ∞, and at the point ∞.
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the ordinary limit game; the major changes in the rules are italicized.
The referee specifies the function f and the point a, which must be a
point of the domain of f . The putative limit is taken to be ` = f(a).
Player ε chooses a positive tolerance, and Player δ tries to control the
shooting radius so that every shot hits the target. However, Player δ is
only required to shoot from points in the domain of f , and the domain
of f need not contain a deleted interval about a.

Consider a sequence f : N→ R; if n ∈ N, then the deleted interval
of radius 1 about n contains no natural number. Consequently Player δ
wins by default because the domain of f contains n but contains no
“nearby” points. A sequence is therefore automatically continuous at n
for every n ∈ N. It is clear that if the domain of f does contain an
interval about a, then f is continuous at a iff lim(f, a) = f(a). The
reason for making the more general Definition 4.36 is that theorems are
easier to state with this definition, and the “true” nature of continuity
is not obscured by legalistic questions regarding the domain of f .
Example 4.37 By Corollary 4.21, a rational function is continuous on
its natural domain. The signum function is continuous at every point
of R×, but is discontinuous at 0. The characteristic function of Q is
discontinuous everywhere. The denominator function of Example 3.11
is continuous at every non-rational point and discontinuous at every
rational point, by Proposition 4.28. �

Some basic properties of continuous functions follow almost immedi-
ately from the analogous results about limits. An obvious modification
of the proof of Theorem 4.19 implies that a sum or product of continu-
ous functions is continuous, as is a quotient provided the denominator
is non-zero at a. Compositions of continuous functions are almost ob-
viously continuous:

Proposition 4.38. Let f and g be composable functions. Assume that
f is continuous at a and that g is continuous at f(a). Then the com-
posite function g ◦ f is continuous at a.

Proof. Fix ε > 0, and choose η > 0 such that if y is a point of the
domain of g with |y−f(a)| < η, then

∣∣g(y)−g(f(a)
)∣∣ < ε. Then choose

δ > 0 such that if x is a point of the domain of f with |x−a| < δ, then
|f(x) − f(a)| < η. This procedure of choosing δ is a winning strategy
in the continuity game for g ◦ f at a, since if x is in the domain of g ◦ f
(i.e., the domain of f), then

|x− a| < δ =⇒ |f(x)− f(a)| < η =⇒ |(g ◦ f)(x)− (g ◦ f)(a)| < ε;
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thus g ◦ f is continuous at a.

Let f be a function whose domain contains an interval about a.
Possible discontinuities of f at a are often categorized into three types:
The point a is

• A removable discontinuity if lim(f, a) exists but is not equal to
f(a). In this case, “f(a) has the wrong value.” By redefining f
at a to be lim(f, a), the discontinuity is removed. It is not un-
common to say that a point where lim(f, a) exists is a removable
discontinuity, even if f is undefined at a. This is usually harmless,
but not strictly correct.

• A jump discontinuity if the one-sided limits exist but are not equal
to each other (one of them may be f(a), or not). Intuitively,
the graph of f “jumps” from lim(f, a−) to lim(f, a+) at a, see
Figure 4.3.

• A wild4 discontinuity if at least one of the one-sided limits fails
to exist.

The function χ{0} (the characteristic function of the singleton {0})
has a removable discontinuity at 0, the signum function has a jump
discontinuity at 0, and the reciprocal function x 7→ 1/x has a wild
discontinuity at 0. A function may have infinitely many discontinuities
of each type in a bounded interval. The denominator function has a
removable discontinuity at every rational number. A non-decreasing
function has only jump discontinuities by Theorem 4.30, and it is not
difficult to arrange that there are infinitely many of them. Finally,
χQ has a wild discontinuity at every real number. There are subtle
restrictions on the discontinuity set that are beyond the scope of this
book. For example, it is impossible that the discontinuity set of f :
R→ R is exactly the set of irrational numbers.

Continuity is a local property, that is, it depends only on the be-
havior of a function near a point. Many of the most interesting results
about continuous functions are global ; they depend on the behavior of
the function everywhere in its domain. Some of these are introduced
in Chapter 5.

4This is not a standard term.
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4.4 Sequences and Series
Sequences and their limits are one of the most important topics in
analysis, both theoretically and in applications. Arguably, convergence
of a sequence is the simplest way a function can have a limit. At
the same time, sequences arise in interesting ways, such as iteration of
maps, continued fractions, and infinite sums.

Let (an)∞n=0 be a sequence. According to the definition, the sequence
has a limit ` ∈ R if, for every ε > 0, there is an N ∈ N such that
|an − `| < ε for n > N . This condition has a simple formulation with
no analogue for functions on intervals:

A sequence (an)∞n=0 converges to ` iff every open interval
about ` contains all but finitely many of the terms an.

The terms are counted according to the number of times they appear
in the infinite list a0, a1, a2,. . . , not according to the number of points
in the image. For example, the sequence defined by an = (−1)n has
image {−1, 1}, and every open interval about 1 contains all but finitely
many points of the image. However, an open interval of radius smaller
than 2 fails to contain all the odd terms a2k+1, k ∈ N, and there are
infinitely many of these. Consequently this sequence does not converge
to 1 (nor to any other `).

If (an) is a sequence in A and f : A → R is a function, then
the composition of f with a is a real sequence (bn), with bn = f(an).
Convergence of such sequences can be used to determine whether or
not f has a limit; for technical reasons, one uses sequences that do not
hit the point a.

Theorem 4.39. Let f : A → R be a function whose domain contains
a deleted interval about a. Then lim(f, a) exists and is equal to ` ∈ R
iff lim

n→∞
f(an) = ` for every sequence (an) in A\{a} that converges to a.

Proof. Suppose lim(f, a) = `, and let (an) be a sequence in A\{a} that
converges to a. Fix ε > 0 and choose δ > 0 so that if 0 < |x− a| < δ,
then |f(x) − `| < ε. Then choose N ∈ N such that if n > N , then
0 < |an − a| < δ; this is possible because the sequence (an) converges
to a but is never equal to a. If n > N , then these inequalities imply
|f(an)− `| < ε, so that f(an)→ ` as n→∞. (Compare with the proof
of Proposition 4.38.)

Conversely, suppose “lim(f, a) = `” is false, that is the limit exists
but is not equal to ` or the limit does not exist. In the game-theoretic
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interpretation, Player ε has a winning strategy. Let us follow the course
of a game using the interpretation in which Player ε chooses some ε > 0,
Player δ chooses a δ > 0, and finally Player ε chooses a point x with
0 < |x − a| < δ. First Player ε chooses a sufficiently small ε > 0.
Because Player δ cannot win against the choice of ε, there exists, for
each natural number n, a point an ∈ A \ {a} with

|an − a| < 1

n
and |f(an)− `| ≥ ε;

the point an is a winning choice for Player ε against δ = 1/n. Now
consider the sequence (an)∞n=1. By construction none of the terms is
equal to a, but since |an − a| < 1/n the sequence converges to a.
Finally, there is an ε > 0 such that |f(an)− `| ≥ ε for all n ∈ N, so the
sequence (bn) with bn = f(an) does not converge to `.

An obvious modification of the proof works for limits at +∞ or −∞.
Theorem 4.39 is useful for proving non-existence of one-sided limits, a
task that can otherwise be messy. For example, let f : R → R be a
non-constant periodic function (such as the “Charlie Brown” function
of Example 3.25), and define g : R× → R by g(x) = f(1/x). Then
lim(g, 0) does not exist. Intuitively, the function g oscillates infinitely
many times on each interval (0, δ), because the function f oscillates
infinitely many times on the interval (1/δ,+∞). To give a formal proof,
construct two sequences of positive numbers, say (an) and (bn), that
converge to 0 but so that the corresponding sequences of function values
have different limits. For definiteness, say the period of f is α. Choose
points x and y in (0, α] such that f(x) 6= f(y); by periodicity,

f(x+ nα) = f(x) 6= f(y) = f(y + nα) for all n ∈ N.

Set an = 1/(x + nα) and bn = 1/(y + nα); these sequences have the
desired properties, as you should verify.

The proof of Theorem 4.39 is easily modified to establish the follow-
ing useful consequence. Conceptually, evaluating a continuous function
commutes with taking the limit of a sequence, see equation (4.7). This
property will be used repeatedly in applications.

Corollary 4.40. Let f : A → R be a function. Then f is continuous
at a ∈ A iff

(4.7) lim
n→∞

f(an) = f
(

lim
n→∞

an

)
for every sequence (an)∞n=1 in A that converges to a.
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Theorem 4.41 is an analogue of Theorem 4.30 for sequences; the
proof is left as an exercise. Such a theorem is useful for proving con-
vergence of a sequence when the limit cannot be guessed in advance.
Of course, a similar result holds for non-increasing sequences.

Theorem 4.41. Let (an) be a non-decreasing sequence of real numbers.
Then (an) converges iff it is bounded above.

Cauchy Sequences

As has been hinted already, convergence of a sequence can be an un-
wieldy theoretical condition, because it cannot be verified for a specific
sequence unless the limit is known, or unless some other information is
available (such as “the sequence is monotone and bounded”). It would
be useful to have a general convergence criterion that does not require
knowledge of the limit. The “Cauchy5 criterion” fulfills this purpose.
Definition 4.42 A sequence (an)∞n=0 is a Cauchy sequence if, for every
ε > 0, there exists an N ∈ N such that m, n ≥ N implies |an−am| < ε.

Intuitively, the terms of a Cauchy sequence can be made arbitrarily
close to each other by going sufficiently far out in the sequence. This
condition does not even depend on existence of a limit, much less on the
exact value of the limit. By contrast, convergence of a sequence means
the terms can be made arbitrarily close to a fixed number (the limit)
by going sufficiently far out in the sequence. The difference is subtle,
but important. Before reading further, consider briefly whether every
Cauchy sequence is convergent, or whether every convergent sequence
is Cauchy, or both, or neither. As a hint, you should have no trouble
resolving one direction.

To give you a feel for the Cauchy criterion, here two basic applica-
tions.

Lemma 4.43. If (an) is a Cauchy sequence, then there exists R ∈ R
such that |an| ≤ R for all n ∈ N. Briefly, a Cauchy sequence is
bounded.

Proof. Let ε = 1. Because (an) is Cauchy, there exists N ∈ N such
that |an−am| < 1 for n, m ≥ N . Setting m = N and using the triangle

5KOH shee; in French, the second syllable is accented.
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inequality, |an| = |(an−aN)+aN | ≤ 1+ |aN | for all n ≥ N . The desired
conclusion follows by taking

R = max(|a1|, |a2|, . . . , |aN−1|, 1 + |aN |),

the maximum of a finite list of numbers.

Lemma 4.44. If (an) converges, then (an) is Cauchy.

Proof. Let ` denote the limit of (an). Fix ε > 0, and choose N ∈ N
such that |an − `| < ε/2 for n ≥ N . By the triangle inequality,

|an − am| ≤ |an − `|+ |am − `| < ε

for m, n ≥ N .

The “converse” question “Does every Cauchy sequence converge?” is
more subtle; at issue is the construction of a putative limit ` from a
Cauchy sequence. The completeness property turns out to be crucial.

Theorem 4.45. Let (ak)
∞
k=0 be a Cauchy sequence of real numbers.

There exists ` ∈ R such that lim
k→∞

ak = `.

Proof. Construct an auxiliary sequence (bn)∞n=0 as follows:

(4.8) bn = sup{ak | k ≥ n}.

In words, look at the successive “tails” of (ak), and take their “max-
ima”. The sequence (bn) is clearly non-increasing: You cannot make the
supremum of a set larger by removing elements! Further, Lemma 4.43
says (ak), and hence (bn), is bounded. Theorem 4.41 says that (bn) has
a real limit, which we call `.

Fix ε > 0 and use the Cauchy condition for (ak) to choose N0 ∈ N
such that |an− am| < ε for n and m ≥ N0. Next, choose N1 ≥ N0 such
that |bn − `| < ε for n ≥ N1. Now, bN1 = sup{ak | k ≥ N1}, so there
exists N ≥ N1 such that |bN1 − aN | < ε. If n ≥ N , then

|an − `| ≤ |an − aN |+ |aN − bN1|+ |bN1 − `| < 3ε.

This means (ak)→ `.
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Cantor’s Construction of R

As a short detour (that is not used elsewhere in the book), here is a
sketch of Cantor’s construction of the real numbers. First, note that
the concept of Cauchy sequences makes sense for sequences of rational
numbers, even if one does not know about real numbers; the Cauchy
criterion is defined purely in terms of the sequence itself.

A salient deficiency of Q is that there exist Cauchy sequences in Q
that do not converge—that do not have a rational limit. The sequence
of Example 4.47 below with x0 = b = 2 (cf. Lemma 2.29) is a Cauchy
sequence of rational numbers, but has no rational limit, as there does
not exist a rational number whose square is 2. If one lives in Q, one
can only agree that such a sequence diverges.

Naively, one would like to define a real number to be a Cauchy se-
quence of rational numbers; this makes sense purely in terms of Q, and
with the hindsight that a Cauchy sequence of real numbers converges,
we would identify a sequence with its (real) limit. The hitch is that
many Cauchy sequences have the same limit, so a real number should
be identified with the set of Cauchy sequences that have the same real
limit. Unfortunately, this “definition” no longer refers to Q alone, so
we must reformulate it.

Cantor declared two Cauchy sequences, (an) and (bn), to be equiva-
lent if limn→∞ |an− bn| = 0. It is easy to see that this is an equivalence
relation on the set of Cauchy sequences of rationals. (Reflexivity and
symmetry are obvious, and transitivity follows from the triangle in-
equality.) As you might guess, Cantor defines a real number to be an
equivalence class of Cauchy sequences under this equivalence relation.
The beauty of this definition is that the field axioms and order prop-
erties can be checked using theorems we have already proven (namely,
that limits preserve arithmetic and order relations, see Theorems 4.19
and 4.23).

Completeness is the only remaining property, and it is verified by
a “diagonal argument”: If Am := (an,m)∞n=0 is a Cauchy sequence for
each m ∈ N (that is, (Am)∞m=0 is a sequence of Cauchy sequences!),
and if (Am) is non-decreasing and bounded above in the sense of the
order properties, then (one argues) there exists an increasing set of
indices (nk)

∞
k=0 such that the rule bk = ak,nk

defines a Cauchy sequence
that corresponds to the supremum of the set {Am}. Modulo details,
this proves completeness.

If you compare this construction with the procedures in Chapter 2
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by which the integers, rational, real, and complex numbers were suc-
cessively constructed, you will find that the construction of the real
numbers from the rationals is the most complicated step, involving in-
finite sets (cuts) of rationals or equivalence classes of Cauchy sequences.
You might wonder whether there is a simpler construction, involving
only finite sets of rationals, or perhaps equivalence classes of finite sets.
(Each of the other constructions uses equivalence classes of pairs of
numbers of the previous type.) The answer is provably no. With a
small modification, Theorem 3.19 (due to Cantor) states:

Let Qn be the set of ordered n-tuples of rational numbers
(a.k.a., rational sequences of length n), and let Q∞ denote
the union of the Qn over n ∈ N (a.k.a., the set of all fi-
nite sequences of rational numbers). There does not exist a
surjective function f : Q∞ → R.

It is consequently impossible to construct the real numbers from the
rational numbers using only finite sets of rationals; there are not enough
finite sets of rationals !

Limits of Recursive Sequences

Let X ⊂ R be an interval (for convenience), and let f : X → X be a
continuous function. The iterates of f determine a discrete dynamical
system on X, and the orbit of a point x0 ∈ X is the sequence (xn)∞n=0

defined by xn+1 = f(xn) for n ≥ 0. There is a geometric way to visualize
the orbit of a point, see Figure 4.6. Draw the graph of f in the square
X × X, and draw the diagonal. Start with x0 on the horizontal axis.
Go up to the graph of f , then left or right to the diagonal. Repeat,
going up or down to the graph of f and left or right to the diagonal.
The horizontal positions of the points generated are the iterates of x0.

The present question of interest is, “If (xn) converges, what is the
limit?” The nice answer is that such a sequence must converge to a
fixed point of f , namely a point ` with f(`) = `. The formalism of
limits and continuity can be used to give a simple proof: If lim

n→∞
xn = `,

then

f(`) = f
(

lim
n→∞

xn

)
= lim

n→∞
f(xn) = lim

n→∞
xn+1 = lim

n→∞
xn = `.

The first, third, and fifth equalities are definitions. The second equality
is Corollary 4.40, and the fourth is clear from the definition of limit.
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y = f(x)

y = x

x0 x1 x2x3 x4x5 x6

Figure 4.6: The orbit of a point under iteration of f .

While this observation does not always locate the limit of a recursive se-
quence, it reduces the possible choices to a finite set in many interesting
situations.

Example 4.46 Let f : [0, 1] → [0, 1] be defined by f(x) = x2. The
fixed points of f are 0 and 1, so if the orbit of x0 under f converges,
it must converge to one of these points. If 0 ≤ x ≤ 1, then x2 ≤ x, so
for each x0 ∈ [0, 1] the orbit of x0 is a non-increasing sequence, which
converges by Theorem 4.41. For this function, it is easy to see that the
orbit of 1 is the constant sequence xn = 1 for all n, while for x0 < 1
the orbit of x0 converges to 0.

For the function g : [−1, 1] → [−1, 1] defined by g(x) = −x, the
only fixed point is 0. If x0 6= 0, then the orbit of x0 does not converge;
in this example, knowledge of the fixed points is almost useless. �

Example 4.47 Let b > 0; we will prove that b has a real square root,
namely that there exists a positive real number ` with `2 = b. Details
and further information are relegated to Exercise 4.23.

Fix x0 > b, and define a sequence recursively by

(4.9) xn+1 =
1

2

(
xn +

b

xn

)
for n ∈ N.
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Algebra and induction on n imply that (xn) is bounded below by 0 and
decreasing. By Theorem 4.41, (xn) converges to a real number ` 6= 0.
Because xn > 0 for all n, Theorem 4.23 implies that ` ≥ 0, hence ` > 0.
On the other hand, the sequence is gotten by iterating the continuous
function f : (0,∞)→ (0,∞) defined by

f(x) =
1

2

(
x+

b

x

)
,

so ` is a fixed point of f . The fixed point equation f(`) = ` is equiv-
alent to `2 = b, which proves that b has a square root, henceforth
denoted

√
b. As it turns out, this sequence converges very rapidly

to
√
b; Exercise 4.23 provides an estimate on the rate of convergence.

�

This example typifies the “solution” of a problem in analysis. Some
kind of infinite object (in this case a sequence) is considered, and some
piece of information (in this case the limit) is wanted. Existence of
the limit is proven by a general result; the hypotheses of the relevant
theorem(s) must be verified for the particular case at hand. A separate
result (the fixed-point result, in this case) narrows down the limit to a
finite number of possibilities, and some additional work dispenses with
all but one choice.

If you have taken a calculus course already, you are familiar with
at least parts of this outline. To find the maximum value of a “differ-
entiable” function, you set the derivative equal to 0 to rule out all but
a (usually) finite number of possible locations for the maximum. Some
additional work eliminates all the wrong choices. The remaining piece
is the existence of a maximum value; an appropriate existence result is
proven in Chapter 5.

Infinite Series

Every sequence (ak)
∞
k=0 (of real or complex numbers) is associated to a

sequence (sn)∞n=0 of partial sums (the “running total”), defined by

(4.10) sn =
n∑
k=0

ak = a0 + a1 + · · ·+ an.

The original sequence can be recovered from the partial sums via

a0 = s0, an = sn − sn−1 for n ≥ 1,
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so you might wonder why we bother with sums at all. The reason is
simply that many mathematical problems present themselves naturally
as sums rather than as terms in a sequence. The identity

sn − sm =
n∑

k=m+1

ak, 0 ≤ m < n,

is useful and will be used repeatedly.
Definition 4.48 Let (ak)

∞
k=0 be a sequence of real numbers. If the

sequence (sn)∞n=0 of partial sums is convergent, then (ak) is said to be
summable. The limit is denoted

(4.11)
∞∑
k=0

ak := lim
n→∞

sn,

and is called the sum of the series.
Alternatively, the “series”

∑
k ak is said to “converge.” This usage is

convenient because it is common to write an expression
∑

k ak even if
the sequence (ak) is not known to be summable. It is crucial to remem-
ber, though, that convergence of a sequence (ak) is quite different from
convergence of the series

∑
k ak; the only general relationship between

the two concepts is given in Proposition 4.51.
Series behave as expected with respect to termwise addition, and

scalar multiplication. Products of series are more subtle, and are
treated only under an additional hypothesis. You should have no trou-
ble proving the following from the definitions.

Theorem 4.49. If (ak) and (bk) are summable and c ∈ R, then the
sequences (ak + bk) and (cak) are summable, and

∞∑
k=0

(ak + bk) =
∞∑
k=0

ak +
∞∑
k=0

bk,

∞∑
k=0

(cak) = c

∞∑
k=0

ak.

Summing a sequence may be regarded as “accounting with an infi-
nite ledger.” You have an infinite list of numbers a0, a1, a2, . . . , add
them up in succession, and ask whether the running totals approach a
limit. If so, the sequence is summable and the limit is (loosely) viewed
as the “sum” of the numbers in the list, taken in the order presented.
(This proviso is important.) Summability of a sequence depends only
on the tail of the sequence. Said another way, discarding finitely many
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terms of a sequence does not change summability (though of course
it does generally change the actual sum). Clearly, terms that vanish
can be deleted without affecting either summability or the actual sum.
Further, arbitrarily many zero terms can be shuffled into the list, so
long as all the original terms remain in the same order.

Summability is a subtle and slightly counterintuitive property. In
the infinite ledger, delete all terms that vanish, and divide the terms
into credits (positive terms) and debits (negative terms). If the original
sequence is summable, then we can deduce one of two things:

• The credits and debits are separately summable (have finite sum),
or

• The credits and debits separately fail to be summable (have infi-
nite sum).

In the former case, the sum is insensitive to rearrangement (this takes
some work to prove), but in the latter case the sum of the ledger is
something like the indeterminate expression (+∞) − (+∞), and the
order of the terms is important; “rearrangement” of the terms of a
sequence can alter summability, and can change the value of the sum!
Despite the notation, a series is not really a sum of infinitely many
terms, but a limit of partial sums.

We have already encountered two instances of summable sequences:
Geometric series (Exercise 2.16) and decimal representations of real
numbers. For the record, here is the full story on geometric series.

Proposition 4.50. Let a 6= 0, r ∈ R. The sequence (ark)∞k=N is
summable iff |r| < 1, and in this event

∞∑
k=N

ark =
arN

1− r .

Proof. For each n ∈ N,
N+n∑
k=N

ark = arN
n∑
j=0

rj.

Recall from Example 2.20 that

(∗)
n∑
j=0

rj =


1− rn+1

1− r if r 6= 1,

(n+ 1) if r = 1.
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If |r| > 1 or r = 1, then the partial sums grow without bound (in
absolute value), so the series does not converge. When r = −1, the
partial sums are alternately 1 and 0, so the series does not converge in
this case.

Finally, if |r| < 1, then rn → 0 as n → ∞ by Exercise 2.5 (c), so
the series in equation (∗) has sum 1/(1 − r). The desired conclusion
follows by Theorem 4.49.

Geometric series are among the most elementary series, because
they can be summed explicitly; that is, the series is not merely known
to converge, but the sum can be calculated. Decimal representations
are special because their terms are non-negative, so the sequence of
partial sums is non-decreasing. In general, convergent series are not so
well-behaved (neither explicitly summable nor having monotone partial
sums), so it is desirable to have general theoretical tools for determining
convergence. The basic tool in deriving convergence tests for series is
the Cauchy criterion, applied to the sequence of partial sums. The very
simplest example of a convergence condition is the vanishing criterion:

Proposition 4.51. If (ak)
∞
k=0 is a summable sequence, then lim

k→∞
ak =

0.

Proof. Summability of (ak) means, by definition, that (sn), the se-
quence of partial sums, is convergent, hence Cauchy by Lemma 4.44.
Takingm = n+1 in the definition of “Cauchy sequence” says that for all
ε > 0, there is anN ∈ N such that n ≥ N implies |an+1| = |sm−sn| < ε.
This means exactly that lim

n→∞
an = 0.

It cannot be emphasized too heavily that there is no “universal” test
for convergence or divergence that works for all series, nor is there a
procedure for evaluating the sum of a sequence that is known to be
summable. In particular, the converse of Proposition 4.51 is false: It
is possible for a sequence to converge to 0 without being summable.
For sequences of positive terms, summability measures—in a subtle
way—the “rate” at which the terms go to 0.

Comparison Tests

Almost all tests for convergence of a series rely on comparison with a
series known to converge. The next theorem is the comparison test,
and Corollary 4.54 is the limit comparison test.
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Theorem 4.52. Let (bk) be a summable sequence of non-negative
terms. If (ak) is a sequence with |ak| ≤ bk for all k ∈ N, then (ak)
is summable.

Because summability is a property of the tail of (ak), the hypothesis
can be weakened to “There existsN ∈ N such that |ak| ≤ bk for k ≥ N .”
The contrapositive is a divergence test: If (|ak|) is not summable, then
(bk) is also not summable.

Proof. Let (sn) be the sequence of partial sums of (ak), and let (tn)
be the sequence of partial sums of (bk). By the triangle inequality, if
m < n then

|sn − sm| =
∣∣∣∣∣

n∑
k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak|

≤
n∑

k=m+1

bk = |tn − tm|.

Because (bk) is summable, (tn) is Cauchy, so the previous estimate
shows (sn) is also Cauchy, i.e., (ak) is summable.

Theorem 4.53. Let (bk) be a summable sequence of positive terms. If
(ak) is a sequence such that lim

k→∞
(ak/bk) exists, then (ak) is summable.

Proof. If ak/bk → ` as n → ∞, then |ak|/bk → |`| as n → ∞. To
see this, apply Corollary 4.40 to the absolute value function. By The-
orem 4.52, it suffices to show (|ak|) is summable. Pick a real num-
ber M > |`| and write M = |`| + ε with ε > 0. Choose N ∈ N such
that

n ≥ N =⇒
∣∣∣∣ |ak|bk − |`|

∣∣∣∣ < ε.

A bit of algebra shows that if n ≥ N , then |ak| ≤ Mbk. The sequence
(Mbk) is summable by Theorem 4.49, so (ak) is summable by Theo-
rem 4.52.

Corollary 4.54. If (ak) and (bk) are sequences of positive terms, and
if

lim
k→∞

ak
bk

= ` 6= 0,

then (ak) is summable iff (bk) is summable.
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Absolute Summability

As suggested earlier, summability involves two technical issues: Do the
positive terms and negative terms separately have finite sum, or is there
fortuitous cancellation based on the ordering of the summands? In this
section we study the former case.
Definition 4.55 Let (ak) be a summable sequence. If (|ak|) is also
summable, then we say that (ak) is absolutely summable, and that the
series

∑
k ak is absolutely convergent. If (|ak|) is not summable, then

(ak) is conditionally summable, and
∑

k ak is conditionally convergent.
Every sequence (ak) falls into exactly one of the following categories:

not summable, conditionally summable, or absolutely summable. Clear-
ly, a sequence of non-negative terms is either absolutely summable or
not summable.

Given a real sequence (ak), define the associated sequences of posi-
tive and negative terms by

(4.12) a+
k = max(ak, 0), a−k = min(ak, 0).

For example, if ak = (−1)kk, then

k 0 1 2 3 4 5 6 · · ·
ak 0 −1 2 −3 4 −5 6 · · ·
a+
k 0 0 2 0 4 0 6 · · ·
a−k 0 −1 0 −3 0 −5 0 · · ·

Proposition 4.56. A real sequence (ak) is absolutely summable iff both
sequences (a±k ) are summable.

Proof. First observe that |a+
k | = a+

k and |a−k | = −a−k for all k; conse-
quently, the sequences of positive or negative terms are summable iff
they are absolutely summable.

Now, |a±k | ≤ |ak| for all k, so by Theorem 4.52 (the comparison
test) if (ak) is absolutely summable, then so are (a±k ). Conversely,
|ak| = a+

k −a−k for all k, so if (a±k ) are summable, then (ak) is absolutely
summable.

Let m : N → N be a bijection, and let (ak) be a sequence. The
sequence defined by bk = am(k) is a rearrangement. Informally, a re-
arrangement is the same ledger sheet, read in a different order. Note,
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however, that rearranging cannot do things like “read all the even terms,
then all the odd terms”, since the list of even terms would already be
an infinite list. Our next aim is to show that “rearranging an absolutely
summable sequence does not alter the sum”.

Theorem 4.57. Let (ak) be absolutely summable, and let (bk) be a
rearrangement. Then (bk) is absolutely summable, and

∑
k bk =

∑
k ak.

The idea of the proof is simple: Take enough terms ak to approx-
imate

∑
k ak closely, then go far enough out in the rearrangement to

include all the chosen terms. The corresponding partial sum of (bk) is
close to

∑
k ak, too.

Proof. Let An be the nth partial sum of (ak), Bn the nth partial sum
of (bk), and A = limnAn. We wish to show that (Bn)→ A.

Fix ε > 0, and use absolute summability to choose N0 so that

∞∑
k=0

|ak| −
N0∑
k=0

|ak| =
∞∑

k=N0+1

|ak| < ε

2
.

In particular, |A − AN0| < ε/2. Now choose N ∈ N such that the
summands a0, . . . , aN0 are among the terms b0, b1, . . . , bN ; this is
possible because (bk) is a rearrangement of (ak). If n ≥ N , then

|Bn − AN | =
∣∣∣∣∣(

n∑
k=0

bk

)
− (a0 + a1 + · · ·+ aN)

∣∣∣∣∣ ≤
∞∑

k=N+1

|ak| < ε

2
,

so |Bn − A| ≤ |Bn − AN |+ |AN − A| < ε.

Our last general result about absolute summability concerns prod-
ucts of series. Let (ak) and (b`) be summable sequences. We want to
make sense of the “infinite double sum”

∑
k,` akb`, and if possible to

evaluate this expression in terms of the sums of (ak) and (b`). The
first problem is that the sum is taken over N ×N, and while this set
is countable, there is no “natural” enumeration we can use to get a se-
ries. The second problem is that the “sum” might turn out to depend
on the enumeration we pick, just as a series’ value may change under
rearrangement, or might fail to exist at all. If neither of (ak) nor (b`)
is absolutely summable, these potential snags are genuine difficulties.
If either sequence is absolutely summable, then the double sum is the



188 CHAPTER 4. LIMITS AND CONTINUITY

product of the individual sums; however, we do not need this general-
ity, and will only treat the case where both sequences are absolutely
summable.

The “standard ordering” of the double series is provided by the
Cauchy product of (ak) and (b`), the iterated sum

(4.13)
∞∑
n=0

∑
k+`=n

akb` =
∞∑
n=0

n∑
k=0

akbn−k.

The Cauchy product is extremely useful later, when we use it to mul-
tiply power series.

Theorem 4.58. Let (ak) and (b`) be absolutely summable sequences of
real numbers, and let (cm) be an arbitrary enumeration of the doubly-
infinite set {akb` | (k, `) ∈ N×N}. Then (cm) is absolutely summable,
and ∞∑

m=0

cm =
( ∞∑
k=0

ak

)( ∞∑
`=0

b`

)
.

The space of indices of the double series may be visualized as follows:

L

L

0
0

k

`

As in Theorem 4.57, the idea is that “most” of the contribution to
the sum comes from terms inside the lower left square; some finite initial
portion of (cn) includes these terms, and the sum of the remaining terms
is small.

Proof. It greatly simplifies the notation to introduce the following:

An =
n∑
k=0

ak, Bn =
n∑
`=0

b`, Cn =
n∑

m=0

cm,

An =
n∑
k=0

|ak|, Bn =
n∑
`=0

|b`|.
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Finally, let A = limnAn, B = limnBn, A = limnAn, and B = limnBn.
The sequence Pn := AnBn converges to AB, since the limit of a

product is the product of the limits. Similarly, Pn = AnBn converges
to AB.

Fix ε > 0, and choose L ∈ N such that

(∗) |AB − Pn| < ε and |AB−Pn| < ε for n ≥ L.

Now choose N ≥ L so that every term “inside the square”, namely
every product akb` with k, ` < L, is among the terms c0, c1, . . . , cN . If
n ≥ N , then

|Cn − Pn| = |Cn − AnBn| ≤
∑

k or ` > L

|ak| · |b`| = |AB−Pn| < ε,

by the second part of (∗). Consequently, if n ≥ N , then

|AB − Cn| ≤ |AB − Pn|+ |Pn − Cn| < 2ε

by the first part of (∗).

The Ratio and Root Tests

The tests above presume that a sequence known to be summable is
available. The next two tests, the ratio and root tests, can be used to
prove specific sequences are summable, by comparing them to a geo-
metric series. Unfortunately, neither test is widely applicable, though
both are useful for “power series,” see Chapter 11.

Theorem 4.59. Let (ak) be a sequence of positive terms, and assume

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ

exists. If ρ < 1, then (ak) is absolutely summable. If ρ > 1, then (ak)
is not summable.

Proof. Suppose ρ < 1. Choose r ∈ (ρ, 1), and set ε = r − ρ > 0. By
hypothesis, there is an N ∈ N such that (see Figure 4.7)

n ≥ N =⇒
∣∣∣∣an+1

an

∣∣∣∣ < ρ+ ε = r,
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0 1ρ r = ρ+

ρ− ≤ |an+1/an| ≤ ρ+ for n ≥ N

Figure 4.7: Bounding ratios in the Ratio Test

or |an+1| ≤ |an|r for n ≥ N . By induction on k,

|aN+k| ≤ |aN |rk for k ∈ N.

Consequently, the tail (aN+k)
∞
k=0 is bounded above in absolute value by

(|aN |rk)∞k=0, a convergent geometric series.
If ρ > 1, then choosing r ∈ (1, ρ) and arguing as above shows that

the tail of (ak) is bounded below by the terms of a divergent geometric
series.

Theorem 4.60. Let (ak) be a sequence of positive terms, and assume

lim
n→∞

n
√
|an| = ρ

exists. If ρ < 1, then (ak) is absolutely summable. If ρ > 1, then (ak)
is not summable.

The proof of the root test is similar to the proof of the ratio test, see
Exercise 4.22. In both theorems, nothing can be deduced if the limit
fails to exist, or if the limit is 1 (in which case the test is “inconclusive”).
Example 4.61 Suppose we wish to test the series

∞∑
k=0

k + 1

2k
= 1 +

2

2
+

3

4
+

4

8
+

5

16
+ · · ·

for convergence; ak = (k + 1) 2−k. Comparison with the geometric
series

∑
k 2−k is no help, because the series in question is larger than

this geometric series. Instead we try the ratio test:

an+1

an
=

(n+ 2) 2−(n+1)

(n+ 1) 2−n
=

(n+ 2)

2(n+ 1)
.

This ratio converges to ρ = 1/2 as n → ∞, so the series converges
absolutely by the ratio test. (Finding the sum of the series is another
matter.) �
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Example 4.62 Let p > 0, and consider the p-series

∞∑
k=1

1

kp
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · · .

None of the tests we have developed so far can resolve the question
of convergence for this series; the terms approach 0, so the vanishing
criterion is inconclusive. The terms decrease in size more slowly than
the terms of an arbitrary convergent geometric series, so there is no
obvious comparison to make. Finally, the ratio and root tests both
return ρ = 1 for every p-series, so these tests are inconclusive as well.
�

The next theorem, the Cauchy test, is useful for determining con-
vergence of decreasing sequences of positive terms, and will allow us to
determine convergence of the p-series.

Theorem 4.63. Let (ak)
∞
k=1 be a sequence of positive terms, and as-

sume ak+1 ≤ ak for all k ≥ 1. If (bn) is the sequence defined by
bn = 2n a2n, then (ak) and (bn) are simultaneously summable or not
summable.

Proof. For n ∈ N, define the “nth group” of terms in a sequence to be
those whose index k is between 2n + 1 and 2n+1: The 0th group of (ak)
is {a2}, the first group is {a3, a4}, the second group is {a5, . . . , a8}, the
third group is {a9, . . . , a16}, and so forth. There are 2n terms in the
nth group, and all terms but the first two are in exactly one group.

Let cn denote the sum of the terms in the nth group of (ak), namely

cn :=
2n+1∑

k=2n+1

ak.

The sequences (ak)
∞
k=2 and (cn)∞n=0 are simultaneously summable or not

(because they each consist of the same terms in the same order).
Since (ak) is non-increasing,

1

2
bn+1 = 2n a2n+1 ≤ cn ≤ 2n a2n+1 ≤ 2n a2n = bn.

If (bn) is summable, then (cn) is summable by the comparison test, while
if (cn) is summable, then (bn/2)—and thus (bn) itself—is summable.
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Example 4.64 (The p-series revisited) Fix p > 0 and set ak = k−p

for k ≥ 1. By the Cauchy test, the p-series is convergent iff
∞∑
n=1

2n a2n =
∞∑
n=1

2n (2n)−p =
∞∑
n=1

(21−p)n

is convergent. This is a geometric series with r = 21−p, and therefore
converges iff p > 1. Note carefully that this argument proves that the
p-series converges for p > 1; it does not say what the sum of the series
is, though it does give upper and lower bounds. As of this writing,
the sum of the 3-series (the p-series with p = 3) is not known exactly,
though the value is known to be irrational by a 1978 result of Apéry.
By contrast, the value of the 2k-series (k a positive integer) is known
to be a certain rational multiple of π2k. The final result of this book,
which relies upon most of the material to come, is the evaluation of the
2-series.

If you are fastidious, you may legitimately complain that we have
not defined np for non-integer p. This defect is remedied in Chapter 12,
after which you may verify that the estimates given here carry over to
arbitrary real p. �

Alternating Series

Let (ak) be a sequence of positive terms. The series
∞∑
k=0

(−1)kak = a0 − a1 + a2 − a3 + a4 − a5 + · · ·

is called an alternating series.
Alternating series arise frequently when studying power series, and

are investigated with different techniques than we have used so far.
The idea is to assume that successive terms “tend to cancel” rather
than assuming absolute summability. The basic sufficient condition for
summability is due to Leibniz and is often called the alternating series
test :

Theorem 4.65. Let (ak) be a sequence of positive terms that decreases
to 0, and let An be the nth partial sum of the resulting alternating series.
Then A := limnAn exists—the series converges—and

A2n−1 < A < A2n

for all n ≥ 1.
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Proof. Visually the proof is simplicity itself: The 0th partial sum is a0,
and subsequent partial sums are obtained by moving alternately left
and right by smaller and smaller amounts, with the step size going to
zero. What can the partial sums do but converge?

A formal proof is based on writing the above argument analytically,
considering the even and odd partial sums separately.

Consider the even partial sum A2n. The next even partial sum is

A2n+2 = A2n − a2n+1 + a2n+2 = A2n − (a2n+1 − a2n+2) < A2n.

The proof that the odd partial sums form an increasing sequence is
entirely similar. Since each odd partial sum is less than the next even
sum,

(4.14) A2n−1 < A2n+1 < A2n+2 < A2n for all n > 0.

Induction on n proves that every even sum is greater than every odd
sum. In particular, the set of even sums is bounded below, and the
set of odd sums is bounded above. Let L be the supremum of the odd
partial sums and let U be the infimum of the even partial sums. Since
|U − L| < ak for all k, the squeeze theorem says U = L.

As an immediate consequence, we get a simple, explicit “error bound”
that measures the accuracy of estimating the sum of an alternating se-
ries by a partial sum: The error is no larger than the size of the first
term omitted.

Corollary 4.66. In the notation of the theorem, |A− An| < an+1.

Example 4.67 If p > 0, the sequence (n−p)∞n=1 is positive and de-
creasing, so the Leibniz test implies that the series

(4.15)
∑
n=1

(−1)n−1

np
= 1− 1

2p
+

1

3p
− 1

4p
+

1

5p
− 1

6p
+ · · ·

converges. As we saw above, this series is absolutely summable iff p > 1.
The series with p = 1 is the conditionally convergent alternating

harmonic series,

∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·
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This is a series whose sum S can be found explicitly, see Chapter 14.
For the moment, we see from the first three partial sums that

0.5 = 1− 1
2
< S < 1− 1

2
+ 1

3
= 0.833.

The alternating harmonic series also has a fairly spectacular rearrange-
ment. Instead of taking positive and negative terms alternately, take
one positive and two negative terms at a time:

1− 1
2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− 1

12
+ · · ·

=
(
1− 1

2

)− 1
4

+
(

1
3
− 1

6

)− 1
8

+
(

1
5
− 1

10

)− 1
12

+ · · ·
= 1

2
− 1

4
+ 1

6
− 1

8
+ 1

10
− 1

12
+ · · ·

= 1
2

(
1− 1

2
+ 1

3
− 1

10
+ 1

5
− 1

6
+ · · ·

)
= 1

2
S.

Rearrangement of a conditionally convergent series can change the sum!
�

The remarkable thing about the rearrangement of the alternating
harmonic series is the explicitness of the calculation. The behavior itself
is not surprising, in light of the next result. The proof has similarities
with the proof of the Leibniz test.

Theorem 4.68. Let
∑

k ak be a conditionally summable series. For
every real number A, there exists a rearrangement that converges to A.
There also exist rearrangements whose partial sums diverge to +∞ or
to −∞.

A formal proof is tedious, but the idea is fairly simple. The se-
quences of positive and negative terms, (a+

k ) and (a−k ), both fail to be
summable. Suppose A > 0. Add up terms from (a+

k ) until the partial
sum becomes larger than A; this is guaranteed to happen because the
sequences of positive terms is not summable. Now start adding in terms
from (a−k ) until the partial sum becomes smaller than A. Again we use
the fact that (a−k ) is not summable. Repeat ad infinitum, selecting pos-
itive or negative terms in sequence so that the partial sums bracket the
target A.

It is fairly clear that this recipe describes a rearrangement of the
original series: Each term appears exactly once in the new sum. Fur-
ther, the summands approach zero, so the bracketing sums are closer to-
gether the longer we carry on. The bracketing sums clearly approach A,
so we have the desired rearrangement.
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If A < 0, start with negative terms, but otherwise use the same
idea. To get a rearrangement that diverges to +∞, add up positive
terms until the partial sum is larger than 1. Then subtract a single
negative term, and add positive terms until the partial sum is larger
than 2. Continue in this fashion. You can gauge the accuracy of your
intuition about countable sets by the ease with which you see that this
procedure works. An untrained person is likely to object that “the
positive terms get used up faster than the negative terms”; this is no
object, because we only add up finitely many positive terms for each
negative term, and there are infinitely many of each!

Another potential snag is that some of the negative terms may be
very large in absolute value. However, the sequence of negative terms
converges to zero by the vanishing criterion (Proposition 4.51), so after
finitely many terms, each negative term is no larger than 1/2 (say),
and each cycle (add a bunch of positive terms and subtract one nega-
tive) adds at least 1 − 1

2
to the partial sums, which therefore become

arbitrarily large.

Exercises
In all questions where you are asked to find a limit, you should give a
complete proof, either with an ε-δ argument, or by citing an appropriate
theorem from the text. In questions that have a yes/no answer, give a
proof or counterexample, as appropriate.
Exercise 4.1 Are the following true or false?

(a) lim
x→0

1

x
= +∞ (b) lim

x→0

1

x2
= +∞

(c) lim
x→0

1√
x

= +∞ (d) lim
x→0

1√|x| = +∞

In each part, you must prove your answer is correct. �
Exercise 4.2 Let f : (a, b)→ R be a function on an open interval.

(a) Suppose f(x+ h) = f(x) +O(h2) near 0 for all x. Prove that

lim
h→0

f(x+ h)− f(x)

h
= 0 for all x ∈ (a, b).

Can you say more?
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(b) Suppose there exists a function f ′ on (a, b) with the property that

f(x+ h) = f(x) + hf ′(x) + o(h) for all x ∈ (a, b).

Prove that f ′(x) = lim
h→0

f(x+ h)− f(x)

h
for all x.

(c) Suppose f and g satisfy the condition in part (b). Prove that
f + g and fg also satisfy the condition. As a fringe benefit of this
calculation, you should find (f + g)′ and (fg)′ in terms of f , g,
f ′, and g′.

�
Read the next two questions carefully!

Exercise 4.3 Let f : A → R be a function whose domain contains a
deleted interval about a. Consider the following condition: For every
δ > 0, there exists an ε > 0 such that

0 < |x− a| < ε =⇒ |f(x)− `| < δ.

Is this condition equivalent to “lim(f, a) = `”? Give a proof or coun-
terexample. �
Exercise 4.4 Let f : A → R be a function whose domain contains a
deleted interval about a. Consider the following condition: For every
ε > 0, there exists a δ > 0 such that

0 < |x− a| < ε =⇒ |f(x)− `| < δ.

Is this condition equivalent to “lim(f, a) = `”? Give a proof or coun-
terexample. �

Exercise 4.5 This exercise is related to Corollary 4.21.

(a) Prove that if lim(f, a) = ` 6= 0 and lim(g, a) does not exist, then
lim(fg, a) does not exist.

(b) Find a pair of functions f and g such that lim(f, 0) = 0 and
lim(g, 0) does not exist, but lim(fg, 0) exists.

(c) Find a pair of functions f and g such that lim(f, 0) and lim(g, 0)
do not exist, but lim(fg, 0) exists.
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�
Exercise 4.6 Define f : (−1, 1)→ R by f(x) = 0 if x 6= 0, f(0) = 1.
Find (with proof) lim(f, 0), or prove the limit does not exist. �
Exercise 4.7 In analogy to the definition of “limit from above” in
the text, give a careful definition of “limit from below of f at a.” Pay
careful attention to the domain of f , as well as the quantified sentence
that defines the limit condition. �
Exercise 4.8 Suppose p : R → R is a non-constant polynomial
function. Prove that lim(|p|,+∞) = +∞. �
Exercise 4.9 Precisely define “lim(f,+∞) = +∞.” �
Exercise 4.10 Precisely define “ lim(f, x0) = −∞.” �
Exercise 4.11 Let f : (0,+∞)→ R be a function. Prove that

lim
x→0+

f( 1
x
) = lim

x→+∞
f(x)

in the sense that either both limits exist and are equal, or else neither
limit exists. �
Exercise 4.12 A set A ⊂ R is dense if every interval of R contains
a point of A. For example, Q ⊂ R is dense. Suppose f1 and f2 are
continuous functions on R, and that f1|A = f2|A for some dense set A.
Prove that f1 = f2 as functions on R.

In other words, a continuous function on A has at most one contin-
uous extension to R. �
Exercise 4.13 Let f : R→ R be a continuous, non-constant, periodic
function. Prove that there exists a smallest positive period. �
Exercise 4.14 Let cb : R→ R be the Charlie Brown function.

(a) Does lim
x→+∞

x cb(x) exist as an extended real number?

(b) Sketch the graph of the function f : (0, 1)→ R defined by f(x) =
cb(1/x).

(c) Does lim(f, 0) exist?

�
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Exercise 4.15 If f and g are real-valued functions on R, then
max(f, g) is the function on R defined by

max(f, g)(x) = max
(
f(x), g(x)

)
=

{
g(x) if f(x) ≤ g(x)

f(x) if g(x) ≤ f(x)

and min(f, g) is defined similarly.

(a) Prove that if f and g are continuous on R, then max(f, g) and
min(f, g) are continuous on R. Suggestion: Use Theorem 2.24.

(b) Prove that every continuous function f : R → R may be written
as a difference of continuous, non-negative functions, say f =
f+ − f−. Part (a) and a sketch may help.

�
Exercise 4.16 Each part should be interpreted in the sense of equa-
tion (4.6).

(a) Prove that (+∞) + x = +∞ for all x ∈ R.

(b) Prove that (+∞) + (+∞) = +∞.

(c) Prove that if ` > 0, then −` · (+∞) = −∞.

�
Exercise 4.17 Each part should be interpreted in the sense of projec-
tive infinite limits.

(a) Prove that ∞+ x =∞ for all x ∈ R.

(b) Prove that ∞+∞ is indeterminate.

(c) Prove that x/0 =∞ for all x 6= 0.

�
Exercise 4.18 Let p : RP1 → S1 be stereographic projection, see
Exercise 3.7.

(a) Show that lim
t→∞

p(t) = (0, 1) in the sense that each component
function has the advertised limit.
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(b) Prove that the rational function t 7→ 1/t corresponds under p to
reflection of the unit circle in the horizontal axis.

(c) Prove that the rational function t 7→ t−1
t+1

corresponds under p to
the mapping (x, y) 7→ (−y, x), namely to rotation of the unit
circle by a quarter-turn counterclockwise about the origin.

�
Exercise 4.19 Prove that under the hypotheses of Theorem 4.30,

`+ := lim(f, x+) = inf{f(y) | x < y < b}.

Given an example of a non-decreasing function f : [0, 1]→ R that has
infinitely many discontinuities. �
Exercise 4.20 Prove Corollary 4.40. �
Exercise 4.21 Prove Theorem 4.41. �
Exercise 4.22 Prove Theorem 4.60 (the root test). �
Exercise 4.23 This problem refers to Example 4.47. Write a =

√
b.

(a) Prove that x2
n > b for all n ∈ N, and that the sequence (xn) is

decreasing. Conclude that (xn) is bounded below by a.

(b) For n ∈ N, let en = xn − a be the error in estimating
√
b by xn.

Prove that

en+1 =
e2
n

2xn
<
e2
n

2a
for all n ∈ N,

and hence that

(4.16) en+1 < 2a
( e1

2a

)2n

for all n ∈ N.

This says the number of decimals of accuracy grows exponentially
with each iteration.

(c) Let b = 3 and x0 = 2. Prove (without evaluating
√

3 numerically
of course) that e1/(2a) < 1/10, and conclude that the sixth term
approximates

√
3 to 31 decimal places, i.e., that |x6 −

√
3| <

5 · 10−32. Suggestion: By arithmetic, 1.7 <
√

3 < 1.8.
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�
Exercise 4.24 By Example 4.47, there is a function

√
: [0,∞) →

[0,∞) having the property that (
√
x)2 = x for all x ≥ 0. Prove that

√
is continuous. Suggestion: First show

√
is increasing, then use the

identity (
√
x−√a)(

√
x+
√
a) = x−a. �

Exercise 4.25 Find each of the following limits or prove it does not
exist.

(a) lim
x→−1

x2 − 1

x+ 1

(b) lim
x→1

1−√x
1− x

(c) lim
x→0

1−√1− x2

x

(d) lim
x→0

1−√1− x2

x2

(e) lim
x→∞

√
x2 + x− x

You may use the result of Exercise 4.24. �
Exercise 4.26 Define f : (0,∞)→ (0,∞) by f(x) =

√
2 + x.

(a) Prove that f is continuous, and find the fixed point(s) of f .

(b) Define (xn)∞n=0 by x0 =
√

2, xn+1 = f(xn) for n ≥ 1; that is,

x1 =

√
2 +
√

2, x2 =

√
2 +

√
2 +
√

2, . . .

Prove that (xn) converges, and find the limit.

The limit is denoted
√

2 +
√

2 +
√

2 + · · ·. �
Exercise 4.27 The Ancient Greeks believed that the most aestheti-
cally pleasing rectangle is a golden rectangle, one that keeps the same
proportions when a square is removed:
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(a) Find the ratio τ of width to height for a golden rectangle. Compute
τ 2, τ − 1, and 1/τ .

(b) Show that

τ = [1; 1, 1, 1, . . .] = 1 +
1

1 + 1

1+
...

(There are a few ways to proceed.)

(c) Interpret parts (a) and (b) in terms of the right-hand diagram.

�
Exercise 4.28 Evaluate the infinite continued fraction [2; 2, 2, 2, . . .].
�
Exercise 4.29 Let (ak) be a sequence of real or complex numbers,
and let bk = ak+1 − ak be the sequence of “differences”.

(a) Use induction on n to prove that
n∑
k=0

bk = an+1 − a0 for all n ∈ N.

A sum of this form is said to be telescoping.

(b) Suppose limk ak = ` exists; prove that (bk) is summable, and find
the sum of the series.

(c) Evaluate the infinite sum
∞∑
k=1

1

k2 + k
=
∞∑
k=1

(1

k
− 1

k + 1

)
.

�
Exercise 4.30 Evaluate the series

∞∑
n=1

1

(2n)2
=

1

4
+

1

16
+

1

36
+

1

64
+ · · ·

∞∑
n=1

1

(2n+ 1)2
=

1

1
+

1

9
+

1

25
+

1

49
+ · · ·

in terms of S =
∞∑
n=1

1

n2
=

1

1
+

1

4
+

1

9
+

1

16
+

1

25
+

1

36
+

1

49
+ · · · .

�
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Exercise 4.31 Generalize the preceding exercise: Let p > 1, so that
the p-series

∑
n n
−p is absolutely summable, and let S be the sum of

the series. Evaluate the sum of the even terms and the sum of the odd
terms. �
Exercise 4.32 Suppose f : (a, b)→ R is continuous, and that (xn)∞n=0

is a Cauchy sequence in (a, b). Is the sequence
(
f(xn)

)
necessarily

Cauchy? Reassurance: Deciding whether the answer is “yes” or “no” is
likely to be the most difficult part of the problem. �



Chapter 5

Continuity on Intervals

Throughout the chapter, f : [a, b] → R is a continuous function, that
is, f is continuous at x for each x ∈ [a, b]. Continuity of a function
at a point is a local property, and even continuity of a function on
an interval is, on the surface, nothing more than a collection of local
conditions. In this chapter we deduce some truly global properties (such
as boundedness) of continuous functions on a closed, bounded interval
[a, b]. These results are the technical foundation stones of calculus, and
while some of their statements are “intuitively obvious,” all of them
require the completeness axiom of R in a fundamental way.

A theme runs throughout this chapter, resting on the assumption
that the domain of f is a closed, bounded interval. Suppose we wish to
show f satisfies some property P (such as “boundedness”) on [a, b]. By
the nature of P we know that a continuous function has the property
locally (in an interval about each point). We start at a, where f has
the property. By continuity, the property holds on some interval [a, t)
with t > a. Now consider the supremum of t such that f satisfies P
on [a, t). If t < b we arrive at a contradiction, since continuity at t
implies P holds on a slightly larger interval [a, t′); thus t = b, and P
holds on [a, b). By continuity of f at b, the property holds on the entire
interval [a, b]. In this very rough sketch, each of the three conditions
“closed, bounded interval” is used in an essential way. If even one of
these hypotheses is omitted, or if the function f is discontinuous at
even one point, then f no longer has the property P in general.

It was not until the early 20th Century that mathematicians found
axiomatic criteria to replace the condition of being a “closed, bounded
interval.” Such criteria are needed to study functions of several vari-
ables, where “intervals” make no sense. The abstract conditions are

203
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called “compactness” (replacing closed and bounded) and “connected-
ness” (replacing interval). Each of these conditions can be expressed
in terms of a game, as we did for continuity in Chapter 4, but the
work required to explain the rules of the game, and to see why the
general criteria are the “correct” ones, would take us quite far afield.
A thorough study of these “topological” conditions belongs in a more
advanced course, and they will not be mentioned again.

5.1 Uniform Continuity
We saw that the equation ` = lim(f, a) can be viewed as a two-person
game. In this section, we meet a “stronger” version of continuity that
cannot be phrased naturally in o notation. However, there is a nat-
ural game-theoretic interpretation. Remember that f : [a, b] → R is
assumed to be continuous at every point of its domain.

The hypothetical adversaries, Players ε and δ, are looking for variety
in their game, because ε keeps losing. Recall that they have been given
a function f , and they have agreed to take ` = f(x) when playing
the continuity game at x ∈ [a, b]. The function f they are using gives
Player δ a winning strategy at every x ∈ [a, b]. This means that they
fix an x, Player ε chooses a tolerance ε > 0, and Player δ successfully
“meets” the tolerance. However, according to the rules, the point x is
specified in advance, before either ε or δ is chosen. Player δ chooses
with knowledge of both ε and x. In an attempt to make the game more
difficult for Player δ, they change the rules as follows:

The function f is given. Player ε chooses a tolerance. Now Player δ
is required to meet the tolerance with a single δ that works for all x.
If Player δ has a winning strategy (as before, against a perfect player),
then the function f is “uniformly continuous.” There is no need to
assume the domain of f is an interval, much less a closed, bounded
interval:
Definition 5.1 Let f : X → R be a function. We say f is uniformly
continuous (on X) if, for every ε > 0, there is a δ > 0 such that if
x, y ∈ X and |x− y| < δ, then |f(x)− f(y)| < ε.

Uniform continuity is a “global” property: It requires simultane-
ous consideration of all points of X. (This is why o notation is not
well-suited.) Even if f is “well-behaved” (say constant) in some neigh-
borhood of each point of X, it does not follow that f is uniformly
continuous on X, see Example 5.3.
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If f is uniformly continuous on X, then a fortiori the restriction
of f to a non-empty subset is also uniformly continuous. Clearly, a
uniformly continuous function is continuous at each point of its domain,
since Player δ can be lazy and use the same δ regardless of x. The best
way to understand the difference between continuity on X and uniform
continuity on X is to consider examples. Lemma 5.2 gives a necessary
(but not sufficient) criterion for uniform continuity.

Lemma 5.2. Let f : X → R be a uniformly continuous function on a
bounded interval. Then f is a bounded function: There exists anM > 0
such that f = A(M) on X.

Proof. The idea is that by uniform continuity, there exists a δ > 0
such that f varies by no more than 1 on every interval of length δ.
Because X is bounded, it can be covered by finitely many intervals of
length δ, so the total variation of f is finite.

Formally, take ε = 1; by uniform continuity, there is a δ > 0 such
that |x− y| < δ implies |f(x)− f(y)| < 1 (provided x and y are in X).
Let x0 be the midpoint of X, and let ` denote the radius of X. Pick a
natural number N larger than `/δ. The idea is that every point x ∈ X
can be “joined” to x0 by a “chain” of N overlapping intervals of length
less than δ; on each such interval, the function values vary by at most 1,
so by the triangle inequality the function value f(x) differs from f(x0)
by at most N , regardless of x.

For the record, here is a complete argument. Let x ∈ X, and
consider the finite sequence (xi)

N
i=0 of equally spaced points that joins x0

to x = xN . There is even a simple formula for the ith point:

xi = x0 + i
N

(x− x0) =
(
1− i

N

)
x0 + i

N
x, 0 ≤ i ≤ N.

For each i, |xi−xi−1| = |x−x0|/N < `/N < δ, so |f(xi)−f(xi−1)| < 1.
By the triangle inequality,

|f(x)− f(x0)| =
∣∣∣∣∣
N∑
i=1

(
f(xi)− f(xi−1)

)∣∣∣∣∣ ≤
N∑
i=1

∣∣∣f(xi)− f(xi−1)
∣∣∣ < N.

This estimate holds for all x ∈ X, so again by the triangle inequality,

|f(x)| ≤ |f(x)− f(x0)|+ |f(x0)| < N + |f(x0)| =: M

for all x ∈ X.
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1

−1

y = x
|x|

Figure 5.1: A locally constant function that is not uniformly continuous.

Example 5.3 The identity function I : R → R is uniformly con-
tinuous; taking δ = ε (independently of x) gives a winning strategy.
Though I is not bounded on R, there is no conflict with Lemma 5.2
since R is not a bounded interval. In accord with the lemma, the
restriction of I to a bounded interval is bounded.

The reciprocal function f : (0, 1) → R is continuous on (0, 1) but
is not bounded, hence is not uniformly continuous by Lemma 5.2, see
also Figure 5.2.

The function g(x) = x/|x| (the restriction of the signum function
to R×, Figure 5.1) is locally constant (for every a 6= 0, there is an
open interval about a on which g is constant), but is not uniformly
continuous! Take ε = 1; no matter how small δ > 0 is, the points
x = −δ/3 and y = δ/3 are δ-close, but |g(x) − g(y)| = 2 > 1 = ε.
This example emphasizes the global nature of uniform continuity, and
shows that a bounded function can fail to be uniformly continuous. If
you are tempted to protest that g is not continuous at 0, remember
that “continuity” makes no sense at points not in the domain of g.
�

Uniform continuity has a geometric interpretation: The image of an
interval can be made arbitrarily short by taking the interval sufficiently
short. Precisely, for every ε > 0, there exists a δ > 0 such that the
image of an arbitrary interval of length δ is contained in some interval of
length ε. Reconsider the examples above in light of this observation. An
interval of length δ has the form (a, a+δ); under the reciprocal function,
such an interval can have arbitrarily long image, see Figure 5.2. Under
the signum function, if the interval straddles the origin the image is
the two-point set {−1, 1}, so the image is not contained in an interval
of length less than 2. By contrast, the image of (a, a + δ) under the
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I = (a, a + δ)

f(x) = 1
x

f(I)

Figure 5.2: The reciprocal maps arbitrarily short intervals to “long”
intervals.

identity function is the interval (a, a + δ), which tautologically can be
made arbitrarily small by taking δ arbitrarily small!

The main result of this section, Theorem 5.5 below, is a simple
criterion for uniform continuity that is of both theoretical and practical
importance. To reduce “uniform continuity” to a more manageable
form, we introduce an auxiliary criterion. For a fixed ε > 0, we say the
function f is “ε-tame on X” if there exists a δ > 0 such that

x, y ∈ X and |x− y| < δ =⇒ |f(x)− f(y)| ≤ ε.

For example, if f = A(M) on X, then f is 2M -tame on X by the
triangle inequality. Similarly, every characteristic function is 1-tame.
Uniform continuity on X is equivalent to “being ε-tame on X for every
ε > 0.”

The proof of Lemma 5.2 shows that an ε-tame function on a bounded
interval is bounded. Consequently, though the reciprocal function is
continuous, it is not ε-tame, no matter how large ε is.

The condition of being ε-tame satisfies a “patching” property:

Lemma 5.4. Suppose f is ε-tame on the closed intervals [a, t] and [t, c],
and that f is continuous at t. Then f is ε-tame on the union [a, c].
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Proof. Use continuity of f at t to choose δ1 > 0 so that |x − t| < δ1

implies |f(x)− f(t)| < ε/2. The triangle inequality implies f is ε-tame
on (t− δ1, t + δ1). Next choose δ2 > 0 and δ3 > 0 that “work” on [a, t]
and [t, c], respectively, and set δ = min(δ1, δ2, δ3) > 0.

• ••
a ct

t− δ1 t + δ1

Figure 5.3: Patching intervals on which f is ε-tame.

A glance at Figure 5.3 shows that if x and y are points in [a, c] with
|x− y| < δ, then both points lie in one of the three intervals [a, t], [t, c],
or (t− δ1, t+ δ1). Consequently f is ε-tame on [a, c].

Theorem 5.5. If f : [a, b] → R is a continuous function on a closed,
bounded interval, then f is uniformly continuous.

Proof. We will show that under the hypotheses, f is ε-tame on [a, b]
for every ε > 0. Fix ε > 0, and consider the set

B = {t ∈ (a, b] | f is ε-tame on [a, t]}.
Our goal is to show that b ∈ B. This is accomplished by the sketch
in the introduction of this chapter, interplaying continuity of f , the
completeness axiom of R, and the fact that [a, b] is a closed, bounded
interval.

Because f is continuous at a, there exists a δ > 0 such that f =
A(ε/2) on [a, a+2δ). By the triangle inequality, f is ε-tame on [a, a+δ].
Thus a+δ ∈ B, so the set B is non-empty; clearly, B is bounded above
(by b), so by completeness B has a supremum, say β.

We claim that β = b; to see this, suppose f is ε-tame on [a, α) with
α < b. By continuity of f at α, there is a δ > 0 such that f is ε-tame on
[α− δ, α+ δ], while f is ε-tame on [a, α− δ] by assumption. Lemma 5.4
implies f is ε-tame on [a, α+ δ], proving that α is not an upper bound
of B. This is the contrapositive of “supB = b.”

We still do not know b ∈ B; it could be that B = [a, b). However,
f is continuous at b, hence ε-tame on some interval [b − δ, b], and the
previous paragraph shows that f is ε-tame on every interval [a, α] with
α < b, in particular on [a, b − δ]. Another application of Lemma 5.4
proves f is ε-tame on [a, b]. Since ε > 0 was arbitrary, the theorem is
proved.
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Theorem 5.5 implies, for instance, that the restriction of a rational
function p/q to an interval [a, b] is uniformly continuous (provided q
is non-vanishing in [a, b]). Thus the reciprocal function x 7→ 1/x is
uniformly continuous on [δ, 1] for each δ > 0. As noted above, the
restriction to (0, 1] is not uniformly continuous. Uniform continuity
of f is as much a property of the domain as it is a property of the
“rule” that defines f .

5.2 Extrema of Continuous Functions

Theorem 5.5 has a technical consequence that is so important it deserves
the title of “theorem” rather than “corollary.” Theorem 5.6 is called the
Extreme Value Theorem.

Theorem 5.6. Let f : [a, b]→ R be a continuous function. Then there
exist points xmin and xmax ∈ [a, b] such that

f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

This theorem does not assert that the points xmin and xmax are
uniquely determined; in the “extreme” case f is a constant function
and every point of the interval is both xmin and xmax. The theorem also
gives no information as to where in the domain these points may be;
other tools must be used for this purpose. Finally, the Extreme Value
Theorem says nothing about functions with even a single discontinuity,
nor about functions whose domain is not a closed, bounded interval of
real numbers. What the theorem asserts is the existence—in a certain
infinite set of numbers (the set of values of f)—of a largest number
and a smallest number. This is better than knowing the set of values is
bounded above and below, which is already quite useful information; it
is a “hunting license” for maxima and minima of functions, a guarantee
that under suitable hypotheses, the quarry actually exists.

Proof. By Theorem 5.5, f is uniformly continuous on [a, b], hence f is
bounded on [a, b] by Lemma 5.2. Consider the image f([a, b]); it is
certainly non-empty, and as just observed is bounded, both above and
below. By completeness, the image has a supremum ysup and an infi-
mum yinf . We want to show these numbers are function values. This
will be done by proving that if ysup is not a function value, then Theo-
rem 5.5 is false.
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If ysup is not a function value, then f(x) < ysup for every x ∈ [a, b]
(note the strict inequality). Consider the function g : [a, b]→ R defined
by

g(x) =
1

ysup − f(x)
.

By hypothesis the denominator is non-vanishing on [a, b], so by conti-
nuity of f and Theorem 4.19 the function g is continuous. However,
the denominator of g can be made arbitrarily small, since by definition
of supremum, for every ε > 0 there is an x0 with ysup − ε < f(x0),
that is, 0 < ysup − f(x0) < ε. This implies g is not bounded above,
contradicting Theorem 5.5 as desired. A similar argument using the
function h(x) = 1/(f(x)− yinf) shows f achieves a minimum value.

In calculus courses, the extreme value theorem is usually stated
without proof, or at best with a plausibility argument. One must be
wary of putting credence in a plausibility argument, for the following
reason: The statement of the extreme value theorem makes sense for
functions f : Q → Q, but while any plausibility argument is likely
to apply to such a function, the conclusion of the theorem is false.
Examples are given below.

A typical plausibility argument is based on the “definition” that a
“continuous function” is one whose graph can be drawn without picking
up your pencil.1 Because the domain of f is an interval that contains its
endpoints, the graph of f must “start” somewhere on the left and “end”
somewhere on the right. The pencil must “therefore” reach a highest
point and a lowest point; the horizontal locations of these points are
xmax and xmin.

5.3 Continuous Functions and Intermediate
Values

The other fundamental property of a continuous function f on a closed,
bounded interval is the “intermediate value property.” In simplest form,
this says that if f is negative somewhere and positive somewhere (else),
then f must be zero somewhere. Generally, the image of an interval of
real numbers under a continuous function is an interval. To put this
property in context, we make a brief historical digression.

1For many common functions this is true enough, though it differs substantially
from Definition 4.36. How many differences can you name?
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Deficiencies of the Rational Numbers in Analysis

In terms of the heuristic definition of continuity, the intermediate value
property is “obvious”: If the graph of f starts below the x-axis and ends
above the x-axis, then the graph must cross the axis somewhere. But
under scrutiny, this argument is shaky. “Surely it is inconceivable that
a graph could go from below the axis to above without crossing” sounds
like wishful thinking. Indeed, the misperception that this fact is obvious
goes back at least to Euclid, who postulated that every line through the
center of a circle intersects the circle in two antipodal points. Suppose
the plane consists of all points with rational coordinates, that is, Q×Q.
(Without the hindsight that “a plane is R×R” there is no good reason
to assume a “plane” is not Q ×Q. To our eyes, they look the same.)
The circle of radius 1 centered at the origin has equation x2 + y2 = 1.
This equation makes sense over the rational numbers, and has infinitely
many rational solutions. The line with equation y = x also “lives” in the
rational plane, and passes through the center of the circle (see Figure 5.4
for a stylized depiction). Solving these equations simultaneously gives
the points of intersection as ±(x, x), where x2 = 1/2. But there is
no rational number with this property, so this line does not intersect
the circle at all ! However, the rational plane Q × Q satisfies all of
Euclid’s axioms, so his “self-evident” postulate that certain lines and
circles intersect is not generally true.

Figure 5.4: Does a circle intersect every line through its center?

This deficiency can be formulated in terms of functions, showing
that the heuristic argument for the intermediate value property is in-
complete. Suppose we take the number line to be Q, and consider the
polynomial function f : Q → Q defined by f(x) = x2 − 2. The same
estimates used in Chapter 4 show that this function is continuous on Q.
At x = 0, the graph lies below the x-axis, and at x = 2 the graph lies
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above. However, the graph never hits the axis on the closed, bounded
rational interval [0, 2], because x2 − 2 6= 0 for all rational x. This is
not an isolated example; a general polynomial with rational coefficients
will be positive somewhere, negative somewhere, but zero nowhere.

These observations are perhaps even more striking for rational func-
tions, such as g = 1/f : Q → Q defined by g(x) = 1/(x2 − 2). The
domain and range are correct; the expression on the right is defined
for every rational x, and is itself rational. This function is continuous
on Q because it is a quotient of polynomials, and the denominator is
nowhere vanishing! However, g is not uniformly continuous on [0, 2],
since it is unbounded on this interval.

You might be tempted to argue, “Yes, but R has no gaps, so this
cannot happen in R.” But what is a gap, and how do we know R has
none? To emphasize, the theorems of this chapter, as well as our intu-
ition about continuous functions, are predicated on using intervals of
real numbers, and this intuition is based on the completeness property
of R. Plausibility arguments can be incorrect or seriously misleading
when applied carelessly; only with precise definitions and logical, de-
ductive proof can one be sure of avoiding errors.

These remarks should cause you to question your intuition. Lest you
come to feel everything you know is unjustifiable, let us quickly review
the relevant facts. Intervals and absolute value make sense in every
ordered field, including both Q and R. Consequently, we may speak
meaningfully of limit points and (uniform) continuity of functions even
if our number line is Q. The proof of Lemma 5.2, that uniformly con-
tinuous functions are bounded, uses nothing but properties of ordered
fields, and therefore also holds in Q. However, in proving Theorem 5.5,
we defined a certain set, then took its supremum. Similarly, we used
suprema in proving the extreme value theorem. We therefore have no
reason to expect the analogues of these theorems to hold if our number
line is Q. This pessimism is justified by the counterexamples discussed
above: The “extreme value theorem in Q” is simply not true. Further,
we have seen that a continuous function on Q can take both positive
and negative values without vanishing anywhere, contrary to our intu-
ition. Our next goal is to prove that our intuition about R is correct:
A continuous function on R that achieves both positive and negative
values must have a zero. This conclusion will have a multitude of useful
consequences; for example, it will follow that every positive real number
has a cube root, fourth root, and generally a radical of every integer
order.
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The Intermediate Value Theorem

The next definition makes precise the idea that “if f achieves two val-
ues, then it achieves every value in between.” Notice how simply the
criterion is expressed in terms of intervals.
Definition 5.7 Let f be a function. We say f has the intermediate
value property if, for every interval I contained in the domain of f , the
image f(I) of I is also an interval.

To say the same thing differently, if [a, b] is contained in the do-
main of f and if f(a) 6= f(b), then for every c between f(a) and f(b),
there exists an x ∈ (a, b) with f(x) = c. You should convince yourself
this condition is logically equivalent to Definition 5.7. Our geometric
intuition suggests that continuous functions (on intervals) do have the
intermediate value property. In fact they do, by the Intermediate Value
Theorem:

Theorem 5.8. Let f be a continuous function whose domain is an
interval of real numbers. Then f has the intermediate value property.

The intermediate value theorem is a “hunting license” in the same
sense as Theorem 5.6. Rather than hunting for extrema, we now seek
solutions of the equation f(x) = c, subject to a ≤ x ≤ b. Theorem 5.8
says that if f is a continuous function on [a, b], and if the number c
is between f(a) and f(b), then the equation f(x) = c has a solution
x ∈ (a, b). The theorem does not say there is only one solution, and
does not give any information about the location of the solution(s). As
with the extreme value theorem, these matters must be investigated
with other tools.

Proof. Because the restriction of a continuous function is continuous, it
suffices to prove that if f is continuous on [a, b], and if f(a) < c < f(b),
then there is an x0 ∈ (a, b) with f(x0) = c. (The analogous claim with
the inequality reversed then follows by consideration of −f .) In fact, it
suffices to assume c = 0, since f can be replaced by f−c. The intuitive
idea is to “watch the pencil to see when the tip crosses the x-axis”. Of
course, such reasoning would be circular, since we are trying to prove
the pencil crosses the axis. Instead, we seek the “largest” t such that
f is negative on [a, t]. Now, there is no such t, but there is a supremum;
this is how completeness of R enters the picture.

Recall the contrapositive of Theorem 4.23: If lim(f, a) < 0, then
f < 0 on some deleted interval about a (namely, there is a δ > 0 such
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that f(x) < 0 for 0 < |x − a| < δ). The analogous assertion with a
positive limit is also true.

Assume f(a) < 0 < f(b), and consider the set

B = {x ∈ (a, b) | f(t) < 0 for all t ∈ [a, x]}.
Since lim(f, a+) = f(a) < 0, there is a δ > 0 such that f < 0 on
[a, a + δ]; thus a + δ ∈ B, so B is non-empty. At the other endpoint,
lim(f, b−) = f(b) > 0, so there is a δ′ > 0 such that f > 0 on the
interval [b − δ′, b]. This means “f(t) < 0 for all t ∈ [a, b − δ′]” is false,
or b− δ′ 6∈ B. Thus B is bounded above by b− δ′.

Let x0 = supB; then x0 ≤ b− δ′ < b, and

(∗) f < 0 on [a, x] for every x < x0.

The claim is that f(x0) = 0. To prove this, we show that f(x0) 6= 0
implies x0 6= supB.

If f(x0) > 0, then f > 0 on some open interval about x0 by con-
tinuity of f , contradicting (∗). If, on the other hand, f(x0) < 0, then
f < 0 on some open interval about x0, so by (∗) f < 0 on some inter-
val [a, x] with x > x0, implying x0 is not an upper bound of B. The
remaining possibility, f(x0) = 0, must therefore hold, which completes
the proof.

This proof finds the smallest solution of f(x) = c in the interval
[a, b]; in particular, there is a smallest solution. There is also a largest
solution, found by an obvious modification of the argument. Generally
there is no “second-smallest” solution. The function f : [−1, 2] → R
defined by

f(x) =


x if −1 ≤ x < 0

0 if 0 ≤ x ≤ 1

x− 1 if 1 < x ≤ 2

−1 0 1 2

has a first zero and a last zero, but no “second” zero.

5.4 Applications
The intermediate value theorem can be used to prove several interesting
things about numbers and functions. The sampling given here includes
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existence of nth roots of positive reals, existence of a real root for
every polynomial of odd degree, and the bisection method, a numerical
algorithm for approximating solutions of f(x) = 0 for a continuous
function f .

Radicals of Real Numbers

Let n ≥ 2 be an integer. By definition, an nth root of a number c is a
number t (usually in the same field) with tn = c. We now have enough
tools at our disposal to prove that every positive real number has a
unique positive nth root. The situation is more haphazard for negative
numbers because of the prejudice of considering only real numbers. A
more satisfactory picture emerges when working with complex num-
bers: Every non-zero complex number has exactly n distinct (complex)
nth roots. As we shall see in Chapter 15, these roots lie at the vertices
of a regular n-gon centered at 0 in the complex plane.

The intermediate value theorem almost immediately implies exis-
tence of nth roots of positive real numbers. The trick is to concoct a
function whose zero is the desired radical.

Theorem 5.9. Let c ∈ R be positive, and let n ≥ 2 be an integer.
There exists a unique positive real number t with tn = c.

Proof. Uniqueness is elementary: If 0 < a < b, then 0 < an < bn for
every positive integer n, so an = c can hold for at most one a > 0. What
must be shown is existence of an nth root. Define f : [0,∞) → R by
f(x) = xn − c; we wish to show that f has a positive root. Since f is
a polynomial function, f is continuous on [0,∞). By direct evaluation,
f(0) = −c < 0, so it suffices to show there is an x > 0 with f(x) > 0.
If c > 1, then take x = c:

f(c) = cn − c = c (cn−1 − 1) > 0,

and we are done. If 0 < c < 1, then cn < 1, so f(1) = 1− cn > 0, and
again we are done. If c = 1 the conclusion is obvious.

It is gratifying to see how far we have come. Aside from the details
in the construction of R, everything in this corollary has been built on
set theory and logic. You should also appreciate how much abstract
machinery is required to describe an elementary geometric concept—
the diagonal of a unit square—in terms of numbers (let alone sets). Of
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course, in order to be impressed you must admit how much of school
mathematics is based upon unproved assertions.

Customarily one writes t = c1/n or t = n
√
c for the nth root of c.

With the exponential notation, the rules

ax+y = ax · ay and axy = (ax)y

hold for all rational exponents. Until now, we only had suitable defi-
nitions of exponentiation for integer exponents, and we have still not
defined exponentiation with non-rational, or non-real, exponents.

Real Roots of Polynomials

Finding roots of polynomials is one of the oldest problems of mathe-
matics; over 4000 years ago, the Babylonians knew how to solve what
we would call the general quadratic equation. Analogous formulas for
cubic and quartic equations were not found until the 15th Century. In
the early 19th Century, N. H. Abel showed that there does not exist a
“quintic formula,” in the sense that the roots of a general polynomial of
degree five or more cannot generally be written as radical expressions
in the coefficients.

Even for cubic and quartic polynomials, the algebraic formulas are
messy, and it is desirable to have simpler (if less precise) tools for
gleaning information about roots. Numerical methods can be used
to approximate roots, but it is difficult to begin without knowing a
real root exists. The intermediate value theorem can be used to show
that every polynomial of odd degree (with real coefficients) has at least
one real root. This is the best that can be expected, since a general
polynomial of even degree may have no real roots, and a polynomial of
odd degree may have exactly one real root.

Let p : R→ R be a polynomial function of degree n ≥ 1. The top
degree term in a non-constant polynomial “dominates” the sum of the
other terms, in the following sense:

(5.1) p(x) =
n∑
k=0

ak x
k = xn

(
n∑
k=0

ak x
k−n
)
,

and the term in parentheses has limiting value an as |x| → ∞ since every
other term goes to 0 (note that the exponents k − n are non-positive).
Since an 6= 0 by assumption, the term in parentheses has the same sign
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as an provided |x| is sufficiently large. Speaking “asymptotically,” a
non-constant polynomial behaves like its highest-degree term.

What bearing does this have on existence of roots of polynomials?
First, we may as well assume an > 0, since multiplying by −1 does
not change the set of roots of p. If an > 0, then p(x) > 0 for suf-
ficiently large x; in fact, equation (5.1) asserts that p(x) → +∞ as
x → +∞. However, if an > 0, then the behavior of p(x) for large
negative x depends on whether the degree is even or odd. If n is odd,
then p(x) → −∞ as x → −∞. In this event, there exist real numbers
x1 � 0 and x2 � 0 with p(x1) < 0 < p(x2). By the intermediate value
theorem, there exists an x0 ∈ (x1, x2) with p(x0) = 0. In other words,
a polynomial of odd degree has at least one real root.

By contrast, if n is even, then p(x)→ +∞ as x→ −∞, so there is
no guarantee that p changes sign; for large |x|, the sign of p(x) is the
same as the sign of an, and there is no way to conclude that the sign
changes. This says the argument we used for odd-degree polynomials
fails, but conceivably there might be a “better” proof. To settle the
matter conclusively, observe that the polynomial p(x) = 1 + x2 has
even degree and has no real roots, because the field R is ordered, and
an ordered field cannot contain a square root of −1. In summary, a
polynomial of odd degree has at least one real root (and generally has
no more, see Exercise 5.8), and a general polynomial of even degree has
no real roots.

The Bisection Method

The intermediate value theorem is the basis of a numerical recipe—
the bisection method—for finding roots of a continuous function. The
method only works for functions (such as polynomials) whose values
are easy to calculate. To see how the method works, we will use it to
approximate

√
2. Consider the function f(x) = x2 − 2 with domain

[1, 2]. By direct calculation, we find that f(1) = −1 < 0 and f(2) =
2 > 0. The intermediate value theorem implies there is a real zero in
the open interval (1, 2). Now we bisect; the midpoint is 3/2, and we
find that f(3/2) = 9/4 − 2 = 1/4 > 0. Since f(1) < 0 < f(3/2),
the intermediate value theorem asserts that f has a zero in the open
interval (1, 3/2). Again we bisect; the midpoint is 5/4, and f(5/4) =
25/16−2 < 0, so we conclude that f has a zero in the interval (5/4, 3/2),
or in decimal, (1.25, 1.5). The search pattern should be clear; you
should carry out another step yourself, to ensure you understand.
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Here is the general set-up and procedure, in algorithmic form suit-
able for writing a computer program. Suppose f is a continuous func-
tion on [a, b], and that f(a) and f(b) have opposite sign. By the inter-
mediate value theorem, there is a root in the interval (a, b). Evaluate f
at the midpoint (a+b)/2; if the value is zero, then stop. Otherwise there
is a sign difference between function values on exactly one of the half
intervals, indicating that there is a root in that half interval. Repeat
until the desired accuracy is obtained. This is a simple algorithm, but
the accuracy only doubles with each iteration, so it takes about three or
four iterations to get each extra decimal of accuracy. Other algorithms
can give far higher accuracies; recall that by Exercise 4.23, the sequence
in Example 4.47 converges to

√
b in such a way that the number of dec-

imals of accuracy doubles at each iteration. With well-chosen starting
values, six iterations of the latter scheme can give 31 decimals, an accu-
racy requiring about 100 bisections. Ten iterations would give almost
500 decimals of accuracy, requiring over 1600 bisections. However, the
bisection method has its uses, even though for practical calculations
there are often better methods.

Exercises

Exercise 5.1 Show that if f : R → R is continuous and `-periodic,
then f is uniformly continuous on R. �
Exercise 5.2 We saw that the restriction of the signum function to R×

is locally constant but not uniformly continuous. Prove that if a > 0,
then the restriction to R \ [0, a] is uniformly continuous. Note the
distinction between removing a point and removing an arbitrarily small
interval. �
Exercise 5.3 Find a bounded, continuous function f : (0, 1) → R
such that f is not uniformly continuous.
Suggestion: Let g be a non-constant, continuous, periodic function, and
set f(x) = g(1/x). �
Exercise 5.4 Let p : R → R be a polynomial function of degree at
least 2. Prove that p is not uniformly continuous. �
Exercise 5.5 Let I ⊂ R be an open interval (possibly unbounded),
and let f : I → R be bounded, continuous, and increasing. Prove
that f is uniformly continuous. �
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Exercise 5.6 Let I ⊂ R be an interval, and let f : I → R be
increasing. Prove that f−1 is continuous.
Hint: Draw a sketch, and ask what it means for f−1 to be continuous.
�
Exercise 5.7 Give an example of a continuous, increasing function
whose inverse is discontinuous.
Hint: By the previous exercise, the domain cannot be an interval! �
Exercise 5.8 Prove that the polynomial p(x) = x5+x−1 has a unique
real root, and use the bisection method (and a calculator!) to approxi-
mate this root to two decimal places. If your calculator is programmable,
then you should find as many decimal places as your calculator allows.
In any case, writing a flow chart for an algorithm to obtain successively
better approximations is a good exercise. �
Exercise 5.9 Let p : R → R be a polynomial function that is monic
and of even degree ≥ 2.

(a) Prove that lim(p,±∞) = +∞.

(b) Prove that p has an absolute minimum on R, namely, there exists
a real number x0 such that p(x0) ≤ p(x) for all real x.

Note that you cannot immediately apply the extreme value theorem in
part (b); however, by carefully leveraging the information from part (a),
you can reduce the search for a minimum to a closed, bounded interval.
�
Exercise 5.10 Define f : (0,+∞)→ R by f(x) =

5x7 − 2x4 − x2 + 1

x7 + 2x5 + 1
.

(a) Prove that there is an x0 ∈ (0,+∞) with f(x0) = 1.

(b) Prove that f has an absolute minimum.

Hint: You will come to grief if you try to do either part without tools
from this chapter. �
Exercise 5.11 This exercise is concerned with the existence of fixed
points for continuous functions.

(a) Let f : [a, b] → [a, b] be a continuous function. Show that there
exists an x0 ∈ [a, b] with f(x0) = x0. In words, every mapping of
a closed, bounded interval to itself has at least one fixed point.

Suggestion: Consider the function g defined by g(x) = f(x)− x.
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(b) Does the same conclusion hold if f maps some open interval to
itself? What if f : X → X, but X is not an interval?

Justify your answers in part (b). �
Exercise 5.12 Suppose f : X → R is uniformly continuous on X, and
let (xn)∞n=0 be a Cauchy sequence in X. Prove that the image sequence(
f(xn)

)
is Cauchy. �

Exercise 5.13 Suppose f : X → R is merely continuous on X, and
let (xn)∞n=0 be a Cauchy sequence in X. Can you deduce that the image
sequence

(
f(xn)

)
is Cauchy?

Suggestion: Start by trying to extend the proof you found for the pre-
ceding exercise. If you cannot generalize the proof, attempt to discover
the step that does not work, and use the information to seek a coun-
terexample. The most difficult part of this problem is deciding whether
there is a proof or a counterexample! �
Exercise 5.14 Let f : (a, b)→ R be uniformly continuous.

(a) Prove that there is a continuous extension of f to [a, b], namely,
there exists a continuous function F : [a, b] → R such that
F |(a,b) = f .
Hint: Use Exercise 5.12 and Theorem 4.45 to define F (a) and F (b).

(b) Is the inverse true? (“If f is not uniformly continuous, then there
does not exist a continuous extension.”) Give a proof or coun-
terexample.

(c) Prove that the extension found in part (a) is unique, i.e., if F1

and F2 are continuous extensions of f to [a, b], then F1 = F2.

This is an instance of a general principle in analysis: A uniformly con-
tinuous function has a unique continuous extension to the set of limit
points of its domain. �
Exercise 5.15 Let I ⊂ R be an interval. A function f : I → R is
Lipschitz continuous if there exists a real number M such that

|f(x)− f(y)| ≤M |x− y| for all x, y ∈ I.

(a) Prove that if f is Lipschitz continuous, then f is uniformly con-
tinuous on I.
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(b) Prove that
√

: [0,∞) → R is uniformly continuous, but not
Lipschitz continuous.
Hint: The trouble occurs near 0.

(c) Prove that f is Lipschitz continuous iff

f(x+ h) = f(x) +O(h) near h = 0 for all x ∈ I.

Give a geometric interpretation of Lipschitz continuity. �
Exercise 5.16 Let cb be the Charlie Brown function, and let f(x) =
cb(1/x) for x ∈ (0, 1).

(a) Sketch the graph of f . Prove that for every δ > 0, f maps the
interval (0, δ) onto the interval [0, 1].

(b) Define g : (0, 1) → R by g(x) = (1/x)f(x). Prove that for every
δ > 0, g maps the interval (0, δ) onto the interval [0,∞).

(c) Find a continuous function h : (0, 1] → R whose image is the
open interval (−1, 1). Does there exist a continuous function H :
[0, 1]→ R such that h = H|(0,1]?
Hint: Constructing h is not as easy as it looks, but is relevant to
this exercise.

Look at Exercise 5.3 if you haven’t already. �
Exercise 5.17 Does there exist a bijective function f : [0, 1]→ (0, 1)?
Does there exist a continuous bijective function g : [0, 1] → (0, 1)? As
always, give a proof or counterexample, as appropriate. �
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Chapter 6

What is Calculus?

Calculus is the mathematical study of rates of change. The name
refers to the calculational procedures—differentials, infinitesimals, and
integrals—not the theoretical underpinnings with which we are princi-
pally concerned. Calculus is naturally divided into two halves: differ-
entiation—the study of rates of change, and integration—the study of
total change. If f is a “suitable” function, it makes sense to ask “how
rapidly f(x) changes as x varies.” A non-trivial part of making this
idea precise is determining which functions are “suitable,” and defining
what is meant by rate of change at a single point. Conversely, if the
rate of change of f is known at each point of some interval, one might
wish to determine the total change in f over the interval. Intuitively,
one wishes to “add up” the instantaneous rates of change to get the
total change.

The operations of differentiation and integration have definitions
that are motivated by simple ideas, but which hide a number of theo-
retical and practical complexities. The aim of this short chapter is to
motivate the coming theory with some intuitive arguments.

6.1 Rates of Change

Consider an automobile trip along a straight highway. The position of
the car, x, is a function of time t, say x = X(t). For definiteness, we
agree that the trip starts at t = 0, and that X(0) = 0. The value of X
at time t is the odometer reading (because we zeroed the odometer
when we set out). A graph of the odometer reading as a function of
time is a mathematical idealization of the trip.

223
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Suppose we want to describe our speed in mathematical terms, using
only the odometer reading and a stopwatch. Speed is defined as the rate
of change of position with respect to time, so we observe the odometer
at two different times, t and t+ ∆t, and compute

(6.1) Average speed over [t, t+ ∆t] =
X(t+ ∆t)−X(t)

∆t
.

Experimentally, we think of our measurement “starting at t and contin-
uing for ∆t”. You may have performed this experiment: Some highways
have “measured miles”—signs placed one mile apart. If you drive at con-
stant speed (usually 40 or 60 miles per hour) and time how long it takes
to pass the signs, you can calibrate your speedometer.

If ∆t is large, then (6.1) may be fairly inaccurate if our speed is
not constant. A pair of measurements produces only the average rate
of change, and fluctuations on a time scale smaller than ∆t tend to
“average out”. In order to resolve shorter time intervals, we make ∆t
smaller. If we imagine dt to represent an “infinitesimal” time interval,
equation (6.1) becomes

Speed at time t =
X(t+ dt)−X(t)

dt
.

Geometrically, we are focusing attention on the graph of X inside
smaller and smaller rectangles, namely are “zooming in”. To say the
rate of change exists amounts to saying that zooming in makes the
graph of X look more and more like a line. This discussion applies to
any quantity that varies as a function of any other quantity.

For some real-world phenomena, such as velocities of cars or planets,
populations of species in an ecosystem, voltages in an electric circuit,
concentrations of chemicals in a test tube, or air pressure along the
leading edge of an airplane wing, the rate of change of a quantity is
“well-behaved” in the sense that as the increment of the input variable
becomes smaller, the average rate of change has a limit. Mathemati-
cally, we say that functions modeling these quantities are differentiable;
they possess well-defined, finite rates of change. Roughly, the graph of a
differentiable function is composed of infinitely many infinitesimal line
segments. (This assertion is an extreme example of the Goethe quote,
but is true enough to be useful as a heuristic.)

Classical physics (especially mechanics and electromagnetism) is
concerned almost entirely with differentiable functions. The speed of a
bullet can be measured accurately by stroboscopically photographing



6.1. RATES OF CHANGE 225

it at two closely separated times and measuring how far it traveled in
the interim. The location of a planet can be calculated very accurately,
even predicted months or years into the future, if its positions at a few
times are known. One of the stunning early successes of calculus and
statistical analysis occurred in the 1830s, when astronomers discovered
the asteroid Ceres, then subsequently lost it in the glare of the sun.
Based on measurements of its past location, C. F. Gauss predicted ac-
curately where Ceres could be found several months after it was last
sighted.

Limitations of the Differentiable Functions

It is now widely recognized that many phenomena are not well-modeled
by differentiable functions; examples include stock prices, Internet traf-
fic, motion of the earth along an earthquake fault, the shapes of moun-
tains and clouds, and positions of individual molecules in a glass of
water. These phenomena are still modeled by continuous functions,
but shrinking the temporal or spatial scale does not yield more accu-
rate measurements of rates of change. Instead, difference quotients vary
in a complicated way as the increment grows smaller, yielding unstable
numerical values of the of rate of change. Geometrically, zooming in
on the graph does not “smooth out” the variations. There is a trade-off
when measuring rates of change if the quantity in question has large,
small-scale fluctuations: The increment must be large enough to smooth
out “noise,” but small enough not to average out the rate of change one
wants to measure.

This discussion is slightly over-simplified. For example, the earth’s
(human) population varies chaotically on a time scale of minutes, but
is quite regular on a scale of years. Similarly, individual automobile
accidents or house fires are very difficult to predict, yet an insurance
company can say with great accuracy how many accidents and fires will
occur per month, and how much the total claims will be. Individual
molecules of water move chaotically, but a glass of water looks smooth
and uniform to our eyes. (The small-scale complication is revealed by
carefully putting in a drop of food coloring. If water behaved like an
idealized model, the color would immediately dissipate throughout the
glass.) All mathematical models have a “characteristic scale”, outside
of which the model fails to work well. Phenomena of classical physics
are remarkable in the range of temporal and spatial scales where they
are applicable.
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6.2 Total Change

Returning to our car trip, suppose the speed of the car, s, is known
as a function of time, say s = S(t). The graph of S represents the
speedometer reading. The distance traveled in the infinitesimal time
interval between t and t+ dt is S(t) dt, and the total distance traveled
up to time t0 is obtained by “adding up” these infinitesimal distances
as time ranges from 0 to t0.

The formal algebraic calculation is compelling: The instantaneous
speed satisfies

S(t) =
X(t+ dt)−X(t)

dt
=
dX

dt
, or S(t) dt = X(t+dt)−X(t) = dX.

Again, dt is supposed to be “infinitesimal”, greater than zero but smaller
than every positive real number. When we “add up” these terms for all
t ∈ [0, t0], we find, to our great satisfaction, that the increments of X
constitute a formally telescoping sum, cf. Exercise 4.29, and the “sum”
is X(t0)−X(0), the distance traveled by the car!

6.3 Notation and Infinitesimals

We must surely be on the track of some interesting mathematics. How-
ever, one should have at least nagging doubts about this argument,
since dt cannot be regarded as a real number, as it violates the tri-
chotomy property. A great deal of controversy arose over just this
issue: “What is an infinitesimal dt?” The standard treatment of cal-
culus sidesteps this issue by relegating dt to the role of a convenient
bookkeeping device. However, it is worth emphasizing that careful use
of dt as an algebraic quantity—as in the argument above—both leads
to quick “proofs” of many basic theorems of calculus and illuminates the
meaning of the statements of these theorems. The very term “calculus”
refers to the calculational procedures for manipulating infinitesimals
correctly—in a way that does not contradict ordinary algebra.

In the final analysis, logical consistency, not intuitive plausibility,
is the primary criterion for judging a mathematical idea. One way to
prove logical consistency is to define all objects under consideration,
and to formulate all of one’s assertions, in terms of axioms known (or
assumed) to be consistent. We have already reduced the notion of
continuity of functions to axioms for the real numbers, which in turn
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were built on axioms for the rational numbers, which were built upon
arithmetic of the natural numbers, which finally was defined in terms
of sets. Consistency of set theory was assumed. To justify the beautiful
“verification” that position can be recovered from speed (or generally,
that the total change of a quantity can be recovered by adding up
infinitesimal increments), we must do one of the following:

• Define infinitesimals in terms of real numbers, and verify that
they satisfy appropriate form rules of manipulation, such as the
ordered field axioms. This is the approach of non-standard anal-
ysis.

• Use the real number axioms to define certain expressions (such as
quotients and appropriate infinite sums) in which infinitesimals
appear, and verify that these expressions can be manipulated
as if they contained actual infinitesimals, while never actually
using an expression in which a “naked” infinitesimal appears. For
instance, if quotients of infinitesimals are defined in terms of the
real number system, we need to prove rules like

dy

dx
+
dz

dx
=
dy + dz

dx
and

dz

dy

dy

dx
=
dz

dx
.

The first approach is a surprisingly difficult technical task, that
requires adding a new axiom to set theory itself. Further, one provably
gains nothing, in the sense that every “non-standard” theorem can be
proven by “standard” means. (That said, a good case can be made that
non-standard analysis is more intuitive, so that one is likelier to find
theorems by non-standard techniques than without them.)

The seemingly convoluted second procedure is in fact the path we
follow, which accounts for the indirect flavor that arguments tend to
have. Most of the technical tools we need—chiefly the concept of lim-
its and the means of manipulating them—have already been devel-
oped, so at this stage the indirect path is definitely more economical.
The notation of infinitesimals is called Leibniz notation after Gottfried
Wilhelm von Leibniz. Every expression in Leibniz notation can be
written in a less provocative (i.e., non-infinitesimal) form, called New-
tonian notation after Sir Isaac Newton. For example, a Newtonian
writes S(t) = X ′(t) for the speed of the automobile above, while a
devotee of Leibniz notation would write s = dx/dt. Mathematicians
tend to prefer Newtonian notation, which is less tempting to abuse,
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while scientists tend to prefer Leibniz notation because it allows them
to translate real problems into symbolic form and to solve them with
relative ease. You should strive for fluency in both languages, since
their strengths are complementary.

Plan of Action

The definitions of integration and differentiation can seem a little com-
plicated, but are just formalizations of the ideas discussed above. Work-
ing directly with the definitions is often difficult, but there are theorems
that facilitate calculation of derivatives and integrals for a large class
of functions.

The next four chapters explore the main aspects of these ideas, with
the following results:

• Infinitely many instantaneous rates of change can be added to get
a definite numerical result that represents total change.

• Rates of change can be manipulated like ratios of infinitesimal
quantities.

• The operations of taking the rate of change and finding the total
change are essentially inverse to each other.

Integration and differentiation may also be viewed as operations
that create new functions from known functions. We will construct
logarithms, exponential functions, and circular trig functions using the
operations of calculus. The inverse relationship between derivatives and
integrals will allow us to determine properties of functions so defined.



Chapter 7

Integration

We begin the study of calculus proper with the operation of integration.
The intuitive wish is to begin with a function f defined on a closed,
bounded interval [a, b], and to “add up the infinitesimal terms f(t) dt for
each t ∈ [a, b]”. As it stands, this goal is meaningless, because we do not
know what “dt” stands for, and we do not know how to add infinitely
many quantities. The quantity we hope to capture has a nice geometric
interpretation, however. First consider a non-negative function f , and
imagine dividing the domain [a, b] into a large (but finite) number of
subintervals of equal length. Construct rectangles as in Figure 7.1. The
sum of the areas of these rectangles is “approximately” the quantity we
want to define.

The sum of the areas is an approximation exactly because each
rectangle has positive (real) width, not “infinitesimal” width. To get a
“better” approximation, we should make the width smaller, that is, sub-
divide the domain into a larger number of subintervals, see Figure 7.2.

y = f(x)

Figure 7.1: Areas of rectangles approximating the sum of f(t) dt for
t ∈ [a, b].

229
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y = f(x)

Figure 7.2: A larger number of rectangles gives a better approximation.

Of course, no matter how many rectangles we take, the resulting sum
will probably not be exactly the quantity we wish to define. It is here
that the completeness axiom for R saves the day; once things are set
up properly, it will be easy to see that every one of our sums is smaller
than a fixed real number. By the completeness axiom, the set of sums
has a real supremum. If we are lucky, this supremum will be exactly
the desired quantity!

This is another good time to re-consider the Goethe quote. Tak-
ing narrower rectangles gives a better approximation, so “in the limit”
(taking the supremum) we are “adding up the areas of infinitely many
infinitely thin rectangles”. Observe that if we can make these ideas
work, we will have (in a sense) assigned a real number to an expression
of the form 0 · ∞.

It should be clear that the process just outlined has something to
do with “the area under the graph of f ”. This is partly accidental,
because we assumed that f was non-negative, and because Figures 7.1
and 7.2 depict a situation where the ideas work. It happens that if f
is continuous, the process just outlined, called “integration”, works well
in the sense that the supremum really does represent something like
“area”. Nonetheless, it is quite difficult to use the definition to compute
specific integrals, as we shall see. Fortunately, the idea of “summing
the areas of infinitely many infinitesimal rectangles” is saved by two
remarkable facts:

• It is possible to deduce many properties of integration without
being able to evaluate a single integral.

• Using abstract properties of integration, we find that integration
is closely related to the operation of “differentiation,” which is
more amenable to calculation.
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These items are the subject of this and the following chapters, at the
end of which we will have a powerful set of tools for describing and
solving a wide variety of problems involving rates of change.

You should keep in mind that this chapter contains essentially no
computational results. It is through a long chain of judicious definitions
and hindsight observations that integration is at last forged into a useful
computational tool. Put aside objections of impracticality for now.
Integration is not conceptually difficult, but can seem daunting if you
worry about how the definition will be used in practice. Be assured
that you will soon have calculational techniques of great power and
flexibility.

7.1 Partitions and Sums

Integration takes as input a bounded function f : [a, b]→ R and returns
a real number. As described in the preceding section, we will aim
indirectly for this target by precisely defining upper and lower bounds
of the quantity we wish to define, then declaring that the quantity exists
exactly when these bounds coincide.

Let I = [a, b] be a closed, bounded interval. A partition of I is a
finite collection of points P = {ti}ni=0 such that

a = t0 < t1 < t2 < · · · < tn = b.

The interval Ii = [ti−1, ti] is called the ith subinterval of the partition,
and has length

∆ti = ti − ti−1.

We do not assume all the subintervals have the same length. The
mesh of the partition P is the largest ∆ti, the length of the longest
subinterval. The mesh of P is denoted mesh(P ) or ‖P‖. If P and Q
are partitions of I, and if P ⊂ Q, then Q is said to be a refinement
of P . In other words, a refinement of P is obtained by adding finitely
many points to P . Note that if P ⊂ Q, then mesh(Q) ≤ mesh(P ); you
cannot increase the mesh by adding points!

Now let f : I → R be a bounded function. (If f is continuous
on I, then f is bounded, by the extreme value theorem; however, at
this stage the function f may be discontinuous everywhere.) Given a
partition P of I, we take the “best” upper and lower bounds of f on
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each subinterval:

(7.1)
mi := inf{f(t) | t ∈ Ii}
Mi := sup{f(t) | t ∈ Ii}

for i = 1, . . . , n. Intuitively, mi is the “minimum” of f on the ith subin-
terval, and Mi is the “maximum,” but while f may have neither mini-
mum nor maximum on Ii, we know the inf and sup exist because f is
bounded. Using these lower and upper bounds of f , we form the lower
sum and upper sum of f over the partition P by

(7.2) L(f, P ) =
n∑
i=1

mi ∆ti, U(f, P ) =
n∑
i=1

Mi ∆ti.

In the introduction, we considered only lower sums; for technical rea-
sons that will shortly be apparent, we must consider both upper and
lower bounds.

U(f, P )

L(f, P )

Figure 7.3: Upper (top) and lower sums of f associated to a partition.

Becausemi ≤Mi for each subinterval of P , it is clear that L(f, P ) ≤
U(f, P ) for every f and every P . Further, for each i, mi ≤ f(t) ≤ Mi

for all t ∈ Ii, so mi∆ti is a reasonable lower bound for “the sum of
f(t) dt over t ∈ Ii,” and similarly Mi∆ti is a reasonable upper bound.
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The upper and lower sums may be regarded as the sums of areas of
rectangles provided f is non-negative. Generally, a lower sum is the
sum of the areas of the rectangles above the horizontal axis minus the
sum of the areas below the axis, and similarly for an upper sum, see
Figure 7.3. Refining the partition P can only improve the bounds. We
formalize this useful observation as follows:

Lemma 7.1. Let f : [a, b]→ R be a bounded function, and let P and Q
be partitions of [a, b] with P ⊂ Q. Then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

tj−1 tj

mj

∆tj

• •

tj−1 z tj

m′
j

m′′
j

∆t′j ∆t′′j

• • •

Figure 7.4: Refining the partition—before and after.

Proof. Since every refinement results from appending a finite number
of points to P , induction on the number of additional points in Q



234 CHAPTER 7. INTEGRATION

reduces the claim to the case where Q = P ∪ {z} has exactly one
more point than P . Assume z ∈ Ij for definiteness; the subdivision
Ij = [tj−1, z] ∪ [z, tj] splits the term mj∆tj in L(f, P ) into

(7.3) m′j∆t
′
j +m′′j∆t

′′
j ,

see Figure 7.4. But m′j is the infimum of f on [tj−1, z] ⊂ Ij, which is
surely no smaller than mj, and similarly m′′j ≥ mj. Consequently, the
sum of the two terms in (7.3) is greater than of equal to mj∆tj. This
is geometrically clear from Figure 7.4.

Since otherwise L(f, P ) and L(f,Q) are identical, this argument
proves that L(f, P ) ≤ L(f,Q). A completely analogous argument
shows that U(f,Q) ≤ U(f, P ).

Proposition 7.2. Let f : I → R be a bounded function, and let P and
P ′ be arbitrary partitions of I. Then

L(f, P ) ≤ U(f, P ′).

In words, every lower sum is less than or equal to every upper sum.

Proof. The partition Q = P ∪P ′ is a refinement of both P and P ′. By
Lemma 7.1, L(f, P ) ≤ L(f,Q) and U(f,Q) ≤ U(f, P ′).

Given a bounded function f : I → R whose domain is a closed,
bounded interval, we have associated a set of lower sums (taken over
all partitions) and a set of upper sums. Proposition 7.2 says that the
set of lower sums is bounded above; any particular upper sum is an
upper bound! Consequently, the set of lower sums has a real supremum
L(f, I), which is called the lower integral of f on I. Dually, the set of
upper sums is bounded below, hence has an infimum U(f, I), which
is called the upper integral of f on I. Proposition 7.2 implies that
L(f, I) ≤ U(f, I), which fortunately accords with our intuition: The
quantity we are trying to define—the integral of f—should surely be no
smaller than the lower integral and no larger than the upper integral.
Definition 7.3 Let I be a closed, bounded interval. A bounded func-
tion f : I → R is integrable on I if L(f, I) = U(f, I). In this case, the
common value is called the integral of f over I.

The integral of f over I is denoted
∫
I
f , or by

∫ b
a
f if I = [a, b].

It might seem intuitively obvious that the lower and upper integrals
are equal, and though the proof is not obvious, the lower and upper
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integrals do indeed coincide when f is continuous. As we will see by
example, however, the lower integral of f is generally strictly smaller
than the upper integral. In this event, the lower and upper integrals do
not specify a unique real number, and we say that f is not integrable
on I.

The definition of integrability relies on equality of the supremum of
one set of numbers with the infimum of another set of numbers. For
proving theorems, it is usually more convenient to use the following cri-
terion, which uses one partition rather than on the set of all partitions.

Proposition 7.4. A bounded function f : [a, b] → R is integrable
on [a, b] if and only if the following condition holds:
For every ε > 0, there exists a partition Q of [a, b] such that

U(f,Q)− L(f,Q) < ε.

Proof. Suppose f is integrable. Fix ε > 0, and choose partitions P
and P ′ such that(∫ b

a

f

)
− L(f, P ) <

ε

2
, U(f, P ′)−

(∫ b

a

f

)
<
ε

2
.

Such partitions exist by definition of supremum and infimum. As in
the proof of Proposition 7.2, take Q = P ∪ P ′, and conclude that
U(f,Q)− L(f,Q) < ε.

Inversely, suppose f is not integrable. Let 2ε = U(f, I) − L(f, I).
Then U(f,Q)− L(f,Q) > ε > 0 for every partition Q.

7.2 Basic Examples
The integral of a function f depends only on the interval of integration;
it is therefore sensible to write

∫
I
f . However, specific functions are

usually given by formulas, like f(t) = t2, and it would be convenient
to write

∫
I
t2. The problem is that the expression “t2” does not define

a function unless we agree that t2 is the value of f at t, and adherence
to such a convention is too much to ask, as will become apparent.
What is needed is a “placeholder” to signify that t is the “variable” in
the integrand. The standard notation is to write “

∫
I
t2 dt” in such a

situation, the “dt” signifying that t2 is the value of the integrand at t.
This peculiar choice of notation is discussed at greater length below,
but if you are literal-minded the interpretation here is sufficient. In
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the expression
∫
I
t2 dt, t is a dummy variable, and (just as for limits)

may be replaced by any other convenient symbol without changing the
meaning of the expression.

It is instructive to see how the definition of integrability works by
itself. Examples are given here to illustrate that the definition captures
the notion of area in a couple of simple cases, and to show how a
function can fail to be integrable.
Example 7.5 Let c ∈ R, and let C : [a, b] → R denote the corre-
sponding constant function. For every partition of [a, b] and for every
subinterval, mi = c = Mi. Consequently, every lower sum and every
upper sum is equal to c(b− a), so∫ b

a

C =

∫ b

a

c dt = c(b− a).

Observe that when c > 0, the value of the integral is the area of the
rectangle enclosed by the t-axis, the graph of C, and the lines t = a
and t = b. When c < 0, the integral is minus the area of the rectangle.

The integral of the identity function f is comparatively painful to
compute from the definition. However, elementary geometry suggests
what the answer should be, so we have a sanity check for our result.

0 b

Figure 7.5: Lower and upper sums with n = 20 for the identity function.

Consider for simplicity an interval of the form [0, b], and let Pn =
{ti} be the partition with (n + 1) equally-spaced points: ti = ib/n,
and ∆ti = b/n for all i. The infimum and supremum of f on [ti−1, ti]
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are ti−1 and ti, respectively, so the lower and upper sums are (note the
limits of summation)

L(f, Pn) =
n∑
i=1

ti−1 ∆ti =
n−1∑
i=0

ib

n

b

n
=
b2

n2

n−1∑
i=0

i,

U(f, Pn) =
n∑
i=1

ti ∆ti =
n∑
i=1

ib

n

b

n
=
b2

n2

n∑
i=1

i.

These sums were evaluated in Exercise 2.6:

n∑
i=1

i =
(n+ 1)n

2
,

n−1∑
i=0

i =
n(n− 1)

2
,

so

L(f, Pn) =
b2

2

(
n− 1

n

)
, U(f, Pn) =

b2

2

(
n+ 1

n

)
.

From the first of these formulas, it is apparent that the supremum of the
lower sums (over this particular family of partitions) is equal to b2/2;
the actual lower integral must therefore be at least b2/2. Similarly,
from the second formula it follows that the infimum of the upper sums
(again taken over this family of partitions) is b2/2, so the actual upper
integral is no larger than b2/2. In symbols,

b2

2
≤ L(f, I) ≤ U(f, I) ≤ b2

2
.

But this means that the identity function is integrable, and that the
integral over [0, b] is equal to b2/2, as expected from the geometric
interpretation of the integral. �

Example 7.6 Let f = χQ be the characteristic function of Q. Then
f is not integrable on the interval [a, b], no matter how a and b > a are
chosen. Indeed, let P be a partition of [a, b]. In each subinterval, there
exist rational numbers and irrational numbers, so f takes on the values
0 and 1 in every subinterval. But this means that mi = 0 and Mi = 1
for every i, so

L(f, P ) =
n∑
i=1

0 ∆ti = 0, U(f, P ) =
n∑
i=1

1 ∆ti = (b− a),
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regardless of P . The lower integral is therefore 0, while the upper
integral is b − a > 0. Since these are unequal, f is not integrable.
�

Example 7.7 One final but substantial example will illustrate how
areas under curves were calculated before Newton. This serves the dual
purpose of giving us a library of examples, and of emphasizing how dif-
ficult the definition is to use directly. (That said, the value of the result
justifies the expense of effort.) Assume 0 < a < b, and let k be a pos-
itive integer. Consider the monomial function f(t) = tk on [a, b]. We
wish to calculate the integral

∫ b
a
tk dt. Rather than use an “arithmetic”

partition where all subintervals have equal length, we use a “geometric”
partition where the ratio of the lengths of consecutive intervals is the
same, Figure 7.6. The rationale is that the areas of consecutive rectan-
gles will be in geometric progression because the integrand is a power
function, so we can use the finite geometric sum formula to compute
the lower and upper sums.

0 a b

Figure 7.6: The lower and upper sums associated to a geometric parti-
tion.

Let n > 0 be the number of subintervals, and put ρ = n
√
b/a > 1, so

that b = aρn. The partition is P = {ti}ni=0, with ti = aρi. The integrand
is increasing, so the extrema on the interval [ti−1, ti] are achieved at the
endpoints:

mi = (aρi−1)k = ak(ρk)i−1, Mi = (aρi)k for i = 1, . . . , n.

Because Mi = ρkmi for all i, the upper sum is ρk times the lower sum.
We will compute the upper sum, which is formally a little simpler. The
general term is

f(ti) ∆ti = (aρi)k a(ρ− 1)ρi−1 = ak+1 ρ− 1

ρ
(ρk+1)i,
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so the geometric sum formula
n∑
i=1

ri = r
rn − 1

r − 1
implies

U(f, P ) =
n∑
i=1

f(ti)∆ti = ak+1 ρ− 1

ρ
· ρk+1 · (ρk+1)n − 1

ρk+1 − 1

Since ρn = b/a, we have ak+1
(
(ρk+1)n − 1

)
= bk+1 − ak+1, so that

U(f, P ) = ρk (bk+1 − ak+1)
ρ− 1

ρk+1 − 1
.

The reciprocal of the fraction is itself a geometric sum, S(ρ) :=
∑k

i=0 ρ
i.

Now, as n→ +∞, the ratio ρ = (b/a)1/n approaches 1. Because S is a
polynomial in ρ, we have lim(S, 1) =

∑k
i=0 1i = k + 1. Consequently,

U(f, I) ≤ lim
ρ→1

ρk (bk+1 − ak+1)
ρ− 1

ρk+1 − 1
=
bk+1 − ak+1

k + 1
.

To prove that this number really is the integral, just recall that the
upper sum is ρk times the lower sum. As n → +∞, the lower sums
tend toward the same limit as the upper sums, so

bk+1 − ak+1

k + 1
≤ L(f, I).

As before, this simultaneously proves that f is integrable, and evaluates
the integral. We shall see shortly that integrability can be deduced
much more easily; the hard work here is needed to evaluate the integral.
�

Differences of the form F (b) − F (a) arise sufficiently frequently to
warrant special notation: F (x)

∣∣b
x=a

:= F (b) − F (a). In this notation,
Example 7.7 shows that

(7.4)
∫ b

a

tk dt =
tk+1

k + 1

∣∣∣∣b
t=a

for 0 < a < b.

The notation
∫
I
f(t) dt is chosen for the intuition it overlies, that

an integral is a sum of infinitely many infinitesimal terms f(t) dt. The
infinitesimal dt may be viewed as a “renormalizing” factor, weighted so
that

∫ b
a
dt = b − a. The notation is so compelling that it takes on a

life of its own, and leads to reasonable but difficult-to-answer questions
like, “What is ‘dt’?” In this book, the infinitesimal under an integral
sign is a placeholder and mnemonic device, but nothing more.
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7.3 Abstract Properties of the Integral
Integration over a fixed interval [a, b] can be viewed as a real-valued
function whose domain is the set of functions that are integrable on [a, b].
This “integration functional” has several features in common with finite
sums, which is fortunate for our wish that integration correspond (at
least intuitively) to summing infinitesimals. First, it is linear in the
sense of Chapter 3, see Theorem 7.8 below. Second, the integral of a
non-negative function is non-negative. Third, integration satisfies an
analogue of the triangle inequality, see Theorem 7.14. Finally, integra-
tion is “translation invariant” in the sense of Theorem 7.15.

Theorem 7.8. Let f and g be integrable functions on an interval I,
and let c be a real number. Then f + g and cf are integrable, and∫

I

(f + g) =

∫
I

f +

∫
I

g,

∫
I

(cf) = c

∫
I

f.

Proof. Let P = {ti}ni=0 be an arbitrary partition of I, and set

m′i = inf
t∈Ii
{f(t)}, m′′i = inf

t∈Ii
{g(t)}, mi = inf

t∈Ii
{(f + g)(t)},

The infimum of f + g on Ii is at least as large as the infimum of f plus
the infimum of g, namely mi ≥ m′i +m′′i , and with analogous notation,
Mi ≤M ′

i +M ′′
i . Adding up these inequalities,

L(f, P ) + L(g, P ) ≤ L(f + g, P )

≤ U(f + g, P ) ≤ U(f, P ) + U(g, P )

for every partition P . Taking suprema or infima as appropriate shows
that

(7.5)
∫
I

f +

∫
I

g ≤ L(f + g, I) ≤ U(f + g, I) ≤
∫
I

f +

∫
I

g.

This shows simultaneously that f + g is integrable on I, and that the
integral has the stated value. The assertion

∫
I
(cf) = c

∫
I
f is Exer-

cise 7.5.

Example 7.9 Integrals, like limits, cannot distinguish functions that
are equal except at finitely many points. Precisely, if f : I → R is
integrable, and if g : I → R is equal to f except at finitely many
points, then g is integrable, and

∫
I
g =

∫
I
f .
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To prove this, consider the function h = g− f , which is zero except
at finitely many points. If we can show h is integrable and has integral
equal to zero, then the claim will follow by Theorem 7.8 because g =
h+ f . Because h is zero except at finitely many points, we may write

h =
k∑
j=1

cj χ{xj}

for some real constants cj and distinct points xj in I. It is therefore
enough to show that each of the functions χ{xj} is integrable and has
integral equal to zero. This is easy to do from the definition, see Exer-
cise 7.6. �

The integral is monotonic in the sense that if f is a non-negative,
integrable function on [a, b], then

∫ b
a
f ≥ 0. The following is a useful

rephrasing; the proof is left to you (Exercise 7.7).

Theorem 7.10. Let f and g be integrable functions on I. If f(t) ≤ g(t)
for all t ∈ I, then ∫

I
f ≤ ∫

I
g.

In words, inequalities are preserved by integration over a fixed in-
terval. One special case, a direct consequence of Theorem 7.10 and
Example 7.5, is used repeatedly:

Corollary 7.11. If f : [a, b] → R is integrable, and if m ≤ f(t) ≤ M
for all t ∈ [a, b], then

m(b− a) ≤
∫ b

a

f ≤M(b− a).

A “patching property” of the integral is given in Theorem 7.12. The
intuitive content is that to integrate a function over an interval we may
split the interval into finitely many subintervals and sum the integrals
over the separate pieces.

Theorem 7.12. Let f : [a, b] → R be a bounded function, and let
a < c < b. Then f is integrable on [a, b] if and only if f is integrable on
both of the intervals [a, c] and [c, b], and in this case

∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

Proof. Suppose f is integrable on [a, b]. Fix ε > 0, and choose a parti-
tion P of [a, b] such that U(f, P )−L(f, P ) < ε. By adding the point c
if necessary, we may assume c ∈ P . Let P ′ ⊂ P be the set of points
in [a, c]. From the definition it is clear that U(f, P ′) − L(f, P ′) < ε.
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By Proposition 7.4, f is integrable on [a, c]. A similar argument shows
f is integrable on [c, b].

Conversely, suppose f is separately integrable on [a, c] and [c, b]. Fix
ε > 0 and choose respective partitions P ′ and P ′′ for [a, c] and [c, b] such
that U(f, P ′) − L(f, P ′) < ε/2 and U(f, P ′′) − L(f, P ′′) < ε/2. The
union P = P ′∪P ′′ is a partition of [a, b] for which U(f, P )−L(f, P ) < ε.
This shows f is integrable on [a, b] by Proposition 7.4.

In either case, L(f, P ) = L(f, P ′) + L(f, P ′′) and similarly for the
upper sums, which proves

∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

Motivated by this result, we make the following definitions for an
integrable function f : I → R:

(7.6)
∫ a

a

f = 0,

∫ a

b

f = −
∫ b

a

f for all a, b ∈ I.

With these definitions, the following “cocycle property” of the integral
is easily checked.

Proposition 7.13. Let f : I → R be integrable, and let a, b, c ∈ I.
Then ∫ b

a

f +

∫ c

b

f +

∫ a

c

f = 0.

The integral satisfies an analogue of the triangle inequality. As for
finite sums, this result is a tool for estimating an integral in terms of
the absolute value of the integrand.

Theorem 7.14. If f : I → R is integrable, then |f | : I → R is
integrable, and ∣∣∣∣∫

I

f

∣∣∣∣ ≤ ∫
I

|f |.

Proof. The reverse triangle inequality says

(7.7)
∣∣∣|f(x)| − |f(y)|

∣∣∣ ≤ |f(x)− f(y)| for all x, y ∈ I.

Choose an arbitrary partition P of I, and letmi andMi be the infimum
and supremum of f on the ith subinterval. Letting m′i and M ′

i denote
the infimum and supremum of |f | on the ith subinterval, equation (7.7)
implies

(7.8) M ′
i −m′i ≤Mi −mi.
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Now fix ε > 0 and choose a partition P such that U(f, P )−L(f, P ) < ε.
Equation (7.8) implies that for this partition, U(|f |, P )−L(|f |, P ) < ε
as well. Since ε > 0 was arbitrary, |f | is integrable.

The second part is now easy: −|f(x)| ≤ f(x) ≤ |f(x)| for all x; by
Corollary 7.11,

−
∫
I

|f | ≤
∫
I

f ≤
∫
I

|f |, or

∣∣∣∣∫
I

f

∣∣∣∣ ≤ ∫
I

|f |,

as was to be shown.

It is geometrically clear that if we “translate” the graph of f left
or right, then integrate over appropriately shifted limits, the value of
the integral is the same. This property is translation invariance of the
integral.

Theorem 7.15. If f : [a, b]→ R is integrable, and c ∈ R, then∫ b+c

a+c

f(s− c) ds =

∫ b

a

f(t) dt.

Proof. The letters s and t are used for variety, though they also suggest
a “change of variable.” The key observation is that if P = {ti}ni=0 is a
partition of [a, b], then Pc = {ti + c}ni=0 is a partition of [a+ c, b+ c]. If
we set g(s) = f(s− c), then clearly the infimum of g on [ti−1 + c, ti + c]
is equal to the infimum of f on [ti−1, ti] for all i, and similarly for the
suprema. Consequently,

L(f, P ) = L(g, Pc) and P (f, P ) = U(g, Pc)

for every P ; the theorem follows immediately.

Riemann Sums

Let P = {ti}ni=0 be a partition of [a, b], and let f be a bounded function
on [a, b]. A Riemann sum taken from P is an expression of the form

(7.9)
n∑
i=1

f(xi) ∆ti, xi ∈ [ti−1, ti] for i = 1, . . . , n.

Since mi ≤ f(xi) ≤ Mi for all i and all xi ∈ [ti−1, ti], every Riemann
sum from P lies between L(f, p) and U(f, P ). If one has bounds on
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the lower and upper sums, then one can approximate an integral by
any convenient Riemann sum. The practical advantage is that we can
pick the xi in any convenient way, and need know nothing about the
inf or sup of f on the subintervals. Typical Riemann sums are given
by xi = ti−1 (the left-hand sum), xi = ti (the right-hand sum), and
xi = (ti−1 + ti)/2 (the midpoint sum).

7.4 Integration and Continuity

This section contains two important technical results. The first, to the
effect that continuous functions are integrable, gives a large class of
integrable functions, though it does not directly give information on
evaluating specific integrals. The second result asserts that a definite
integral is a continuous function of its upper limit. The idea of regard-
ing an integral as a function of its upper limit is fundamental, and is
discussed at length below.

Theorem 7.16. Let f : [a, b] → R be a continuous function. Then
f is integrable on [a, b].

Proof. We will show the upper and lower sums can be made arbitrarily
close with a suitable choice of partition, thereby proving f is integrable
by Proposition 7.4. The key fact is Theorem 5.5: A continuous function
on a closed, bounded interval is uniformly continuous.

Fix ε > 0. By uniform continuity of f , there exists a δ > 0 such
that |x − y| < δ implies |f(x) − f(y)| < ε

2(b−a)
. Choose an arbitrary

partition P of mesh at most δ. For such a partition, the upper and
lower sums are ε-close; indeed, if x and y are in the subinterval Ii, then
|x− y| < δ, so |f(x)− f(y)| < ε

2(b−a)
. It follows that

Mi −mi = sup{f(x) | x ∈ Ii} − inf{f(x) | x ∈ Ii} ≤ ε

2(b− a)
.

Since i was arbitrary, this inequality holds for all i, so we have

U(f, P )− L(f, P ) =
n∑
i=1

(Mi −mi)∆ti ≤ ε

2(b− a)

n∑
i=1

∆ti =
ε

2
< ε.

By Proposition 7.4, f is integrable.
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Theorem 7.16 is a “hunting license” in the same way the extreme
value theorem is: It asserts that certain functions are integrable, but
does not say how to find the integral of a particular function. However,
Theorem 7.16 does give a theoretical basis for numerical approximation
of an integral, provided the integrand f is known explicitly. If the
“winning strategy” of the proof can be implemented computationally,
then the integral of f will be approximated to within ε by either an
upper or lower sum for a convenient partition of mesh at most δ. The
two corollaries below are restatements that are useful in applications.
The first is often called Riemann’s theorem.

Corollary 7.17. Let f : [a, b] → R be continuous. Fix ε > 0, and
choose δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε

2(b− a)
.

If P is a partition with ‖P‖ < δ, then∣∣∣∣S − ∫ b

a

f

∣∣∣∣ < ε for every Riemann sum S taken from P .

Corollary 7.18. Let f : [a, b] → R be continuous, and let (Pn) be a
sequence of partitions—not necessarily nested—such that ‖Pn‖ → 0 as
n→∞. If Sn is a Riemann sum taken from Pn, then lim

n→∞
Sn =

∫ b
a
f .

For example, P = {xi}ni=0 might be the partition with equally-
spaced points. There are much better numerical schemes for evaluating
integrals, but they often work because the method can be proven to be
better than the one given by the proof of Theorem 7.16.

The Integral as a Function of the Upper Limit

Let f : [a, b] → R be integrable. For each x ∈ [a, b], the function f is
integrable on [a, x] by Theorem 7.12. Define F : [a, b]→ R by

(7.10) F (x) =

∫ x

a

f =

∫ x

a

f(t) dt.

A bit of thought confirms that F takes a single number as input, and
returns a single number as output. Potentially, this process will produce
new, interesting functions. However, the definition of F probably looks
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strange; if x is given, how (in practical terms) is one to evaluate F (x)?
This is our first serious example of a function that is not presented as
an algebraic formula; we must appeal to the definition of the integral.
To evaluate F (x) from the definition for a single x, we must compute
the supremum of the set of lower sums of f as P ranges over the set of
partitions of [a, x]. As we have already seen in Examples 7.5 and 7.7,
this is a relatively laborious and non-algorithmic task, even when f is
a monomial. To see what we hope to gain, let us recall the result of
Example 7.7:

(7.11)
∫ x

a

tk dt =
xk+1 − ak+1

k + 1
a, x > 0, k ∈ N.

Depending how this equation is viewed, the result is either disappoint-
ing or intriguing. Perhaps, hoping to discover exotic new functions, we
are disappointed to recover only a polynomial function as the integral of
a monomial. We might, however, find it interesting that the integral on
the left (a complicated object) is equal to the polynomial on the right
(a simple object), and realize that this is a substantial and non-trivial
piece of information. If you do not see why, it may be a good idea
to review the philosophical points about functions made in Chapter 3.
In particular, a single function may be described by two completely
different “rules.” The rule on the left-hand side of equation (7.11) is
complicated, but has an interesting interpretation (the area of a cer-
tain non-polygonal region). The rule on the right is simplicity itself,
but is of no particular intrinsic significance. That the two rules define
the same function is truly useful! Suppose we wish to find the area of
the region bounded by the t axis, the parabola y = t2, and the lines
t = 1 and t = 2. It is easy to express this area as an integral, but the
integral is difficult to evaluate directly from the definition. In light of
equation (7.11), we need not use the definition; we immediately read
off that

area =

∫ 2

1

t2 dt =
23 − 13

3
=

7

3
.

If we had the means to produce other “magic formulas” like this one,
we would have a powerful computational tool at our disposal.

It turned out that the integral of the kth power function was not
a new function, but in fact there are many simple integrals that do
give rise to “exotic” functions that cannot be expressed through purely
algebraic means. One of the most important non-algebraic functions is
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the natural logarithm, defined by the innocuous-looking integral

L(x) =

∫ x

1

dt

t
, t > 0.

In Exercise 7.17, you are asked to establish some basic properties of the
natural logarithm. Aside from the details, you should note carefully
how abstract properties of the integral are used to deduce facts about
functions defined by integrals. Other interesting integrals are

asin(x) =

∫ x

0

dt√
1− t2 , |x| < 1,

and
atan(x) =

∫ x

0

dt

1 + t2
, x ∈ R.

Amazingly, these functions are related to circular trigonometry, but
to see why, and to gain deeper understanding of functions defined as
integrals, requires the material in Chapter 8.

Integration and O Notation

Our proof of equation (7.11) required the assumptions 0 < a ≤ x. In
order to study how O notation behaves under integration, we need to
extend our knowledge to the case a = 0. The proof tells us that both
sides of (7.11) are continuous in a, so we may take the limit at a = 0
by evaluating.

Proposition 7.19. If k ≥ 0 is an integer and x is real, then∫ x

0

tk dt =
xk+1

k + 1
.

Proof. We first assume x > 0. Fix a ∈ (0, x), and note that 0 ≤ tk ≤ ak

for t ∈ [0, a]. Using the “trivial” partition P ′ = {0, a}, we have

0 = L(f, P ′) ≤ U(f, P ′) = ak+1.

Since refining improves the bounds, the same inequalities hold for every
partition P ′ of [0, a]. Now let P ′′ be a partition of [a, x]; as in the proof
of Theorem 7.12, if P = P ′ ∪ P ′′, then

L(f, P ′′) ≤ L(f, P ′) + L(f, P ′′) = L(f, P ) ≤ U(f, P )

= U(f, P ′) + U(f, P ′′) ≤ ak+1 + U(f, P ′′).
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Taking the supremum of the lower sums and infimum of the upper sums
(but keeping a fixed), we have

xk+1 − ak+1

k + 1
≤ L(f, P ) ≤ U(f, P ) ≤ ak+1 +

xk+1 − ak+1

k + 1
.

Letting a→ 0, we find that
∫ x

0

tk dt =
xk+1

k + 1
by the squeeze theorem.

The case x < 0 may be handled by repeating the calculation of
Example 7.7, changing signs where appropriate. Alternatively, Propo-
sition 7.13 and Exercise 7.13 imply that if y > 0, then∫ −y

0

tk dt = −
∫ 0

−y
tk dt = −

∫ y

0

(−t)k dt = (−1)k+1

∫ y

0

tk dt,

which reduces the case x < 0 to the case y > 0.

We next establish the fundamental principle that “integration in-
creases the order of vanishing by one” in the following sense:

Theorem 7.20. Let k ∈ N, and let f be integrable on some interval
containing a. If f(x) = O

(
(x − a)k

)
on some interval I containing a,

then
∫ x
a
f = O

(
(x− a)k+1

)
on I.

Proof. If we define g(x − a) = f(x) then g(u) = O(uk), namely there
exists a real number C such that |g(u)| ≤ Cuk for u in some interval
about 0. Theorem 7.15 implies∫ x

a

f(t) dt =

∫ x−a

0

g(u) du,

so by the Theorem 7.14, Proposition 7.19, and equation (7.11) we have∣∣∣∣∫ x

a

f(t) dt

∣∣∣∣ =

∣∣∣∣∫ x−a

0

g(u) du

∣∣∣∣ ≤ C ·
∣∣∣∣∫ x−a

0

uk du

∣∣∣∣
≤ C

k + 1
|u|k+1

∣∣∣x−a
u=0

= O
(
(x− a)k+1

)
in some interval about a.

Theorem 7.20 is useful, both theoretically and practically; it allows
us to study integrals without dealing directly with εs and δs. To give a
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simple but important application, we will prove that functions defined
by integrals are automatically continuous. The proof foreshadows the
so-called fundamental theorem of calculus, the key by which a large
class of functions can be integrated.

Corollary 7.21. Let f : [a, b] → R be integrable. The function F
defined by

F (x) =

∫ x

a

f, x ∈ [a, b],

is continuous.

Proof. By assumption, f is bounded, that is, f = O(1) on [a, b]. If x
and x+ h are in [a, b], then

|F (x+ h)− F (x)| =
∣∣∣∣∫ x+h

a

f −
∫ x

a

f

∣∣∣∣ =

∣∣∣∣∫ x+h

x

f

∣∣∣∣ = O(h)

by the theorem. This proves not merely that F is continuous, but
that F is Lipschitz (Exercise 5.15). Further, every bound on |f | is a
Lipschitz constant for F .

You might wonder whether every continuous function is the integral
of some other function. The answer is “no”, because there exist con-
tinuous functions that are not Lipschitz. The square root function on
[0, 1] is an example.

An example will illustrate how F is found in concrete situations.
Because we have relatively few calculational tools available, the example
is (calculationally) extremely simple.
Example 7.22 Let f : R → R be the signum function, and let F
be the integral, F (x) =

∫ x
0
f . Consider the cases x > 0 and x < 0

separately. Suppose x > 0. The signum function is equal to 1 on
the half-open interval (0, x], and is zero at 0. Since the integral is not
altered by changing the value of f at finitely many points, we may as
well assume f is equal to 1 on [0, x]. Thus

F (x) =

∫ x

0

f =

∫ x

0

1 dt = x for x ≥ 0.

Similarly, if x < 0, then f is equal to −1 on the interval [−1, x), and
after changing the value at 0 we find that

F (x) =

∫ x

0

f = −
∫ 0

x

(−1) dt = −(−1)(0− x) = −x for x < 0.

In summary, F (x) = |x| for x ∈ R. �
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7.5 Improper Integrals
Integration, by its very nature, requires a bounded function whose do-
main is a bounded interval. There are situations in which one wants
to relax one or both of these requirements. Improper integration is a
means of generalizing ordinary integrals to special situations where the
integrand and/or interval of integration is unbounded. A few examples
will illustrate the type of question we hope to answer.

The function f : [0, 1]→ R defined by

f(t) =

{
1/t if t > 0

0 if t = 0

is unbounded near 0, but locally bounded everywhere else. Suppose we
wish to calculate the integral of f on [0, 1]. No matter what partition
we pick, there is some subinterval on which f is unbounded, so it is
impossible to compute an upper sum. A potential remedy is to take δ
with 0 < δ < 1, regard the integral

F (δ) :=

∫ 1

δ

1

t
dt

as a function of δ, and to consider lim(F, 0+). If this limit exists, then f
is said to be “improperly integrable” on [0, 1]. By Exercise 7.17, the limit
does not exist in this case, so the reciprocal function is not improperly
integrable on [0, 1]. (The value of the integrand at 0 is immaterial; im-
proper integrability is determined solely by “how rapidly” the integrand
grows in absolute value near points where it is unbounded.)

If instead we wished to improperly integrate f(t) = 1/
√|t| over

[−1, 1], we would first split the interval of integration as [−1, 0] ∪ [0, 1]
(to guarantee the integrand is only unbounded near one endpoint of
each subinterval), then consider two separate improper subintegrals. If
both improper subintegrals exist, then the original function is “improp-
erly integrable.” Unfortunately, we do not at this stage have the means
to decide this question.

Our final example concerns the reciprocal function, but on the un-
bounded interval [1,+∞). The integrand is bounded, but it is impossi-
ble to partition the interval, because a partition has only finitely many
points. The idea in this case is to attempt to define∫ ∞

1

1

t
dt = lim

R→+∞

∫ R

1

1

t
dt.
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Again by Exercise 7.17, the limit does not exist.
In general, an improper integral is an integral expression in which

the integrand or interval of integration (or both) is unbounded. To
decide whether an improper integral exists (or “converges”), the interval
is split into finitely many subintervals such that on each piece either
the interval is unbounded or the integrand is unbounded at exactly one
endpoint, but not both. Each of the resulting improper integrals is
considered separately. If all of them have a limit, then the sum of the
limits is declared to be the value of the original expression. If one or
more of the sub-problems fails to have a limit, then the original integral
does not exist, or “diverges”. It is not difficult to show that subdivision
of the domain may be done in any convenient way, subject to the above
criteria. The notation

∫
R
is sometimes encountered in lieu of

∫ +∞
−∞ .

Improper integrability is rarely decided by exact evaluation of the
approximating “proper” integrals; rather, existence is deduced by ap-
propriately estimating the approximating integrals. There is a useful
integral test that relates summability of series and existence of improper
integrals.

Proposition 7.23. Let f : [0,∞) → R be a non-increasing, posi-
tive function, and let ak = f(k) for k ∈ N. The sequence (ak)

∞
k=0 is

summable iff f is improperly integrable. In other words,
∞∑
k=0

ak converges iff
∫ ∞

0

f(t) dt converges.

In Exercise 7.8 you will show that a non-increasing function is au-
tomatically integrable, so this hypothesis need not be made separately.
The lower limit on the summation/integral is immaterial; convergence
of an improper integral, like convergence of a series, is entirely con-
tingent on the behavior of the tail, and has nothing to do with the
behavior of the integrand on a bounded interval, or with finitely many
terms of the series.

Proof. Let k ∈ N. Because f is positive and non-increasing, we have

0 < ak+1 = f(k + 1) ≤ f(x) ≤ f(k) = ak for all x ∈ [k, k + 1].

Because the interval [k, k + 1] has length 1, the previous inequality
integrates to

ak+1 ≤
∫ k+1

k

f(t) dt ≤ ak for all k ∈ N.
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0 k k + 1 N N + 1

Figure 7.7: Bounding an integral above and below by partial sums of a
series.

Summing these inequalities over k = 0, . . . , N , we have

0 <
N+1∑
k=1

ak =
N∑
k=0

ak+1 ≤
∫ N+1

0

f(t) dt ≤
N∑
k=0

ak.

The series are lower and upper sums for the integral, see Figure 7.7. It
follows that the integral is bounded as N → +∞ iff the partial sums
of the series are bounded, which was to be shown.

Using the “p-series test” (Example 4.64) and Proposition 7.23, you
can easily determine when the improper integral∫ ∞

1

x−r dx

converges, see Exercise 7.28. These integrals are very useful for esti-
mating improper integrals with more complicated integrands. Improper
integrals are a source of many delightful and ingenious formulas, but
such applications must wait until we have a larger collection of functions
at our disposal.

Exercises

Exercise 7.1 Let f : [−2, 2]→ R be the step function defined by

f(x) =


−1 if −1 ≤ x < 0

1 if 0 ≤ x ≤ 1

0 otherwise
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Make a careful sketch of f , then sketch, on the same set of axes, the
functions

F0(x) =

∫ x

0

f, F1 =

∫ x

−1

f.

Find an algebraic formula for F1. �
Exercise 7.2 Let f : [a, b] → R be a step function. Prove that the
definite integral F is piecewise linear. �
Exercise 7.3 Modify the argument in Example 7.5 to evaluate∫ x

0

t2 dt for x > 0

directly. Give two general reasons that the squaring function is inte-
grable on [0, x]. (The calculation of the area under a parabola is due
to Archimedes of Syracuse.) �
Exercise 7.4 Suppose f is integrable on [a, b], and that c ∈ [a, b].

(a) Show that the functions defined by

F (x) =

∫ x

a

f(t) dt and G(x) =

∫ x

c

f(t) dt

differ by a constant. Hint: Use Proposition 7.13.

(b) If H(x) =

∫ b

x

f(t) dt, how are F and H related?

�
Exercise 7.5 Complete the proof of Theorem 7.8 by showing that if f
is integrable on I and c ∈ R, then

∫
I
(cf) = c

∫
I
f .

Suggestion: The claim is obvious if c = 0. Consider the cases c > 0
and c < 0 separately. �
Exercise 7.6 Prove that the characteristic function of a point is
integrable, with integral zero. More precisely, if a ≤ x ≤ b, then
χ{x} : [a, b]→ R is integrable, and∫ b

a

χ{x} = 0.

�
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Exercise 7.7 Prove that if f is a non-negative integrable function
on [a, b], then

∫ b
a
f ≥ 0. Use this result to prove Theorem 7.10. �

Exercise 7.8 Prove that a non-decreasing function f : [a, b] → R is
integrable.
Suggestion: Boundedness is clear. Consider partitions of [a, b] into
subintervals of equal length and write the difference of the lower and
upper sums explicitly. �
Exercise 7.9

(a) Give an example of a non-decreasing function f : [0, 1] → R that
has infinitely many discontinuities.

(b) Prove that the denominator function of Example 3.11 is integrable
on the interval [0, 1]. What is the value of the integral?

�
Exercise 7.10

(a) Prove that a function f : [a, b] → R is integrable if and only if
the following condition holds: For every ε > 0, there exist step
functions s1 and s2 such that s1 ≤ f ≤ s2 on [a, b] and∫ b

a

(s2 − s1) < ε.

Intuitively, an integrable function can be “sandwiched” between
step functions whose integrals are arbitrarily close.

(b) For each of the following functions f on [0, 1], sketch the graphs
of a pair of step functions as in part (a): The identity function;
the characteristic function of the origin; the “1/q” function.

�
Exercise 7.11

(a) Show that if f is integrable on [a, b], then there exist continuous
functions g and h such that g ≤ f ≤ h on [a, b] and∫ b

a

(h− g) < ε.

The result of the previous exercise and a sketch should be helpful.
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(b)For each of the following functions f on [0, 1], sketch the graphs of a
pair of continuous functions as in part (a): The identity function;
the characteristic function of the origin; the “1/q” function.

�
Exercise 7.12 Let f and g be integrable functions on [a, b].

(a) Prove that f 2 is integrable on [a, b].
Suggestion: By Theorem 7.14, |f | ≥ 0 is integrable. Use f 2 = |f |2
to bound the lower and upper sums.

(b) Prove that fg is integrable on [a, b].
Hint: 2fg = (f + g)2 − f 2 − g2.

The algebraic trick in part (b) is a “polarization identity”. �
Exercise 7.13 Let a and b be real numbers, and let f be an integrable
function on the closed interval with endpoints ca and cb for some real c.
Prove that ∫ cb

ca

f(t) dt = c

∫ b

a

f(ct) dt.

Suggestion: The case c = 0 is obvious. Successively consider the cases:
a < b and c > 0; a < b and c = −1; a < c and c < 0; a > b and c ∈ R.
�
Exercise 7.14 Let a > 0, and let f be integrable on [−a, a]. Use
Exercise 7.13 to prove the following:

(a) If f is odd, then
∫ a

−a
f = 0.

(b) If f is even, then
∫ a

−a
f = 2

∫ a

0

f .

(c) Let F (x) =
∫ x

0
f for x ∈ [−a, a]. Prove that if f is even, then F is

odd, and that if f is odd, then F is even.

This is merely an exercise is manipulating integrals; nothing technical
is required. �
Exercise 7.15 Use Example 7.7 and Exercise 7.14 to show that∫ x

0

|t| dt =
x|x|

2
for all x ∈ R.
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Hint: Consider separately the cases x ≥ 0 and x < 0. �
Exercise 7.16 Prove that∫ b

a

tk dt =
tk+1

k + 1

∣∣∣∣b
t=a

for all a, b ∈ R.

Suggestion: First use Example 7.7 and Proposition 7.19 to treat the
case a < 0, b = 0; then split the integral at 0. �
Exercise 7.17 One of the most important functions of analysis is the
natural logarithm function log : (0,∞)→ R, defined1 by

log x =

∫ x

1

1

t
dt.

(a) Use Proposition 7.13 to prove that log is an increasing function,
and that log(1) = 0.

(b) Prove that

log(ab) = log(a) + log(b) for a, b > 0.

Suggestion: Write∫ ab

1

1

t
dt =

∫ a

1

1

t
dt+

∫ ab

a

1

t
dt,

then use Exercise 7.13.

(c) Use part (b) to prove that log(1/a) = − log a for all a > 0, and
that more generally, log(an) = n log a for all a > 0 and n ∈ Z.
Conclude that log maps (0,∞) onto R.

(d) Prove that the reciprocal function is not improperly integrable on
[0, 1], nor on [1,∞).

(e) By part (c), there is a real number e > 0 with log(e) = 1, and by
part (a) this number is unique. Use explicit lower and upper sums
to prove that 2 < e < 4. A sketch will be immensely helpful.

1No mathematician calls this function ln outside a calculus course.
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(f) In fact, e < 3; geometrically, the line tangent to the graph y =
1/t at t = 2 lies below the graph, and encloses one unit of area
between t = 1 and t = 3. Expressing this argument rigorously
using only tools developed so far is not difficult. First prove that
1 − 1

2
t ≤ 1

t
for all t > 0. Next, integrate both sides over [1, 3],

using Exercise 7.16 to handle the linear polynomial. To complete
the proof, invoke an appropriate theorem from this chapter.

The number e plays a starring role in mathematics. In Chapter 12 we
will find a series representation that converges rapidly. �
Exercise 7.18 By the proof of Proposition 7.23,

n∑
k=2

1

k
<

∫ n

1

1

t
dt <

n−1∑
k=1

1

k
for all n ≥ 2.

(a) Make a careful sketch illustrating these inequalities.

(b) For n ≥ 2, set

γn =

∫ n

1

1

t
dt−

n∑
k=2

1

k
= log n−

n∑
k=2

1

k
.

Prove that the sequence (γn)∞n=2 is increasing and bounded above.
Your sketch should suggest an inductive approach.

(c) By part (b), γ := limn γn exists. Determine whether or not γ is
rational.2

The constant γ was introduced by Euler. �
The average of a finite list of numbers is the sum of the list di-

vided by the number of entries. Analogously, the average value of an
integrable function f : [a, b]→ R is defined by:

(7.12) Average value of f on [a, b] =
1

b− a
∫ b

a

f =

∫ b

a

f

/∫ b

a

1.

If f is non-negative, then the area under the graph is equal to the area
of a rectangle of width (b − a) and height equal to the average value
of f . If the interval is fixed, the average may be denoted f or favg.

Exercise 7.19 If f is integrable on [a, b], then
∫ b

a

(f−f) = 0. �
2Resolving this open question will earn you an excellent publication and make

you famous in mathematical circles.
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Exercise 7.20 Let f : [a, b] → R be continuous. For each positive
integer n, let Pn = {ti}ni=0 be the partition of [a, b] into n intervals of
equal length. Prove that

lim
n→+∞

1

n+ 1

n∑
i=0

f(ti) = favg.

This further justifies the definition of “average value”. �
Exercise 7.21 Prove that if f : [a, b] → R is continuous, then there
exists a c ∈ (a, b) such that f(c) = f . This result is called the mean
value theorem for integrals.

If f : [0, 1] → R is the squaring function, f(x) = x2, find the
value of c in (0, 1) that satisfies the mean value theorem, and carefully
sketch f and its average value. �
Exercise 7.22 Let f be integrable on some interval (c− η, c+ η).

(a) Prove that if 0 < |h| < η, then

(7.13)
1

h

∫ c+h

c

f

is the average value of f on the closed interval with endpoints c
and c+ h (even if h < 0).

(b) Assume f is continuous at c. Prove that

lim
h→0

1

h

∫ c+h

c

f = f(c).

(c) Show by example that the result of (b) fails in general if f is
discontinuous at c.

�
Exercise 7.23 Let f : [a, b] → R be integrable. Prove that there
exists an x ∈ [a, b] such that∫ x

a

f(t) dt =

∫ b

x

f(t) dt.

Show by example that it is not generally possible to choose x ∈ (a, b).
�
Exercise 7.24 Let f : [0, 1] → R be a function that is integrable
on [δ, 1] for every δ in (0, 1). Give a proof or counterexample to each
of the following:
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(a) If lim
δ→0

∫ 1

δ

f(x) dx exists, then f is integrable on [0, 1].

(b) If lim(f, 0) exists, then f is integrable on [0, 1].

Note that f was not assumed to be bounded. �
Exercise 7.25 Let g : [0,∞) → R be non-negative and improperly
integrable. Assume that f : [0,∞) → R is integrable on the interval
[0, x] for all x > 0, and that there exists an R > 0 such that |f(t)| ≤ g(t)
for t ≥ R. Prove that f is improperly integrable on [0,∞). �
Exercise 7.26 Suppose f is integrable on [0, x] for all x > 0. As usual,
let

f+ = max(f, 0), f− = min(f, 0)

be the positive and negative parts of f . Prove that |f | is improperly
integrable on [0,∞) iff f+ and f− are improperly integrable on [0,∞).
�
Exercise 7.27 Using Exercise 7.25 and part (d) of Exercise 7.17,

(a) Prove that t 7→ t−r is not improperly integrable on [1,∞) for r < 1.
Hint: If r < 1 and t ≥ 1, then t−r ≥ t−1.

(b) Prove that t 7→ t−r is not improperly integrable on [0, 1] for r > 1.

You do not need to know how to integrate t−r dt, and should not use
this knowledge if you have it. If you are fastidious, you may regard r as
rational, since we have not yet defined tr for irrational r. �
Exercise 7.28 Prove that if r > 1, then

∫ +∞
1

t−r dt converges, subject
to the same provisos as in the preceding problem. Use this result to
show that ∫ +∞

0

dt

1 + t2
and

∫ +∞

2

dt

t2 − t
converge. The first should be easy; the second is a little trickier, but
not difficult if approached correctly. �
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Chapter 8

Differentiation

Integration over an interval is a process of “putting together” infinitesi-
mals f(t) dt to obtain a real number. By varying the interval, we obtain
a function. The other major operation of calculus is in a sense opposite.
Differentiation is the process of finding the rate of change of a function,
of “pulling apart” a function into infinitesimal increments. By varying
the point at which the rate of change is taken, we obtain a new function
that measures the rate of change of the original.

Newtonian and Leibniz Notation

For us, infinitesimals are a convenient fiction, and it is worth a short
digression to re-discuss their status. The concept of “rate of change” is
defined when a quantity y depends upon another quantity x, that is,
when y is a function of x. Contemplation reveals that the central object
of interest is the function itself, not the names we give to its input
and output values. There are two notations prominent in calculus:
Newtonian notation, in which the function is emphasized, and Leibniz
notation, in which names of the inputs and outputs are emphasized.
Each has merits and drawbacks:

• Newtonian notation is more compact and does not introduce the
spurious symbol for the “independent variable”, but does not sug-
gest the infinitesimal nature of arguments.

• Leibniz notation is often easier to use for calculation and real-
world modeling, but treats infinitesimals as if they were numbers,
and assigns multiple meanings to symbols, leaving the user to
read in the correct interpretation.

261
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The less provocative Newtonian notation is analogous to the frame of
a building. Its importance is usually not direct utility, but the way it
unambiguously expresses the concepts of calculus in terms of numbers
and functions, and the support it thereby gives to the friendlier but
more easily abused Leibniz notation. Everyone uses Leibniz notation,
but mathematicians unconsciously translate everything back to Newto-
nian language, especially when Leibniz notation falters. In order to use
the calculus to full benefit, you should be fluent in both languages, and
be able to translate freely between them. For that reason, the book
develops the languages in parallel.

We have not defined infinitesimals,1 and may therefore only use
them for guidance, but not in definitions or proofs. Keeping this firmly
in mind, it must be acknowledged that “calculus” in the traditional
sense is precisely the manipulation of infinitesimal quantities. Several
theorems that justify such manipulations are presented in this chap-
ter and the next, and often the infinitesimal (Leibniz) interpretation is
more compelling—and therefore easier to remember and use—than the
limit-based (Newtonian) interpretation. For conceptual reasons alone
(to say nothing of their calculational value), it is unwise to dispose of
infinitesimals completely. In the final analysis, however, we must be
certain that neither our definitions nor our arguments rest on anything
but axioms for the real numbers. If infinitesimals are manipulated
carelessly they lead to apparent paradoxes and other philosophical co-
nundrums. In case of doubt, the definition is always the last word.

8.1 The Derivative

Suppose that “y is a function of x”. The rate of change of y with respect
to x is the ratio of the change in function values to the change in input
values. Translating this into Newtonian language, if f is a function and
if [a, b] is an interval contained within the domain of f , then

(8.1) Average rate of change of f over [a, b] =
f(b)− f(a)

b− a .

When the graph of f is a line (i.e., “the rate of change of f is constant”),
the quotient above gives the slope of the line, in accord with intuition.

1More to the point, we have not shown that the existence of infinitesimals is
logically consistent with the axioms of R.
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How should one define the rate of change of a function at a point?
The naive answer, “Set a = b in the formula above,” is not helpful, for
the right-hand side becomes the indeterminate expression 0/0. In the
early days of calculus, the “answer” was to take a and b = a+ dx to be
infinitesimally close:

Rate of change of f at a =
f(a+ dx)− f(a)

dx
=
dy

dx
.

This idea works remarkably well in practice (if applied judiciously),
but is subject to legitimate complaints. The symbol dx is meant to
represent a positive quantity that is smaller than every positive real
number. What is dx, then? If one’s aim is to prove that calculus is free
of logical contradiction, this objection is fatal. If the goal is simply to
use calculus to describe the natural world, then the objection is moot
as long as one’s conclusions do not differ markedly from reality.

With the benefit of three centuries’ hindsight (and the results of
Chapter 4 at our disposal), we can neatly circumvent the objection.
Let f be a function whose domain contains an interval (x − η, x + η)
for some η > 0. For the moment, the point x is arbitrary but fixed. If
0 < |h| < η, then a Newton quotient of f at x is an expression

(8.2)
∆y

∆x
(x, h) :=

f(x+ h)− f(x)

h
,

see Figure 8.1. The Newton quotient in (8.2) is the average rate of
change of f on the interval with endpoints x and x + h, cf. (8.1). You
should verify that this is true even when h < 0.

(
x, f(x)

)
(
x + h, f(x + h)

)
Slope = f(x+h)−f(x)

h

Figure 8.1: The Newton quotient as an average rate of change.

For simplicity, we may write ∆xf(h) instead of ∆y
∆x

(x, h).2 For each x
in the domain of f , ∆xf is a function whose domain consists of all non-

2The notation ∆xf is not standard in this context.
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zero h such that x + h is in the domain of f . By assumption, ∆xf is
defined on a deleted interval about 0, but is not defined at 0; however,
∆xf may well have a limit at 0.3 If

lim(∆xf, 0) = lim
h→0

∆y

∆x
(x, h)

exists, then the limit is denoted f ′(x) or dy
dx

(x) in Newton and Leibniz
notation respectively, and called the derivative of f at x, Figure 8.2.
In this event, f is said to be differentiable at x, and the derivative is
interpreted as the “instantaneous rate of change” of f at x.

(
x, f(x)

)

Figure 8.2: The tangent line as a limit of secant lines.

The Leibniz notation dy
dx

for the derivative suggests a quotient of
infinitesimals, namely the infinitesimal increment of y divided by the
corresponding infinitesimal increment in x. Though we do not define
the symbols dy and dx individually, we do assign a precise meaning to
their “quotient”: The latter is the limit of ratios ∆y

∆x
as ∆x → 0. We

must be wary of using familiar-looking manipulations on these quo-
tients, however. Before we may use identities such as

d(y + z)

dx
=
dy

dx
+
dz

dx
or

dz

dy

dy

dx
=
dz

dx
,

we must revert to the definitions of these expressions as limits of real
quotients to verify whether or not such equations are indeed true. At
present we have no logical basis for assuming such formulas extend to
infinitesimal quotients.

3In this assertion is resolved one of Zeno’s paradoxes of motion, as well as the
heated debate between Newton and Bishop Berkeley on the nature of infinitesimals.
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Derivatives and o Notation

The “calculi of sloppiness” we introduced in Chapter 4 come into their
own in differential calculus. In o notation, if f is differentiable at x,
then

f(x+ h)− f(x)

h
= f ′(x) + o(1) at h = 0.

Multiplying by h and adding f(x) to both sides, we find that if f is
differentiable at x, with derivative f ′(x), then

(8.3) f(x+ h) = f(x) + h f ′(x) + o(h) at h = 0.

This argument can be run in the other direction as well; if f is defined on
a neighborhood of x, and if f(x+h) = f(x)+h c+o(h) at h = 0, then f
is differentiable at x and f ′(x) = c. Equation (8.3) is an extremely
useful reformulation of the definition of differentiability: In order to
prove a function φ is differentiable at x, we need only show that there
exists a number c such that φ(x + h) = φ(x) + h c + o(h) near h = 0.
Further, if we can express c in terms of known quantities, then we have
found φ′(x).

The definition of the derivative is brief (unlike the definition of the
integral), but deceptively simple. Much of the technical machinery of
Chapter 4 is involved, and there are deep consequences of the definition
that seem intuitively plausible but require the results of Chapter 5.
These deeper properties are collected in Chapter 9. This chapter is
concerned with the elementary aspects of differentiation, which often
turn out to be simple, calculational consequences of (8.3). Compared
to integration, differentiation is relatively algorithmic from the defini-
tion. Derivatives of sums, products, quotients, and compositions of
differentiable functions can be calculated with a few easily-memorized
formulas. Differentiability at a point manifests itself geometrically as
existence of a line “tangent to” the graph, and the sign of f ′(x) tells
whether the function is increasing or decreasing at x in a sense.

Proposition 8.1. If f is differentiable at x, then f is continuous at x.

Proof. By assumption, the domain of f contains some interval about x,
so x is a limit point of the domain, and it makes sense to ask whether
or not lim(f, x) = f(x). But since f is differentiable at x, we have

f(x+ h) = f(x) + h f ′(x) + o(h) = f(x) +O(h) + o(h) = f(x) +O(h).

This implies f is continuous at x.
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The converse of Proposition 8.1 is false. The absolute value function,
f(x) = |x|, is continuous at 0, but not differentiable at 0. Indeed, the
Newton quotient is

f(h)− f(0)

h− 0
=
|h|
h

= sgn h,

the signum function, which has no limit at 0. Generally, a continu-
ous function is differentiable nowhere, though we will not exhibit an
example until Chapter 11.

Among the most basic functions are monomials, for which there is
a simple differentiation formula:

Proposition 8.2. Let f(x) = xn for n a positive integer. Then f is
differentiable everywhere, and f ′(x) = nxn−1 for every x ∈ R. In
Leibniz notation, d(xn)

dx
= nxn−1.

In particular, the derivative of a monomial is a monomial of degree
one lower. The formula extends to n = 0 if we agree that 0x−1 = 0 for
all x. We will see presently that this result allows us to differentiate
polynomial functions with ease.

Proof. The binomial theorem implies

(x+ h)n = xn + hnxn−1 +O(h2) = xn + hnxn−1 + o(h)

at h = 0. The proposition follows at once.

Example 8.3 A function f : R → R can be differentiable at exactly
one point, and discontinuous at every other point. An example is

f(x) =

{
x2 if x ∈ Q,

0 if x 6∈ Q.

0

If x 6= 0, then lim(f, x) does not exist by Corollary 4.21. Since f is
not continuous at x 6= 0, a fortiori f is not differentiable at x, by
Proposition 8.1. To differentiate f at 0, compute the Newton quotient:

∆0f(h) =
f(h)− f(0)

h
=

{
h if h ∈ Q,

0 if h 6∈ Q.



8.1. THE DERIVATIVE 267

Since 0 ≤ ∆0f(h) ≤ |h| for all h 6= 0, the squeeze theorem implies
lim(∆0f, 0) exists and is equal to 0; in other words, f ′(0) = 0.

Generally, let f : (−η, η) → R be a function such that f(h) =
O(h2) near h = 0. Geometrically, the graph of f lies between a pair
of parabolas of the form y = ±Cx2. Since f(0) must be 0, we have
f(h) = f(0) + h 0 + o(h), which shows that f ′(0) exists and is equal
to 0. �

Derivatives of Sums, Products, and Quotients

As mentioned, there are calculational rules for differentiating a sum,
product, or quotient of differentiable functions. As an easy translation
exercise, you should express the conclusions of the following results in
Leibniz notation.

Proposition 8.4. Suppose f and g are differentiable at x, and that
c ∈ R. Then the functions f + g and cf are differentiable at x, with
derivatives given by (f + g)′(x) = f ′(x) + g′(x) and (cf)′(x) = c f ′(x).

Proof. By hypothesis, there exist real numbers f ′(x) and g′(x) such
that

(8.4)
f(x+ h) = f(x) + h f ′(x) + o(h)

g(x+ h) = g(x) + h g′(x) + o(h)

}
at h = 0.

Adding these equations, we have

(f + g)(x+ h) = (f + g)(x) + h
(
f ′(x) + g′(x)

)
+ o(h).

This simultaneously proves that f + g is differentiable, and that the
derivative at x is f ′(x) + g′(x). The assertion for constant multiples is
similar and left to you.

Corollary 8.5. If p(x) =
n∑
k=0

akx
k is a polynomial, then p is differen-

tiable at x for all x ∈ R, and

p′(x) =
n∑
k=1

kakx
k−1
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For example,

d

dx
(1− x+ x2 − x3 + x4) = −1 + 2x− 3x2 + 4x3,

d

dx
(x+ 2x2 + 3x3) = 1 + 4x+ 9x2.

Let X = (a, b) be an open interval, and let D1(X) ⊂ F (X,R)
denote the set of differentiable functions on X. Proposition 8.4 says
that

• D1(X) is a vector subspace (Chapter 3), and

• The mapping f ∈ D1(X) 7→ Df := f ′ ∈ F (X,R) is linear.

We will see presently that the derivative of a differentiable func-
tion is not generally differentiable, so D is technically not an operator
on D1(X). In fact, the image of D is too complicated to characterize
in this book.

The Product and Quotient Formulas

There are analogous formulas for products and quotients that are eas-
ily calculated with o notation. It is convenient to establish a general
reciprocal formula first.

Lemma 8.6. If f(x+ h) = 1 + ah+ o(h) near h = 0, then

1

f(x+ h)
= 1− ah+ o(h)

near h = 0.

Proof. In some interval about h = 0, we have |ah + o(h)| < 1. The
geometric series formula gives

1

f(x+ h)
=

1

1 + ah+ o(h)

= 1− (ah+ o(h)
)

+
(
ah+ o(h)

)2 − · · · = 1− ah+ o(h)

near h = 0.
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Theorem 8.7. Suppose f and g are differentiable at x. Then fg is
differentiable at x, and

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

If g(x) 6= 0, then f/g is differentiable at x, and(
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

g(x)2
.

Proof. Equation (8.4) holds by assumption, so

(fg)(x+ h) =
[
f(x) + h f ′(x) + o(h)

][
g(x) + h g′(x) + o(h)

]
= (fg)(x) + h

[
f ′(x)g(x) + f(x)g′(x)

]
+ o(h)

which establishes the product rule. We break the argument for quo-
tients into two steps, first treating simple reciprocals.

For brevity, write a0 = g(x) 6= 0 and a1 = g′(x). Differentiability
of g says g(x + h) = a0 + h a1 + o(h) = a0

(
1 + h (a1/a0) + o(h)

)
near

h = 0. By Lemma 8.6,

1

g(x+ h)
=

1

a0

· 1

1 + h (a1/a0) + o(h)
=

1

a0

− h a1

a0
2

+ o(h) near h = 0.

It follows that 1/g is differentiable at x, and that(
1

g

)′
(x) = − a1

a0
2

= − g
′(x)

g(x)2
.

The general result now follows by writing f/g = f · (1/g) and using the
results just proven:(

f

g

)′
(x) = f ′(x)

1

g(x)
+ f(x)

(
1

g

)′
(x)

= f ′(x)
1

g(x)
− f(x)

g′(x)

g(x)2
=
f ′(x)g(x)− f(x)g′(x)

g(x)2

as claimed.

It is possible to differentiate polynomials such as p(x) = xn+m =
xnxm or q(x) = (1−x)(1+x2) in two different ways, either by multiply-
ing out and using Corollary 8.5, or with the product rule. You should
verify that the two methods yield the same answer.

Theorem 8.7 allows us to extend the monomial differentiation for-
mula to terms with negative exponent. The proof is left as an exercise.
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Proposition 8.8. If f(x) = xn for n an integer, then f ′(x) = nxn−1

for all x 6= 0.

It follows from Theorem 8.7 and Corollary 8.5 that every rational
function is differentiable in its natural domain. For example,

d

dx

1

1 + x2
= − 2x

(1 + x2)2
, f(x) = 1, g(x) = 1 + x2,

d

dx

x

1 + x2
=

(1 + x2)− x(2x)

(1 + x2)2
=

1− x2

(1 + x2)2
, f(x) = x, g(x) = 1 + x2.

Note that algebraic manipulations may make a rational function easier
to differentiate. For example,

x2 − 1

x2 + 1
= 1− 2

x2 + 1
,

but the right-hand side is easier to differentiate than the left-hand side.

Differentiating Integrals

In Chapter 7 we saw that integration can be used to construct new
functions from known ones: If f is integrable on some interval [a, b],
then the equation

F (x) =

∫ x

a

f, x ∈ [a, b],

defines a continuous function on [a, b]. It is natural to attempt to
differentiate F , and to expect a formula for F ′ in terms of f . If you
have done Exercise 7.22, you already know the outcome.

Theorem 8.9. Let f : [a, b] → R be an integrable function, and sup-
pose f is continuous at c ∈ (a, b). Then the function F defined above
is differentiable at c, and F ′(c) = f(c).

This theorem may seem an amusing curiosity, but as we shall see it
earns its name, the fundamental theorem of calculus. We are not yet in
a position to understand its full significance, but certainly it indicates
a close relationship between integration and differentiation. The proof
was outlined in Exercise 7.22, but here are a few more details.
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Proof. The cocycle property of the integral (Proposition 7.13) says that∫ c+h
a

=
∫ c
a

+
∫ c+h
c

as long as c+ h is in [a, b]. In other words,

F (c+ h)− F (c) =

∫ c+h

a

f −
∫ c

a

f =

∫ c+h

c

f.

The Newton quotient for F at c is therefore given by

a c

F (c) =
∫ c

a
f(t) dt

y = f(t)

a c c + h

F (c + h)− F (c)

y = f(t)

Figure 8.3: The increment of a definite integral.

∆cF (h) =
F (c+ h)− F (c)

h
=

1

h

∫ c+h

c

f,

the average value of f on the interval with endpoints c and c+ h. Now
we use continuity: f = f(c) + o(1) at c, so for h near 0 we have∫ c+h

c

f =

∫ c+h

c

(
f(c) + o(1)

)
= h f(c) + o(h),

see Theorem 7.20. Therefore, ∆cf(h) = f(c) + o(1) near h = 0.

Nothing can be said if f is not continuous at c; examples show
that F may or may not be differentiable at c. The signum function,
with a jump discontinuity at 0, integrates to the absolute value function,
which is not differentiable at 0. By contrast, if f is zero everywhere
but the origin, and f(0) = 1, then the integral of f over an arbitrary
interval is zero, so F is the zero function, which is clearly differentiable
even at the origin.

The Chain Rule

The Chain Rule is a formula for the derivative of the composition of
two differentiable functions.
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Theorem 8.10. Suppose f is differentiable at x and that g is differen-
tiable at f(x). Then g ◦ f is differentiable at x, and

(g ◦ f)′(x) = g′
(
f(x)

) · f ′(x).

Proof. By hypothesis,

f(x+ h) = f(x) + h f ′(x) + o(h) at h = 0

g(y + k) = g(y) + k g′(y) + o(k) at k = 0

If we write y = f(x) and k = h f ′(x) + o(h), then k = O(h) = o(1) at
h = 0, so o(k) = o(h). Consequently,

(g ◦ f)(x+ h) = g(y + k) = g(y) + k g′(y) + o(k)

= g
(
f(x)

)
+
(
h f ′(x) + o(h)

)
g′(y) + o(h)

= g
(
f(x)

)
+ h g′

(
f(x)

) · f ′(x) + o(h),

which completes the proof.

The chain rule is one of the most powerful computational tools
in differential calculus. Consider attempting to differentiate p(x) =
(4 + x − x3)11. Without the chain rule, the only way to proceed is to
multiply out, getting a polynomial of degree 33, then to differentiate
using Proposition 8.4. Assuming no mistakes are made, the answer
comes out in unfactored form, and factoring it is no mean feat. By
contrast, the chain rule gives the factored answer in a single step. Define
f and g by f(x) = 4 + x − x3 and g(y) = y11. (The use of y is purely
for psychological convenience, so we can set y = f(x) in a moment.)
The formulas above for the derivative of a polynomial function imply
f ′(x) = 1− 3x2 and g′(y) = 11y10. Since p = g ◦ f , the chain rule gives

p′(x) = g′
(
f(x)

) · f ′(x) = 11
(
4 + x− x3

)10
(1− 3x2).

The chain rule looks particularly compelling in Leibniz notation. If
we write y = f(x) and z = g(y), then z = (g ◦ f)(x), so

dz

dx
(x) =

dz

dy
(y) · dy

dx
(x), or even

dz

dx
=
dz

dy

dy

dx
.

The chain rule may therefore be regarded as a theorem that justifies
a certain formal manipulation for quotients of infinitesimals. Lest this
interpretation make the result seem obvious (“just cancel the dys”),
remember that
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• The chain rule looks like cancellation of fractions because we have
denoted derivatives like fractions, not because they are fractions.
An infinitesimal like dx is, for us, meaningless in isolation. Log-
ically, it is no more legitimate to “cancel the dy’s” than it is to
cancel the n’s and “deduce” that sinx

tanx
= six

tax
. In addition, we

modified notation (by omitting arguments of functions) in order
to make the conclusion look like fraction cancellation.

• The “z” on the left side represents the value of the function g ◦ f
at x, or the function g ◦ f itself. The “z” on the right-hand side
of the chain rule represents the value of g at y, or the function g
itself. These z’s are usually not the same function!

Generally, needless confusion results from writing functions in Leibniz
notation (as scientists are fond of doing) and using Newtonian deriva-
tive notation (as mathematicians are fond of doing); see Exercise 8.4 for
a simple example of this pitfall. However, the “cancellation of fractions”
interpretation of the chain rule can be a useful mnemonic, provided you
remember the fine points just mentioned.

8.2 Derivatives and Local Behavior

If f is differentiable at x for every x in its domain, then f is said to be
differentiable. In this case, there is a function f ′, with domain equal to
the domain of f and defined for each x by

(8.5) f ′(x) = lim(∆xf, 0) = lim
h→0

f(x+ h)− f(x)

h
.

The Sign of the Derivative

If f is differentiable at x, then writing f(x) = a0 and f ′(x) = a1 for
simplicity we have

f(x+ h) = a0 + a1h+ o(h).

This condition asserts that f is approximated by a linear function
near x; the difference between f(x+ h) and a linear function is vanish-
ingly small compared to h.
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Suppose that f ′(x) = a1 > 0. The dominant non-constant term
above is a1h, which implies the values of f are larger than f(x) in some
interval to the right of x, and are smaller than f(x) in some interval to
the left of x. Formally, there exists a δ > 0 such that

0 < h < δ =⇒ f(x− h) < f(x) < f(x+ h).

This condition is expressed by saying f is increasing at x. An analogous
argument shows that if f ′(x) < 0, then (in an obvious sense) f is
decreasing at x.
Remark 8.11 If f is increasing at x, it does not follow that there
exists a δ > 0 such that f is increasing on the interval (x − δ, x + δ).
The signum function

sgn(x) =

{
x/|x| if x 6= 0

0 if x = 0

is increasing at 0 (read the definition carefully!) but not increasing
on any neighborhood of 0. Exercise 8.12 describes an example that is
continuous at 0 but is not even non-decreasing on any neighborhood
of 0. In Exercise 8.15, you will find a differentiable function g with
g′(0) > 0 that fails to be increasing in any open interval about 0!
�

The observations about the sign of the derivative allow us to state
and prove an important property related to optimization. By Theo-
rem 5.8, a continuous function f : [a, b]→ R has a minimum and a max-
imum. The arguments above show that a point x at which f ′(x) 6= 0
cannot be an extremum of f .

Theorem 8.12. Let f : [a, b] → R be a continuous function, and let
x0 ∈ [a, b] be a point at which the minimum or maximum value of f is
achieved. Then x0 is one of the following:

• An endpoint of [a, b];

• An interior point such that f ′(x0) = 0;

• An interior point at which f ′(x0) does not exist,

A point x ∈ (a, b) where f ′(x) = 0 is a critical point of f . One
reason critical points are important is that they are potential locations
of the extrema of f . Example 8.13 illustrates the use of Theorem 8.12
in finding extrema.
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h

k

a

f(a)

Figure 8.4: Zooming in on a graph.

Tangent Lines and Derivatives

Geometrically, differentiating a function f at a amounts to “zooming
in on the graph with factor infinity.” To stretch this Leibniz-style
metaphor further, the graph of a differentiable function is made up
of infinitely many infinitesimal line segments, and the slope of the seg-
ment at a is f ′(a), the “rise over the run at a.” The purpose of this
section is to give weight to these remarks.

Let f be a function that is differentiable at a. A line passing through
the point

(
a, f(a)

)
is tangent to the graph if the slope of the line is f ′(a).

Intuitively, the tangent line to the graph is an infinitesimal “model” of
the graph.

To see why “zooming in with factor infinity at
(
a, f(a)

)
” amounts to

finding the tangent line at a, consider what zooming in at
(
a, f(a)

)
does

to the plane. If h and k denote the horizontal and vertical displacements
from the center of magnification (Figure 8.4), then zooming in by a
factor of λ maps (h, k) to (λh, λk). This replaces the graph k = f(a+
h)− f(a) by the graph k/λ = f(a+ h/λ)− f(a), or

k =

(
f(a+ h/λ)− f(a)

(h/λ)

)
· h.

If f is differentiable at a, then as λ→∞ the equation above approaches
k = f ′(a) · h, the equation of the tangent line.

In o notation, there is a simpler (but less rigorous) explanation:
Since f(a+ h) = f(a) + h f ′(a) + o(h), zooming in with factor infinity
kills the negligible term o(h), leaving the equation of the tangent line.
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Optimization

If f : [a, b] → R is a continuous function, then f achieves a maximum
and minimum value, by the extreme value theorem. In practice, it is
often desired to locate the extreme points of a function, not merely
prove their existence. Theorem 8.12, which asserts that extreme points
must be endpoints, critical points, or points of non-differentiability, is
a useful tool in this situation.
Example 8.13 Suppose we wish to find the rectangle of largest area
that has its bottom side on the x axis and is inscribed in the parabola
y = 1− x2, Figure 8.5.

0 1x0−x0

y = 1− x2

Figure 8.5: The maximum-area rectangle inscribed in a parabola.

If we let x ≥ 0 be the coordinate of the right side of the rectangle, then
the area is A(x) = 2x(1−x2) = 2x−2x3 for x ∈ [0, 1]. The function A is
continuous on a closed, bounded interval, so there is a maximum point
by the extreme value theorem. Further, the function A is differentiable
at each point of (0, 1), and A′(x) = 2− 6x3 = 2(1− 3x2). There is only
one critical point, x0 = 1/

√
3, so the extreme points of A must be found

in the list 0, x0, 1. Since A(0) = A(1) = 0, while A(x0) > 0, x0 must be
the maximum point! We obtain the maximum area, A(x0) = 4/(3

√
3),

as a fringe benefit. Finding the largest-area rectangle with algebra and
geometry alone is not an easy task. �

The argument just given is a process of elimination. First, we know
that a maximum point of A exists in [0, 1]. Second, we know that if
0 < x < 1 and A′(x) 6= 0, then x is not an extreme point. This
fact eliminates all but three possibilities, listed above. The endpoints
cannot be maximum points, because the area function vanishes at the
endpoints and is positive elsewhere. The only remaining possibility is
that x0 is the maximum point.
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In other situations, there may be multiple critical points, but The-
orem 8.12 is still helpful as long as the function to be optimized is
differentiable on (a, b) and continuous on [a, b]; as before, the extrema
must either be endpoints or critical points, and if there are only finitely
many critical points, then the search for extrema is reduced to a finite
search.
Example 8.14 Suppose that we want to know the minimum and
maximum values of the polynomial f(x) = x − x3/6, subject to −2 ≤
x ≤ 3. First note that f is differentiable on (−2, 3), and that f ′(x) =
1 − x2/2, so the critical points of f are −√2 and

√
2. Theorem 8.12

guarantees that the extrema must occur in the list −2, −√2,
√

2, and 3.
Direct calculation gives

f(−2) =
2

3
, f(−

√
2) = −2

√
2

3
, f(

√
2) =

2
√

2

3
, f(3) = −3

2
,

so the question is reduced to finding the largest and smallest numbers
in this list.

Now, 2
√

2 =
√

8 <
√

9 = 3, so the smallest value is f(3) = −3/2;
the unique minimum point of f is 3, and the minimum value of f
is −3/2. Similarly, 1 <

√
2, so the largest value is f(

√
2): The unique

maximum point is
√

2, and the maximum value of f is 2
√

2/3. �

8.3 Continuity of the Derivative

If f : (a, b) → R is differentiable, then there is a function f ′ : (a, b) →
R; however, the function f ′ is not continuous in general. If f ′ is a
continuous function, then f is said to be continuously differentiable,
or C 1. The set of such functions is denoted C 1(a, b). For instance, a
rational function is C 1 on its natural domain, since the derivative is
another rational function with the same domain.

There is a good chance you have never seen a differentiable func-
tion with discontinuous derivative. The natural first guess, the absolute
value function, is not an example, as it fails to be differentiable at 0
(where the discontinuity “ought to be”). In fact, we must be substan-
tially more devious:
Example 8.15 Let ψ : R → R be a non-constant, differentiable,
periodic function. (We construct such functions in Example 9.11 and
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Chapter 13.) Define

f(x) =

{
x2ψ(1/x) if x 6= 0

0 if x = 0

y = x2

Figure 8.6: A non-C 1 function and its derivative.

Away from 0, f is obtained by composing and multiplying dif-
ferentiable functions, and is therefore differentiable by Theorems 8.7
and 8.10:

f ′(x) = 2xψ(1/x)− ψ′(1/x) for x 6= 0.

At x = 0 these theorems do not apply (their hypotheses are not sat-
isfied), but the derivative at 0 can be computed from the definition;
indeed, f(h) = O(h2) near h = 0, so by the remarks at the end of Ex-
ample 8.3, f ′(0) exists and is equal to 0. In summary, f is differentiable
on all of R. It is left to you to verify that f ′ is not continuous at x = 0,
see Exercise 8.15. �

It is important to understand exactly what is happening near 0 in
Example 8.15. Figure 8.6 is a starting point, but even better it to
use a graphing program that can zoom and display at high resolution.
Figure 8.6 and the pictures below were drawn using ψ = sin.

If you zoom in at x = 0, the graph quickly flattens out into a hori-
zontal line; this reflects that fact that f ′(0) = 0. However, if you zoom
in at a point close to 0, the graph first magnifies into an approximation
of the graph of ψ before settling down to the tangent line. This reflects
the property that the slopes of the tangent lines oscillate infinitely often
as x↘ 0.
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0 18
While f is small in absolute value near 0, its derivative is not. Exam-
ple 8.15 shows exactly why this can happen: A graph that lies near
the horizontal axis can have small oscillations of large slope. In terms
of linear mappings, D can take a pair of functions whose difference is
small and map them to functions whose difference is large. This should
remind you of what a discontinuous function does.

8.4 Higher Derivatives

If f : (a, b) → R is differentiable, then the derivative f ′ is a function
with domain X := (a, b), and it makes sense to ask whether or not f ′ is
itself differentiable. If so, we say f is twice differentiable; the derivative
of f ′ is denoted f ′′ = D2f , and is called the second derivative of f .
In anticipation of things to come, we also write f (2) for the second
derivative of f . The set of twice-differentiable functions is a vector
subspace D2(X) ⊂ F (X,R).

Considerations of continuity apply to second derivatives; a function
having continuous second derivative is said to be C 2, and the set of all
such functions is a subspace. A moment’s thought will convince you of
the inclusions

C 2(X) ⊂ D2(X) ⊂ C 1(X) ⊂ D1(X) ⊂ C (X) ⊂ F (X,R).

As you might guess, the pattern continues off to the left; the vector
subspace of k times continuously differentiable functions is defined by

C k(X) = {f ∈ F (X,R) | f (k) exists and is continuous}.

In this book we are not so interested in these spaces, though we will
meet several members of their intersection, the space of smooth func-
tions:

C∞(X) =
∞⋂
k=1

C k(X) = {f ∈ F (X,R) | f (k) exists for all k in N}.
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Polynomials and rational functions are smooth (on their natural do-
main), as is the natural logarithm, whose derivative is rational. The
function f of Example 8.15 is smooth except at 0, but of course is not
even C 1 on R. Exercises 8.9 and 8.11 give more examples of non-smooth
functions.

Higher Order Differences

There is not much we can say about higher order derivatives at this
stage, because we have not rigorously established certain “obvious”
properties of the derivative (e.g., if f ′ > 0, then f is increasing). As
with “obvious” properties of continuous functions, familiar properties
of differentiable functions are more subtle than they first appear, and
are not actually true unless some care is taken with hypotheses! The
technical tool needed to study derivatives is the “mean value theorem”,
the subject of Chapter 9.

However, elementary algebra gives us some idea of the information
encoded in the first and higher derivatives of a function. For the rest
of the section, let f be a real-valued function whose domain is an in-
terval I; all points are assumed to be elements of I without further
mention.

The difference quotient

∆y

∆x
(a, b− a) =

f(b)− f(a)

b− a
measures the rate of change of f on the interval [a, b]. In real ex-
periments, difference quotients are all one ever knows, because it is
not possible (or even philosophically meaningful) to collect data for all
points in the domain. Instead, scientists assume there exists a mathe-
matical model (unknown at the outset), and that measured data arises
as outputs of the model (up to experimental error).

At least two measurements are required to determine whether a
function is (on the average) increasing or decreasing. Two measure-
ments of f correspond to a single measurement of f ′, which is computed
by sampling f at two infinitesimally separated points.

Now suppose we want to measure how fast the rate of change is
varying. The rate of change is f ′, which varies at rate f ′′. We need
two measurements of f ′, or three measurements of f . Imagine waiting
to cross a busy street, looking left and right (like someone at a tennis
match) to see if cars are coming. You must make two observations to



8.4. HIGHER DERIVATIVES 281

determine how fast a vehicle is traveling. In addition, if you see a car
approaching from the left, then observe that no one is coming from
the right, it is still prudent to look left again, to see whether or not
the oncoming car is accelerating. If after the third glance the car has
traveled much further than it did between your first two sightings, you
should re-evaluate whether it is safe to cross.4

As another example, consider a company whose net worth is V (t)
dollars at time t measured in months from January, 2000 (say). We
must see at least two quarterly reports (i.e., obtain two values of V ) be-
fore we can determine whether the company is earning or losing money,
and must see at least three reports to know whether earnings are up
or down. In business circles, a company is often considered to be “los-
ing money” if the net worth of the company is increasing, but the rate
at which the net worth is increasing is decreasing, i.e., if the second
derivative of the net worth is negative.

Exercises

Exercise 8.1 Express Proposition 8.4 in Leibniz notation, and explain
how the result is useful as a tool in formal manipulations. �
Exercise 8.2 Prove Proposition 8.8. �
Exercise 8.3 Let n be a positive integer, and consider the finite
geometric series

n∑
k=0

xk = 1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1
if x 6= 1.

(a) Use Theorem 8.7 and Proposition 8.8 to differentiate this equation
when x 6= 1.

(b) Use part (a) to find a closed-form expression for the series

n∑
k=1

kxk = x+ 2x2 + 3x3 · · ·+ nxn, x 6= 1.

4This advice is distilled from an incident in which the author was nearly hit by
a speeding cab at the intersection of Bloor and St. George streets in Toronto.
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(c) Continue in the same vein, deducing that

n∑
k=1

k2xk =
n2xn+2 − (2n2 + 2n− 1)xn+1 + (n+ 1)2xn − (x+ 1)

(x− 1)3

for x 6= 1.

The technique of integrating or differentiating a known sum is a
powerful trick in the right circumstances. �
Exercise 8.4 Suppose y = x2 and z = y2, so that z = x4. Then
z′(y) = 2y, and when x = 1 we get z′(1) = 2. However, z′(x) = 4x3,
so at x = 1 we have z′(1) = 4. Therefore 2 = 4. What is wrong?
�
Exercise 8.5 Prove that among all rectangles of perimeter P > 0,
there exists one of largest area, and find its dimensions. Solve this prob-
lem both with calculus and by pure algebra (completing the square).
�
Exercise 8.6 Prove that among all rectangles of area A, there exists
one of smallest perimeter, cf. Exercise 8.5. This problem is much easier
to do with pure algebra than with calculus, because you cannot use the
extreme value theorem to deduce existence of a minimum. The moral is
that calculus is not always the best technique for optimization. �
Exercise 8.7 Find the dimensions of the rectangle of largest area
inscribed in a half-disk of radius r; you may assume that one side of
the rectangle lies along the diameter. �
Exercise 8.8 Consider the family of rectangles whose lower left cor-
ner lies at the origin, whose upper right corner lies on the graph y =
1/(1 + x2), and whose sides are parallel to the coordinate axes. Prove
that there exists a rectangle of largest area in this family, and find its
dimensions. �

Continuity of Derivatives

Exercise 8.9 Let k be a positive integer, and define f : R → R by
f(x) = xk|x|. Find the derivative of f , and prove that f is C k but is
not (k+ 1) times differentiable. In other words, the inclusion C k(R) ⊂
Dk+1(R) is proper.
Suggestion: Do induction on k. �
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Exercise 8.10 Let f : R→ R be differentiable but not C 1, and put

F (x) =

∫ x

0

f(t) dt.

Prove that F is twice-differentiable, but is not C 2. �
Exercise 8.11 Let k > 1 be an integer. Continuing the previous exer-
cise, prove that there exists a function f that is k times differentiable,
but not C k. In other words, the inclusion Dk(R) ⊂ C k(R) is proper.
�
Exercise 8.12 Define f : R→ R by

f(x) =

{
x if x ∈ Q

2x if x 6∈ Q

Show that f is increasing at 0, but that there does not exist η > 0 such
that f is increasing on the open interval (−η, η). �
Exercise 8.13 Let ψ : R → R be a non-constant, differentiable,
periodic function whose derivative varies between −1 and 1.

(a) For n a positive integer, let fn : R → R be defined by fn(x) =
1
n
ψ(n2x). Find

max
x∈R
|fn(x)| and max

x∈R
|f ′n(x)|.

(b) Given an example of a differentiable function f : R → R such
that lim(f,+∞) exists but lim(f ′,+∞) does not exist.

Part (a) is meant to suggest an idea for constructing f , though of course
your answer for (b) should not depend on n. �
Exercise 8.14 Let ψ : R→ R be as in Exercise 8.13, and define

f(x) =

{
x2ψ(1/x) if x 6= 0

0 if x = 0

We found the derivative of f in Example 8.15. Prove that f ′ is discon-
tinuous at 0. It may help to review Chapter 4. �
Exercise 8.15 Let f be as in Exercise 8.14, and let g(x) = f(x)+(x/2).
Prove that g′(0) > 0, but there does not exist an open interval about 0
on which g is increasing. Why doesn’t this contradict the fact that “a
function with positive derivative is increasing”? �
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Chapter 9

The Mean Value Theorem

The results of the last chapter depend mostly on a function being dif-
ferentiable at a single point, and are therefore of a pointwise, or at
most local, nature. In this chapter, we link together the machinery of
differentiability with the global theorems on continuity from Chapter 5.
The mean value theorem equates, under suitable hypotheses, the av-
erage rate of change of f over an interval [a, b] and the instantaneous
rate of change of f at some point of (a, b). The result allows us to pass
between a collection of pointwise information and global information,
and is rightly regarded as a technical foundation stone of the calculus.

9.1 The Mean Value Theorem
In Chapter 5, we assumed that f was continuous on [a, b] and deduced
global properties of f . Here we assume, in addition, that f : [a, b]→ R
is differentiable on the open interval (a, b). (Equivalently, if redundancy
upsets you, f is differentiable on (a, b), and continuous at a and b.) A
typical example is the function f(x) =

√
1− x2 on [−1, 1], whose graph

is the upper half of the unit circle in the plane.

Theorem 9.1. Let f : [a, b] → R be a continuous function that is
differentiable on (a, b). Then there exists an x0 ∈ (a, b) such that

f ′(x0) =
f(b)− f(a)

b− a .

In words, there is a point in (a, b) at which the instantaneous rate of
change of f is equal to the average rate of change of f over the interval
[a, b]. Figure 9.1 depicts the conclusion in a simple (but representative)

285
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situation. The conclusion is quite plausible when phrased in terms of
speed and distance: If on a car trip you cover 60 miles in a certain
one-hour period of time, then at some instant during that hour your
speed must have been exactly 60 miles per hour. Of course, this proves
nothing, because real distances and speeds do not correspond exactly
with real numbers and functions, but it’s a good way of remembering
the theorem’s conclusion.

slope = f(b)−f(a)
b−a

slope = f ′(x0)

y = f(x)

a x0 b

Figure 9.1: The conclusion of the mean value theorem.

Proof. The proof of the mean value theorem breaks conceptually into
two steps. The first, called Rolle’s theorem, treats the special case where
the function values at the endpoints are equal, and uses the extreme
value theorem and Theorem 8.12. The second step reduces the theorem
to Rolle’s theorem by an algebraic trick.

Assume first that f(a) = f(b), so the average rate of change is 0.
We wish to show that f has a critical point. By the extreme value
theorem, there exist points xmin and xmax ∈ [a, b] such that

f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ [a, b].

(These points are not in general unique.) Suppose first that at least
one of xmin and xmax is in (a, b), and call it x0. By Theorem 8.12,
f ′(x0) = 0 and we are done. The only other possibility is that each of
the points xmin and xmax is an endpoint of [a, b]. But since f(a) = f(b),
this means f is a constant function, and then f ′(x0) = 0 for every point
x0 ∈ (a, b). This proves Rolle’s theorem.
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Next consider the function g : [a, b] → R defined by “linearly ad-
justing” the endpoint values of f so they are equal:

g(x) = f(x)− f(b)− f(a)

b− a (x− a).

The function g is continuous on [a, b] and differentiable on (a, b), as a
sum of functions that have these properties. Direct calculation shows
that g(a) = f(a) = g(b), so g satisfies the hypotheses of Rolle’s theorem.
Consequently there exists an x0 ∈ (a, b) such that g′(x0) = 0. But
again, direct calculation gives

g′(x) = f ′(x)− f(b)− f(a)

b− a for all x ∈ (a, b),

and the theorem follows.

We are now in a position to derive some easy but important conse-
quences. You should bear in mind how difficult the following theorems
are to prove without the mean value theorem.

9.2 The Identity Theorem

A constant function has derivative identically zero. Conversely, it seems
reasonable that a function whose derivative vanishes everywhere must
be a constant function. If the domain is an interval of real numbers,
this is indeed true. However, you should note well that the proof is
impossible without the mean value theorem.

Theorem 9.2. Let f and g be differentiable functions on an interval I.
If f ′ = g′, then there exists a real number c such that f(x) = g(x) + c
for all x ∈ I.

It is, by the way, crucial that the domain be an interval of real
numbers. Consider the function sgn x = x/|x|, defined for all x 6= 0; the
derivative vanishes identically on the domain, but sgn is not constant.

Proof. By consideration of the differentiable function h = f − g, it
suffices to show that if h′(x) = 0 for all x ∈ I, then h is a constant
function. We prove the contrapositive: If h is non-constant on an
interval, then h′ is not identically zero.
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Suppose h is a non-constant function on I, and pick a, b ∈ I so
that h(a) 6= h(b). By the mean value theorem, there is an x0 between
a and b such that

h′(x0) =
h(b)− h(a)

b− a .

The right-hand side is non-zero, so h′ is not identically zero.

The identity theorem is most often used to show that two functions
are equal. If f and g are differentiable functions that have the same
derivative on some interval, then f and g differ by a constant on that
interval. If, in addition, f(x0) = g(x0) for some x0, then f and g are
equal in the interval. We will put this technique to good use, as we
have many interesting ways of procuring pairs of functions that have
the same derivative.

Monotonicity and the Sign of the Derivative

The identity theorem tells us what to expect when a function has
vanishing derivative. Interesting conclusions can be drawn when the
derivative is everywhere positive, or everywhere negative. You should
compare the result below with the observations of Section 8.2, and with
Exercise 8.15.

Theorem 9.3. If f : (a, b) → R is differentiable, and if f ′(x) > 0 for
all x ∈ (a, b), then f is increasing on (a, b).

Proof. Under the assumptions of the theorem, if a < x < y < b then
there is an x0 ∈ (x, y) such that

f(y)− f(x)

y − x = f ′(x0).

By hypothesis, f ′(x0) > 0, and since x < y, it follows that f(x) < f(y).
An entirely analogous argument shows that if f ′(x) < 0 for all x in
some interval, then f is decreasing on the interval.

The Exponential Function

To demonstrate the power of the theorems just proven, here is a short
digression that shows how properties of a function can be studied with-
out having a concrete representation of the function.
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The equation f ′ = f is an example of an ordinary differential equa-
tion, or ODE for short. The unknown f is a differentiable function
whose domain is some unspecified open interval. It is not obvious
whether this differential equation has any “interesting” solutions (the
zero function is an “uninteresting” solution), and if so, how many so-
lutions it has. We can, nonetheless, determine consequences of the
differential equation that tell us properties of any solutions that may
exist.

In Example 9.14, we will prove that there exists a non-vanishing
differentiable function exp : R → R, the natural exponential function,
such that exp′ = exp and exp(0) = 1. For the rest of this section, we
assume the existence of exp. Logically, there is no problem, since we are
not deducing the existence of exp, but are instead deducing properties
that exp must possess. Our knowledge about exp originates with the
fact that it solves the differential equation f ′ = f , as we shall see now.

Proposition 9.4. Let f : R → R satisfy f ′ = f . Then f(x) =
f(0) exp(x) for all x ∈ R. In particular, if f ′ = f and f(0) = 1, then
f = exp.

Proof. Because exp is differentiable and nowhere-vanishing, the func-
tion q = f/ exp is differentiable. The quotient rule implies

q′ =
exp f ′ − f exp′

exp2
=
f ′ − f

exp
,

which vanishes identically because f ′ = f . By the identity theorem, q
is a constant function on R, and evaluating at 0 shows that

f(x)

exp(x)
= q(x) = q(0) =

f(0)

exp(0)
= f(0)

for all x, so f = f(0) exp as claimed.

Proposition 9.5. Let k be a real number. If f : R → R is a differ-
entiable function satisfying f ′ = kf and f(0) = 1, then f(x + y) =
f(x)f(y) for all x, y ∈ R

Proof. The function g(x) = exp(kx) solves the ODE g′ = kg by the
chain rule, and satisfies the initial condition g(0) = 1. The proof of
Proposition 9.4 implies that this is the only such function. Conse-
quently, it is enough to show that

exp(x+ y) = exp(x) exp(y) for all x, y ∈ R.
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Fix y, and consider the function f : R→ R defined by f(x) = exp(x+
y). By the chain rule, f is differentiable, and f ′ = f . Since f(0) =
exp(y), Proposition 9.4 implies exp(x+y) = exp(x) exp(y) for all x.

The special case exp(x) exp(−x) = exp(x − x) = exp(0) = 1 says
that exp is nowhere-vanishing. By continuity, exp(x) > 0 for all real x.
From the defining property exp′ = exp, we deduce that exp is an in-
creasing function. The number e := exp(1) > exp(0) = 1 is a funda-
mental constant of mathematics. Though we can say little at present
about the numerical value of e, we can justify the name “exponential
function.”

Corollary 9.6. exp(r) = er for all rational r.

Proof. By induction, exp(p) = ep for all p ∈ N. As noted above,
Proposition 9.5 implies exp(p) exp(−p) = 1 for all p, so exp(−p) =
1/ exp(p) = e−p. Finally, if q ∈ N, then[

exp(p/q)
]q

= exp(p/q)
q· · · exp(p/q)

= exp(p/q+
q· · · +p/q) = exp(p) = ep,

so exp(p/q) = q
√
ep = ep/q.

On the basis of the corollary, it is reasonable to define ex = exp(x)
for all x ∈ R. Proposition 9.5 is the familiar law

ex+y = exey for all x, y ∈ R.

Remember, we have not yet shown that exp exists, but we have deduced
a number of properties it must have, assuming only that exp′ = exp
and exp(0) = 1.

The Intermediate Value Property of the Derivative

Let f : I → R be a differentiable function on an interval I. A theorem
of Darboux1 asserts that f ′ has the intermediate value property; in
particular, a discontinuity of a derivative must be wild. The function
of Example 8.15 was not especially pathological!

Theorem 9.7. Let f be differentiable on some open interval contain-
ing [a, b]. If c is a real number between f ′(a) and f ′(b), then there exists
x0 ∈ (a, b) such that f ′(x0) = c.

1dar BOO
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Proof. Assume without loss of generality that f ′(a) < f ′(b), and con-
sider the differentiable function g defined by g(x) = f(x)− cx. Since g
is continuous on [a, b], g achieves its minimum at some point x0 ∈ [a, b].
However, g′(a) = f ′(a)− c < 0, so g is decreasing at a. This means the
minimum of g is not achieved at a. Similarly, g′(b) = f ′(b)− c > 0, so
g is increasing at b, which means b is not a minimum of g. The min-
imum value of g must therefore be attained at some point x0 ∈ (a, b),
and by Theorem 8.12 g′(x0) = 0, or f ′(x0) = c.

Corollary 9.8. Let f : I → R be a differentiable function on an
interval containing [a, b]. If f ′ is non-vanishing in the open inter-
val (a, b), then f is strictly monotone—hence invertible—in the closed
interval [a, b].

Proof. Suppose, without loss of generality, that f ′(x) > 0 for some
x ∈ (a, b). Darboux’ theorem implies f ′ is positive everywhere in the
interval, for if f ′ were negative somewhere it would have to vanish
somewhere. Theorem 9.3 implies f is strictly increasing on the open
interval (a, b). Finally, if x ∈ (a, b), then

f(x)− f(a)

x− a > 0

just as in the proof of Theorem 9.2, which implies f(x) > f(a). Simi-
larly, f(x) < f(b).

Corollary 9.8 gives a sufficient criterion for invertibility of a func-
tion. For rational functions, this condition is often extremely easy to
check, and indeed is usually the simplest means of proving a function
is invertible on some interval.

Example 9.9 If f(x) = x − x3/3 for x ∈ R, then f ′(x) = 1 − x2,
and the critical points are −1 and 1. The derivative—a polynomial
function—is continuous, so Corollary 9.8 implies f is one-to-one on
each of the intervals (−∞,−1], [−1, 1], and [1,∞). In fact, f ′(x) > 0
iff |x| < 1, so f is decreasing on each of the unbounded intervals, and
is increasing on [−1, 1].

These intervals share endpoints, but there is no contradiction, as
should be clear from Figure 9.2. �
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−2 −1 0 1 2

Figure 9.2: Intervals on which a polynomial is monotone.

Patching

In applications it can be desirable to present a function by giving two
or more formulas that hold on abutting intervals, e.g.,

(9.1) ψ(x) = 4x(1− |x|) =

{
4x(1 + x) if −1 ≤ x ≤ 0

4x(1− x) if 0 < x ≤ 1

−1 0 1

−1

1

Figure 9.3: The function ψ.

We would like to know when such a “patched” function is differen-
tiable at the point(s) where the formulas “join”. The next theorem gives
a sufficient criterion that is adequate for many applications.

Theorem 9.10. Let f be a function that is continuous at x0 and dif-
ferentiable in some deleted interval about x0. If lim(f ′, x0) exists and
is equal to `, then f is differentiable at x0, and f ′(x0) = `.

In particular, f ′ is a continuous function at x0. As reasonable as
this result may seem, the proof requires the mean value theorem. It
is instructive to attempt a “naive” proof; the snag is that lim(f ′, x0)
involves a double limit, which the theorem interchanges:

lim
x→x0

lim
h→0

f(x+ h)− f(x)

h
?
= lim

h→0
lim
x→x0

f(x+ h)− f(x)

h
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Proof. By hypothesis, there exists a δ > 0 such that on the closed
interval [x0 − δ, x0 + δ] the function f is continuous, and differentiable
except possibly at x0. In particular, f satisfies the hypotheses of the
mean value theorem on each of the intervals [x0− δ, x0] and [x0, x0 + δ].
For each number h with 0 < |h| < δ, there exists an xh ∈ (x0, x0 + h)
such that

f ′(xh) =
f(x0 + h)− f(x0)

h
.

By construction, xh → x0 as h → 0; taking limits gives lim(f ′, x0) =
f ′(x0), as claimed.

Writing a formal ε-δ proof of the last step is a good exercise.
Example 9.11 Let ψ : R → R be the 2-periodic function whose
restriction to [−1, 1] is given by (9.1). For x ∈ (0, 1) we have ψ′(x) =
4− 8x, while on (−1, 0) we have ψ′(x) = 4 + 8x. Using Theorem 9.10,
we find that ψ is differentiable at 0, and ψ′(0) = 4. Similarly, also using
periodicity, we find that ψ is differentiable at ±1, and ψ′(±1) = −4.
Since ψ is differentiable over an entire period, it is differentiable on R.
In particular, we have constructed a non-constant, periodic function of
class C1.

We call ψ the pseudo-sine function. �

9.3 Differentiability of Inverse Functions

Differential calculus provides an effective tool, the sign of the deriva-
tive, for determining whether a function is monotone. For differentiable
functions whose domain is an interval, monotonicity is equivalent to in-
vertibility. We now turn to the question of whether an inverse function
is itself differentiable, and if so, how to calculate the derivative.

Let f : I → R be a one-to-one function whose domain is an open
interval, and let J = f(I) be the image. There is a function g : J → I
such that

g
(
f(x)

)
= x for all x ∈ I,

f
(
g(y)

)
= y for all y ∈ J.(9.2)

In other words, for x ∈ I, the equations y = f(x) and x = g(y) are
equivalent. Replacing f by −f if necessary, we may as well assume f is
increasing.
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Theorem 9.12. Let f : I → R be one-to-one and differentiable on the
interval I, and let x0 ∈ I. The function g = f−1 is differentiable at
y0 = f(x0) iff f ′(x0) 6= 0, and in this event

g′(y0) =
1

f ′(x0)
.

Proof. Assume first that g = f−1 is differentiable at y0 = f(x0). The
chain rule applied to the first of (9.2) implies 1 = g′(y0)f ′(x0). We
deduce that

g′(y0) = g′
(
f(x0)

)
=

1

f ′(x0)
if f ′(x0) 6= 0,

and that if f ′(x0) = 0, then g is not differentiable at y0. We therefore
know what the derivative of f−1 must be, provided the derivative exists.
The Leibniz version of this equation is the natural-looking equation

1 =
dy

dx
· dx
dy
,

with the usual proviso that the xs are not the same, and neither are
the ys.

To prove that g really is differentiable when f ′ 6= 0, observe that
there exists an η > 0 such that (x0−η, x0 +η) ⊂ I, and that for |h| < η
we may write f(x0 + h) − f(x0) = k, where k is uniquely determined
by h, see Figure 9.4. Rewriting this as f(x0 + h) = f(x0) + k = y0 + k
and applying g to both sides,

g(y0 + k)− g(y0)

k
=

h

f(x0 + h)− f(x0)
.

If f ′(x0) > 0, then the right-hand side has a limit as h → 0, namely
1/f ′(x0), while the left-hand side is a Newton quotient for g′(y0). This
proves that if f ′(x0) 6= 0, then g = f−1 is differentiable at f(x0) =
y0.

Example 9.13 Let q be a positive integer, and let f(x) = xq for x > 0.
The function f is increasing (hence invertible) and differentiable, with
derivative f ′(x) = qxq−1 > 0. The inverse function is the qth root
function, g(y) = y1/q. By Theorem 9.12, g is differentiable at y = xq,
and

g′(y) =
1

f ′(x)
=

1

qxq−1
=

1

q
y(1/q)−1.
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x0 x0 + h

y0 = f(x0)

y0 + k = f(x0 + h)
y = f(x)

x = g(y)

h

k

Figure 9.4: The difference quotient of an inverse function.

Exercise 9.4 extends this result to power functions with arbitrary ra-
tional exponent. �

Example 9.14 The natural logarithm (Exercise 7.17) is defined by

log x =

∫ x

1

1

t
dt, t > 0.

The image of log is R. Theorem 8.9 implies that log is differentiable,
and that log′ x = 1/x for x > 0. Corollary 9.8 implies log is increasing,
hence invertible, a fact we also knew from Exercise 7.17. Let exp : R→
(0,∞) denote the inverse function. Clearly log 1 = 0, so exp(0) = 1,
and for each x > 0 we have

exp′(x) =
1

log′[exp(x)]
=

1

1/ exp(x)
= exp(x).

Thus, as we claimed earlier, there exists a differentiable function that is
equal to its own derivative on R and takes the value 1 at 0. �

9.4 The Second Derivative and Convexity
Let f : [a, b] → R be continuous, and assume f is twice-differentiable
on (a, b). The value f ′(x) may be interpreted as the slope of the line
tangent to the graph of f at x, and f ′′(x) is the instantaneous rate of
change of the slope as x varies. If f ′′ > 0 on some interval, geometric
intuition says the graph of f should be “convex” or “concave up”:
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The aim of this section is to define “convexity” precisely, and to prove
that a C 2 function with positive second derivative is convex is this
sense.

A set R ⊂ R2 is said to be convex if, for all points p1 and p2

in R, the segment joining p1 to p2 lies entirely within R. To express
this criterion algebraically, note that the segment joining p1 = (x1, y1)
and p2 = (x2, y2) is the set of points of the form

(1− t)p1 + tp2 =
(
(1− t)x1 + tx2, (1− t)y1 + ty2

)
for t ∈ [0, 1].

Figure 9.5: Convex and non-convex sets.

Convex Functions

Definition 9.15 Let I ⊆ R be an interval. A function f : I → R is
convex if the “region above the graph”,

Γ+
f := {(x, y) | x ∈ I, f(x) ≤ y},

is a convex set in the plane.
A function f is concave if −f is convex, i.e., if the “region below the
graph”,

Γ−f := {(x, y) | x ∈ I, y ≤ f(x)},
is a convex set in the plane. The terms “concave up” and “concave
down” are often used with the same (respective) meanings.

To test the region above the graph of f for convexity, it is enough
to choose the points pi to lie on the graph:
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Proposition 9.16. A function f : I → R is convex iff every secant
line is contained in Γ+

f .

Proof. The “only if” direction is obvious.
For the “if” implication, the idea is that if p1 and p2 are points of R,

then the segment joining them lies above the secant line obtained by
vertical projection:

p1
p2

But the secant line is contained in R by hypothesis, so the segment
joining p1 and p2 is also contained in R. An algebraic proof is left to
you as a translation exercise.

Just as the sign of the first derivative is related to monotonicity via
the mean value theorem, the sign of the second derivative is related
to convexity, and the mean value theorem provides the link between
infinitesimal information (f ′′) and finite differences (convexity).

Lemma 9.17. Suppose f is twice-differentiable on (a, b), f(x1) =
f(x2) = 0 for some x1 < x2, and that f ′′ ≥ 0 on [x1, x2]. Then f ≤ 0
on [x1, x2].

Proof. As with our monotonicity results, the contrapositive is more
natural to prove: If there exists an x in (x1, x2) with f(x) > 0, then
f ′′(z) < 0 for some z in (x1, x2), Figure 9.6.

Applying the mean value theorem to f on the interval [x1, x], we
deduce that there exists z1 ∈ (x1, x) such that

f ′(z1) =
f(x)− f(x1)

x− x1

=
f(x)

x− x1

> 0.

Similarly, there is a point z2 ∈ [x, x2] with f ′(z2) < 0.
Now, applying the mean value theorem to f ′ on [z1, z2], we find that

f ′′(z) =
f ′(z2)− f ′(z1)

z2 − z1

< 0

for some z ∈ (z1, z2).
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x1 x2xz1 z2

Figure 9.6: Determining the sign of f ′′ from the value of f .

There is clearly a version of Lemma 9.17 with inequalities reversed.
(“If f ′′ ≤ 0, then f ≥ 0.”) Further, if f ′′ is continuous and there is
strict inequality in the hypothesis (i.e., f ′′(x) < 0 for some x) then we
get strict inequality in the conclusion, since a continuous function that
is positive at one point is positive on an interval.

Armed with Lemma 9.17, we can characterize convexity of C 2 func-
tions in terms of the second derivative.

Theorem 9.18. Suppose f is C 2 on an interval I. For each closed
interval [a, b] ⊂ I, f is convex on [a, b] iff f ′′ ≥ 0 on (a, b).

Proof. By Proposition 9.16, it suffices to show that the following con-
ditions are equivalent:

• f ′′ ≥ 0 on I.

• “The graph of f lies below every secant line.” Formally, for all a,
b in I, the segment joining p1 =

(
a, f(a)

)
and p2 =

(
b, f(b)

)
lies

in Γ+
f .

Suppose the first condition holds. Fix elements a < b in I, let `
be the linear polynomial whose graph is the secant line, and introduce
the C 2 function g = f − `. Direct calculation shows that g′′ = f ′′, and
that g(a) = g(b) = 0. Lemma 9.17 implies g ≤ 0 on [a, b]. But this
says f ≤ ` on [a, b], which is what we wanted to prove. Note that we
have used twice-differentiability, but not continuity of f ′′.

Conversely, suppose the first condition above fails: There exists z
in (a, b) with f ′′(z) < 0. By continuity of f ′′, there exists a δ > 0
such that f ′′ < 0 on the interval [z − δ, z + δ]. As before, let ` be the
secant line, and let g = f − `. An obvious modification of Lemma 9.17
(mentioned above) says that g > 0 at some point of [z−δ, z+δ] ⊂ (a, b).
This means the second condition also fails: There is a secant line that
is not contained in Γ+

f .
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The proof gives more specific information that was stated in the
theorem. For example, if f ′′(x) > 0 for some x, then all secant lines in
some interval about x lie “strictly above” the graph of f . All these state-
ments have obvious modifications for functions whose second derivative
is non-positive. Note also that a function can be convex without being
twice-differentiable. The absolute value function is convex on R, but
is not even once differentiable, while Exercise 9.15 shows that even a
discontinuous function can be convex.

Derivatives and Graphing

Throughout this section, we assume that f is a C 2 function whose
domain is an interval of real numbers that contains [a, b]. The first and
second derivatives can be used to obtain geometric information about
the graph of a function. Graphing calculators have led to a de-emphasis
on manual graphing techniques, but technical knowledge is still useful,
especially for pathological functions that are not well-handled by a
computer.

By Darboux’ theorem and the mean value theorem, if f ′ 6= 0 in (a, b),
then f is monotone in [a, b]. If f has only finitely many critical points,
a very rough graph can be sketched by plotting the points

(
x, f(x)

)
for

each critical point x, then “connecting the dots”; such a graph contains
the monotonicity information about f .

Information about convexity of the graph is found by computing f ′′
and determining the sign: When f ′′ > 0, the graph is convex, and when
f ′′ < 0 the graph is concave. Points where the convexity of a graph
changes are geometrically interesting:
Definition 9.19 Let f be continuous at x0 and twice-differentiable
on a deleted neighborhood of x0. The point

(
x0, f(x0)

)
is an inflection

point or a flex 2 if

• lim(f ′, x−0 ) = lim(f ′, x+
0 ) (possibly +∞ or −∞),

• f ′′ changes sign at x0, and f ′′ is non-vanishing on some deleted
interval about x0.

Geometrically, the graph has a tangent line at each point in a neighbor-
hood of x0 and the convexity changes at x0, so the graph is “S-shaped”.
By Darboux’ theorem, an inflection point corresponds to a zero of f ′′

2In mathematics, “flex” is a noun.



300 CHAPTER 9. THE MEAN VALUE THEOREM

or a point at which f ′′ does not exist. Not every such point is a flex,
however.

Using the critical points as scaffolding and fleshing out the graph
using convexity information generally gives an accurate graph. If more
quantitative information is needed, plot a few points by direct compu-
tation. If the equation f(x) = 0 can be solved exactly, those points
should be plotted.

Example 9.20 Suppose we wish to sketch the graph of f(x) =
x2/3(x3 − 1). First we multiply out and differentiate:

f ′(x) = 11
3
x8/3 − 2

3
x−1/3 = 1

3
x−1/3(11x3 − 2)

f ′′(x) = 88
9
x5/3 + 2

9
x−4/3 = 2

9
x−4/3(44x3 + 2)

Note that it is easier to differentiate after expanding, but easier to find
critical points after factoring. In practice, you will probably want to
compute expanded and factors forms of the first two derivatives.

There is one real critical point, xcrit = 3
√

2/11, and f ′(0) does not
exist. Since the sign of 3

√
x is the same as the sign of x while (11x −

2) < 0 near 0, we find that lim(f ′, 0−) = +∞ and lim(f ′, 0+) = −∞.
Consequently, f ′ > 0 if x < 0 or if x > 3

√
2/11, and f ′ < 0 if 0 < x <

3
√

2/11.

The second derivative vanishes at xflex = − 3
√

1/22 and is undefined
at 0. Since x4/3 ≥ 0 for all real x, we see that lim(f ′′, 0) = +∞. There
is, consequently, one inflection point, since f ′′ changes sign where the
term in parentheses is 0. The graph is concave for x < − 3

√
1/22 and

convex for x > − 3
√

1/22.

The equation f(x) = 0 has two real solutions, x = 0 and x = 1. We
plot these points, as well as the critical point and the flex, then sketch
the curve using our monotonicity and convexity information.
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xcritxflex−1 0 1 2

−2

2

The picture above shows the graph at true scale. �

Acceleration

If a function represents position as a function of time, then the first
derivative represents the physical concept of velocity, and the second
derivative represents acceleration.

It is a remarkable physical fact that acceleration can be measured
via “local experiments”, those that do not involve looking at the rest of
the universe. Imagine you are in an airplane, flying at constant speed
and altitude. Aside from noise of the engines, you have no physical
evidence you are “in motion”. If you throw a ball across the aisle,
it appears to move exactly as if the plane were sitting on the ground.
Liquids poured from a can will fall into a cup in the expected way. Your
weight as measured by a scale is the same as on the ground. By contrast,
if the plane suddenly dives, climbs, or turns sharply, observable changes
will occur: the ball will follow a strange path, possibly curving to one
side; the drink may miss the cup, or (if the plane goes into “free-fall”)
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form a ball and hang motionless; your weight may increase or decrease
as you stand on the scale. These effects are substantial for fighter pilots
and astronauts, and in extreme cases can result in blackout from blood
pooling in the legs and feet.

Airlines recommend that passengers keep their seat belts fastened
during the entire flight, because there have been rare accidents in which
a plane dived sharply for a fraction of a second, briefly “reversing grav-
ity” in the cabin, and causing unsecured passengers to fall upward out of
their seats and be seriously injured when they “landed” on the baggage
compartments overhead. If you have flown you have almost certainly
experienced the sensation of “turbulence” or an “air pocket”. Your in-
ner ear is an extremely sensitive gauge of equilibrium; when the plane
is flying straight, level, and at constant speed, your inner ear cannot
tell you are in motion, but if the plane accelerates, your inner ear will
register the change, usually as a sensation of falling or nausea. NASA
uses a specially modified Boeing 707 to train astronauts in a nearly
weightless environment. The plane (nicknamed the “Vomit Comet” for
obvious reasons) climbs to an altitude of about 40,000 feet, then enters
a parabolic arc that matches the trajectory of a freely-falling body. This
path is followed for about 30 seconds before the pilot must pull up the
nose of the plane, which (incidentally) causes the plane to experience
“greater than normal gravity” for a few seconds.

As recently as the early 1800s, some scientists believed that travel-
ing at speeds in excess of about 15 mph would result in serious phys-
ical harm. Steam locomotives thoroughly debunked this idea, and we
now know that velocity by itself is not merely harmless, but physi-
cally meaningless in an absolute sense. Acceleration, by contrast, does
have absolute meaning, and manifests itself as a force (in the sense of
physics). The fact that “acceleration can be felt but motion at constant
speed cannot” is the basis of the adage, “It’s not the fall that kills you,
it’s the sudden stop at the end.”

9.5 Indeterminate Limits

There is a powerful calculational tool, l’Hôpital’s rule, that harnesses
the machinery of derivatives to the task of evaluating indeterminate
limits. As is the case for many results of this chapter, there is a com-
pelling Leibniz notation interpretation for the result, but the actual
proof depends on a seemingly unrelated technical result.
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The Cauchy Mean Value Theorem

Theorem 9.21. Let f , g : [a, b]→ R be continuous, and differentiable
on (a, b). There exists a point x0 ∈ (a, b) such that

f ′(x0)
(
g(b)− g(a)

)
= g′(x0)

(
f(b)− f(a)

)
.

Proof. The ordinary mean value theorem is the special case g = id, the
identity function, and the Cauchy version is proven with an analogous
trick. Define h : [a, b]→ R by

h(x) = f(x)
(
g(b)− g(a)

)− g(x)
(
f(b)− f(a)

)
.

It is immediate that h satisfies the hypotheses of Rolle’s theorem, so
there exists an x0 ∈ (a, b) with h′(x0) = 0, as claimed.

L’Hôpital’s Rule

The corollary of the Cauchy mean value theorem that is known to cal-
culus students as l’Hôpital’s rule was in fact proven by John Bernoulli.
The Marquis de l’Hôpital was a wealthy patron of Bernoulli but a
mediocre mathematician. It is sometimes joked that l’Hôpital’s rule
is the best theorem that money can buy.

Theorem 9.22. Suppose f and g are differentiable in some deleted
neighborhood of c, that lim(f, c) = lim(g, c) = 0, that g′ is non-vanishing
in some deleted interval about c, and that lim(f ′/g′, c) exists and is equal
to `. Then lim(f/g, c) exists and is equal to `.

In English: When attempting to evaluate a limit of a quotient, if the
answer is formally 0/0, then differentiate the numerator and denomi-
nator (do not confuse this with the quotient rule!) and try to evaluate
again. If the limit is `, then the original limit was also `.

Proof. By assumption, f ′/g′ is defined on some deleted interval about c,
so there exists a δ > 0 such that if 0 < |x− c| < δ, then f ′(x) and g′(x)
exist and g′(x) 6= 0. If necessary, re-define f and g to be 0 at c, so that
f and g are continuous on (c− δ, c+ δ).

In the deleted δ-interval about c, the denominator g is non-vanishing,
since otherwise g′ would be zero somewhere Rolle’s theorem. Thus f/g
is defined on the deleted interval N×δ (c). By the Cauchy mean value
theorem, there exists a point x0 ∈ (c, c+ δ) such that

f ′(x0)
(
g(c+ δ)− g(c)

)
= g′(x0)

(
f(c+ δ)− f(c)

)
,
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or, since f(c) = g(c) = 0 and g(c+ δ) 6= 0,

f(c+ δ)

g(c+ δ)
=
f ′(x0)

g′(x0)
.

Taking the limit as δ → 0 completes the proof, since x0 → c as δ →
0.

It is very important not to apply the formalism without checking the
hypotheses; in English, do not attempt to apply l’Hôpital’s rule if the
limit is not formally 0/0. To see why, consider the mistaken calculation

lim
x→0

1

x2

oops!
= lim

x→0

0

2x
= lim

x→0

0

2
= 0.

In addition, the converse of l’Hôpital’s rule is false. If lim(f ′/g′, c) fails
to exist, then no information is gained; the original limit may or may
not exist. It is still possible to say something, though, see Exercise 9.24.
Example 9.23 Let n be a positive integer. By l’Hôpital’s rule,

lim
x→1

xn − 1

x− 1
= lim

x→1

nxn−1

1
= n,

in accord with the geometric sum formula, Exercise 2.16. By Exer-
cise 9.4, the conclusion extends to arbitrary rational r. �

L’Hôpital’s rule may be applied repeatedly in the event f ′(c) =
g′(c) = 0. If, for some positive integer k, the limit lim(f (k)/g(k), c)
exists and is equal to ` (and all previous applications of l’Hôpital’s rule
have given 0/0), then the original limit exists and is equal to `.
Example 9.24 A single application of l’Hôpital’s rule gives us

lim
x→0

ex − x− 1

x2
= lim

x→0

ex − 1

2x

since exp is its own derivative. The latter is still formally 0/0, so
we apply l’Hôpital again. The resulting expression can be evaluated by
setting x = 0, and we find that the limit is 1/2. �

L’Hôpital’s Rule at +∞
L’Hôpital’s rule has a version for limits at +∞ that will be used re-
peatedly.
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Theorem 9.25. Let f and g be differentiable functions. Assume that
g′ is non-vanishing on some interval (R,+∞), and that

lim(f,+∞) = 0 = lim(g,+∞).

If lim(f ′/g′,+∞) = L, then lim(f/g,+∞) = L.

Note that the conclusion is that the quotient f/g has a limit at +∞,
and that this limit is the same as the limit of f ′/g′. Formally, this is
the same as l’Hôpital’s rule at finite points.

Proof. Because g′ is non-vanishing on some interval (R,+∞), g is
monotone on (R,+∞). Since lim(g,+∞) = 0, it follows that g itself
is non-vanishing on (R,+∞), so the quotient f/g is defined on this
interval. Because f and g have finite limit at +∞, we may assume f
and g are bounded on (R,+∞).

An argument based on the Cauchy mean value theorem is possi-
ble, but slightly involved, because the hypotheses of the theorem are
not amenable to using closed, bounded intervals. Instead, we use the
“change of variable” y = 1/x2. This choice is dictated by the wish that
x lie in a deleted interval about 0 iff y is in a deleted interval about +∞.
Define

F (x) = f(1/x2), G(x) = g(1/x2) for x 6= 0.

You can check that F and G satisfy the hypotheses of Theorem 9.22.
By the chain rule, we have F ′(x) = −(2/x3)f ′(1/x2) and similarly for g,
so

F ′(x)

G′(x)
=
f ′(1/x2)

g′(1/x2)
.

Theorem 9.22 implies lim(f/g,+∞) = lim(F/G, 0) = L, as claimed.

Exercises

Exercise 9.1 Consider the absolute value function f(x) = |x| on the
interval [−1, 1]. Does there exist an x0 ∈ (−1, 1) such that

f ′(x0) =
f(1)− f(−1)

1− (−1)
= 0?
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Why does this not contradict the mean value theorem? Answer the
same question for the function g(x) = x/|x| defined for x 6= 0. �
Exercise 9.2 Let f(x) = 1/x for x 6= 0. Show that f ′(x) < 0 for all x
in the domain of f . Is f a decreasing function? Is f decreasing when
restricted to an interval in its domain? Explain. �
Exercise 9.3 Let f(x) = x3 for x ∈ R. Show that f has a critical
point. Is f increasing on R? �
Exercise 9.4 Use the result of Example 9.13 to show that if r = p/q
is rational, then d

dx
xr = rxr−1. �

Exercise 9.5 Using the chain rule and Exercise 9.4, find the derivatives
of the following, and sketch the graphs. Be sure to give the domain of
each function and the domain of the derivative.

(a) f(x) =
√

1− x2

(b) f(x) = 1/
√

1− x2

(c) f(x) =
√

1 + x2

(d) f(x) = x/
√

1 + x2

It may be helpful to find the vertical and/or horizontal asymptotes, as
appropriate. �
Exercise 9.6 Let f : [−2, 2]→ R be defined by

f(x) =

{
(1− x2)2 if |x| ≤ 1

0 otherwise

Prove that f is differentiable (pay close attention to the points x = ±1),
and sketch the graphs of f and f ′ on the same set of axes. �
Exercise 9.7 Let ψ : R → R be the pseudo-sine function of Exam-
ple 9.11.

(a) Show that ψ is odd, express the derivative in terms of the Charlie
Brown function, and find the critical points and extrema.

(b) Sketch the graph of ψ on [−3, 3]. Note that (9.1) holds only
on [−1, 1].
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�
Exercise 9.8 Let f : R → R be C 1, and assume f ′ is non-constant
and periodic with period 1.

(a) Prove that there exists a real c such that f(x + 1) = f(x) + c for
all x ∈ R.

(b) Prove that g(x) = f(x)− cx is periodic with period 1.

(c) Give an example of a non-periodic function whose derivative is
non-constant and periodic, and sketch the graph of f .

�
Exercise 9.9 Sketch the locus Z of the equation y2 = x2 + x3, and
show that there exists a continuous function f : [−1,+∞) → R, dif-
ferentiable on (−1,+∞), such that Z is the union of the graphs of f
and −f . (You will need to patch two functions at 0.) �
Exercise 9.10 Let f : R→ R be defined by

f(x) =

{
e−1/x2 if x > 0,

0 otherwise.

−1 0 1 2 3

f ≡ 0 f > 0

(a) Use the previous exercise to show that if p is a polynomial, then

lim
x→0

p
(

1
x

)
f(x) = 0.

(b) Use the chain rule to compute f ′(x) if x > 0, and evaluate lim(f ′, 0)
with full justification. Use your answer to prove that f is differ-
entiable on R.

(c) Use induction on n to prove that f is n times differentiable, even
at 0.
Suggestion: Prove inductively that if x > 0, then f (k)(x) =
pk
(

1
x

)
f(x) for some polynomial pk.
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Thus f is smooth (C∞). �
Exercise 9.11 In Exercise 8.3, you showed that

n∑
k=1

kxk =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2

n∑
k=1

k2xk =
n2xn+2 − (2n2 + 2n− 1)xn+1 + (n+ 1)2xn − (x+ 1)

(x− 1)3

for x 6= 1. Use l’Hôpital’s rule at x = 1 to evaluate the sums on the left
at x = 1. �

Convexity

Exercise 9.12 Let R1 and R2 be convex sets in the plane. Prove that
R1 ∩R2 is convex. �
Exercise 9.13 Let a and b be positive. The set

(∗) {(x, y) | x2

a2 + y2

b2
≤ 1}

is an ellipse, cf. Figure 9.5.

(a) Solve for y as a function of x to express the boundary of the ellipse
as a union of graphs.

(b) Prove that the function whose graph is the top half of the ellipse
is concave, and that the bottom half is convex.

(c) Prove that the ellipse (∗) is a convex set in the plane.

Exercise 9.12 should be helpful. �
Exercise 9.14 Let I ⊂ R be an interval. Show that f is convex on I
iff

f
(
(1− t)a+ tb

) ≤ (1− t)f(a) + tf(b), 0 ≤ t ≤ 1

for all a and b in I. �
Exercise 9.15 Prove that the indicator function χ{0} : [0, 1] → R is
convex.
Hint: You can find the secants explicitly. �
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Exercise 9.16 Prove that if f : [0, 1] → R has a jump discontinuity
in (0, 1), then f is not convex. �
Exercise 9.17 Prove that if f is twice-differentiable and f ′′ 6= 0
on [a, b], then f vanishes at most twice in [a, b].
Hint: Use the mean value theorem directly; do not assume f is C 2.

The intuitive principle is that if f ′′ is non-vanishing (nowhere zero),
then f vanishes at most twice on each interval contained in the domain
of f . If the domain of f is not an interval, then f may vanish more
than twice. �
Exercise 9.18 Let f : [0,+∞) → R be a non-increasing, convex
function. Can f have a jump discontinuity? Two jump discontinuities?
What if we do not assume f is non-increasing? As always, give proof
or counterexamples for your claims. �
Exercise 9.19 This exercise establishes Hölder’s inequality : If 1

p
+ 1

q
=

1 and if f and g are integrable on [a, b], then

(∗∗)
∣∣∣ ∫ b

a

fg
∣∣∣ ≤ ∫ b

a

|fg| ≤
(∫ b

a

|f |
)1/p(∫ b

a

|g|
)1/q

(Recall that fg is integrable by Exercise 7.12.)

(a) Let α ∈ (0, 1). Prove that tα ≤ αt+ (1− α) for all t ≥ 0.

(b) Let β = 1− α, and note that β ∈ (0, 1). Prove that

uαvβ ≤ αu+ βv for all u, v > 0.

Suggestion: Set t = u/v in part (a).

(c) Let p > 1, and set q = p/(p− 1), so that 1
p

+ 1
q

= 1. Show that

AB ≤ 1
p
Ap + 1

q
Bq for all A, B ≥ 0.

Suggestion: Use part (b) with appropriate changes of variable.

(d) (Hölder’s inequality for finite sequences) Show that if p and q are
as in (c), and if ak and bk are real numbers for 1 ≤ k ≤ n, then

n∑
k=1

|akbk| ≤
( n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

.

Hint: Set Ak = ak/(
∑

k |ak|p)1/p, etc., and use part (c).
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(e) Prove equation (∗∗). There are a couple of ways to proceed; either
use part (d) and Riemann sums, or part (c) with A and B suitable
integrals.

Hölder’s inequality is of great technical importance in analysis. The
special case p = q = 2 is the Schwarz inequality. �

L’Hôpital’s Rule

Exercise 9.20 Use l’Hôpital’s rule to calculate the following limits:

lim
x→1

log x

x− 1
lim
x→0+

x log x lim
x→+∞

log x

x
lim

x→+∞
x

expx
.

Suggestion for the second limit: write x = 1/(1/x). �
Exercise 9.21 Use the results of the preceding exercise, and other
techniques as needed, to evaluate the following limits:

lim
x→+∞

xn

expx
and lim

x→0

e−1/x2

xn
for n ∈ N; lim

x→0+
xx.

Despite the last limit, the expression 00 is undefined. �
Exercise 9.22 Let f be differentiable in a neighborhood of x. Evaluate

lim
h→0

f(x+ h)− f(x− h)

2h
.

Find a discontinuous function for which this limit exists. �
Exercise 9.23 Let f be twice-differentiable in a neighborhood x. Eval-
uate

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.

Why do we not use this limit to define f ′′? �
Exercise 9.24 Suppose f and g are differentiable on (c−δ, c+δ), that
lim
x→c

f(x) = lim
x→c

g(x) = 0, and that lim
x→c

g′(x) = 0 but lim
x→c

f ′(x) = ` 6= 0.
Prove that lim

x→c
f(x)/g(x) does not exist. �



Chapter 10

The Fundamental Theorems

We have introduced an operation (integration) that “adds up infinitely
many infinitesimals”, and another (differentiation) that “zooms in with
factor infinity”. Aside from technical issues, these operations are linear
mappings f 7→ Iaf and f 7→ Df , defined by

Iaf(x) =

∫ x

a

f(t) dt, Df(x) = f ′(x).

We have argued informally that these operations should be inverse to
each other, and have rigorously established some partial results in this
direction. With the mean value theorem available, we are now ready
to make a systematic and detailed study of the relationship between
integration and differentiation.

10.1 Integration and Differentiation
Theorem 10.1. Let f : [a, b]→ R be integrable, and let F : [a, b]→ R
be the definite integral of f , defined by

F (x) =

∫ x

a

f(t) dt for x ∈ [a, b].

If f is continuous at c ∈ (a, b), then F is differentiable at c, and F ′(c) =
f(c).

Theorem 10.1 is often called the First Fundamental Theorem of
Calculus, a name that emphasizes its central role in the calculus. In
Leibniz notation, the conclusion is written

d

dx

∫ x

a

f(t) dt = f(x),

311
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which emphasizes the inverse nature of integration and differentiation.
As usual with a complicated theorem, it is tempting to memorize

only the conclusion. You are cautioned that the conclusion is not gen-
erally true if f is discontinuous: The derivative of the integral may fail
to exist at all, and may have the “wrong” value even if it does exist.

Proof. Fix c ∈ (a, b). By hypothesis, f = f(c) + o(1) at c, so for
each ε > 0 there exists an open δ-interval contained in (a, b) on which
f = f(c) + A(ε). If 0 < |h| < δ then the Newton quotient ∆cF (h) is
defined, and is equal to

∆cF (h) =
1

h

(
F (c+ h)− F (c)

)
=

1

h

∫ c+h

c

f(t) dt.

As noted in Chapter 7, this is the average value of f on the interval
with endpoints c and c+ h (even if h < 0). By Theorem 7.20,

∆cF (h) =
1

h

(
f(c)h+ A(ε)h

)
= f(c) + A(ε)

on the open δ-interval about c. Since ε > 0 was arbitrary, we have
shown that ∆cF (h) = f(c) + o(1) near h = 0, or F ′(c) = f(c).

The first fundamental theorem says what happens when a continu-
ous function f is integrated and the integral differentiated: The func-
tion f is recovered! The second fundamental theorem of calculus treats
the opposite question, in which a derivative is integrated.

Theorem 10.2. If f : [a, b]→ R is integrable, and if f = F ′ for some
function F , then ∫ b

a

f = F (b)− F (a).

Proof. Let P = {ti}ni−0 be a partition of [a, b]. By the mean value
theorem applied to F , for each i = 1, . . . , n there exists a point xi ∈
(ti−1, ti) such that

F (ti)− F (ti−1) = F ′(xi)(ti − ti−1) = f(xi)∆ti.

If mi and Mi are the inf and sup of f on the ith subinterval, then

mi∆ti ≤ F (ti)− F (ti−1) ≤Mi∆ti for i = 1, . . . , n.
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Summing over i shows that

L(f, P ) ≤ F (b)− F (a) ≤ U(f, P ) for every partition P .

Since f is integrable and the middle term does not depend on the choice
of partition, the value of the integral must be F (b)− F (a).

The proof of Theorem 10.2 is a rigorous version of the intuitive
argument given in Chapter 6, in which integration of the differential

F ′(t) dt =
dF

dt
dt = dF = F (t+ dt)− F (t)

gives rise to a formally telescoping sum. In Leibniz notation, the con-
clusion of the second fundamental theorem reads∫ x

a

dF =

∫ x

a

dF

dt
dt = F (x)− F (a).

As the notation suggests, we usually regard a as fixed and x as variable.
However, either a or x can be regarded as a “variable” in Theorem 10.3,
since both are arbitrary. Again, you should not memorize the con-
clusion and forget the hypotheses; it is essential to assume that F ′ is
integrable.

This is a good time to recall the notation

F (x)− F (a) = F
∣∣∣x
a

= F (t)
∣∣∣t=x
t=a

=
[
F (t)

]t=x
t=a
.

It is common to see “F (t)
∣∣x
a
” as well, though strictly speaking this is

bad syntax.
The difference F

∣∣x
a
may be regarded as a “0-dimensional integral”

(a.k.a. “sum of function values, counted with orientation”) of F over the
boundary of the interval [a, x]. The fundamental theorem asserts this is
the same as the “1-dimensional integral” of the differential dF = F ′(t) dt
over [a, x]. The proper setting for these remarks is the calculus of several
variables.

Since a continuous function is integrable on every closed interval,
Theorem 10.2 has an immediate corollary:

Theorem 10.3. If F : (α, β)→ R is C 1, then∫ x

a

F ′(t) dt = F (x)− F (a) for all a, x ∈ (α, β).
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Integration vs. Antidifferentiation

An antiderivative of f is a function F with F ′ = f . Theorem 10.3 says
that integrating a continuous function f over the interval [a, x] is tan-
tamount to finding an antiderivative of f and computing a difference of
function values. Note the powerful implication: a single antiderivative
allows us to evaluate an integral for all x in some interval. Finding an
antiderivative is often considerably easier than computing lower sums
and taking the supremum, even for a single value of x.

The importance of the fundamental theorem is twofold:

• (Practical) It greatly simplifies calculation of integrals of functions
for which an antiderivative can be found explicitly.

• (Theoretical) It exhibits an antiderivative of a continuous function
whether or not an antiderivative can be found by other means.

The practical importance alone is complete justification of the fun-
damental theorem in most calculus courses. However, the theoretical
importance should not be overlooked: We have already seen, in Exer-
cise 7.17, how the properties of a function defined as a definite integral
can be studied (that is, how interesting functions can be defined as
integrals).

Theorem 10.2 describes the close link between integration and an-
tidifferentiation, and many calculus texts (as well as working scientists
and mathematicians) use the integral sign to denote antiderivatives, as
in ∫

xn dx =
xn+1

n+ 1
+ C,

the ubiquitous “+C” representing an arbitrary additive constant.1 Many
students are left with the impression that integration is antidifferen-
tiation, perhaps even by definition. The reason is probably human
psychology: The definition of integration is relatively complicated (par-
titions, sums, and suprema), antiderivatives are simple by comparison,
and “most of the time” they’re functionally equivalent. However, in-
tegration and antidifferentiation are not the same thing, and therein
lies the miracle of differential and integral calculus. An antiderivative
is often easy to find, but has no obviously interesting interpretation.

1We avoid such notation; “x” is a dummy variable on the left but not on the
right.
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An integral is rich with meaning (total change), but is laborious to
compute from the definition.

The fundamental theorem of calculus gives a method of work-
ing easily with quantities of great theoretical and practical
interest.

A more subtle point is that Theorems 10.1 and 10.3 are stated
for continuous integrands. It is simply not true that integration and
differentiation are inverse operations, even up to the additive constant.
Precisely,

• There exist (discontinuous) integrable functions f whose integral
is everywhere differentiable, but such that

f(x) 6= d

dx

∫ x

a

f(t) dt

for infinitely many x. The denominator function of Example 3.11
has this property, see Exercise 7.9.

• There exist differentiable functions F (with discontinuous deriva-
tive) such that F ′ is not integrable, so Theorem 10.2 is not even
applicable.

Despite these cautions, the fundamental theorems can be strengthened;
for example, the conclusion of Theorem 10.3 remains true for differen-
tiable functions F whose derivatives are unbounded at finitely many
points if we enlarge the definition of “integral” to include improper in-
tegrals, see Exercise 10.20.

10.2 Antidifferentiation
Because integration and antidifferentiation are so closely related for
continuous functions, every calculational theorem about derivatives
(the chain rule and product rule especially) corresponds to a useful
tool for computing integrals. The method of substitution arises from
the chain rule, while the technique of integration by parts corresponds
to the Leibniz rule.

Strikingly (given the state of affairs with derivatives), there is no
general formula or algorithm for finding antiderivatives of products,
quotients, and compositions. This is not an assertion of mathematical
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ignorance, but a fact of life. The best one can do is follow the dictum,2
“Shoot first, and call whatever you hit ‘the target’.” Specifically, the
strategy is to compile a table of known derivatives; entries of this table
are functions that we know how to antidifferentiate.

The vague principle “antidifferentiation is non-algorithmic” summa-
rizes the lessons of several theorems. This issues is studied in greater
depth in Chapter 15, but already we can give an indication of what
goes wrong. Recall that a “rational function” is a quotient of polynomi-
als, and that an “algebraic function” is defined implicitly by a polyno-
mial in two variables. Every rational function is algebraic; formally, if
f(x) = p(x)/q(x) with p and q polynomial, then F (x, y) = p(x)−yq(x)
defines f implicitly. Theorems of Chapter 8 imply that the derivative
of a rational function is rational, and that the derivative of an algebraic
function is algebraic.

The natural logarithm, an antiderivative of the (rational) reciprocal
function, is not even algebraic. This is not an isolated example, but
a feature of a “randomly chosen” rational function. Further, we will
see in Chapter 13 that the inverse trigonometric functions, none of
which is algebraic, all have algebraic derivatives, and that arctan even
has rational derivative. As for rational functions, a “generic” algebraic
function does not have an algebraic antiderivative.

Despite these dire cautions, a great many functions can be antidif-
ferentiated explicitly. However, the flavor of the subject is more that
of an art than a science. At this point in the book, the State of the Art
is not very impressive:

Proposition 10.4. Let r 6= −1 be a rational number, and define
f(x) = xr for x > 0. The power function F (x) = xr+1/(r + 1) is
an antiderivative of f . The natural logarithm is an antiderivative of
the reciprocal function f(x) = x−1.

Sums of constant multiples of these rational-power functions (for
example, polynomials) are trivially handled as well. The fundamental
theorem allows us to compute, for example, that∫ 1

0

(t+ 2
√
t) dt =

(
t2

2
+ 2

t3/2

3/2

) ∣∣∣∣∣
t=1

t=0

=
1

2
+

4

3
.

However, we are currently stymied by integrands such as
√

1 + t2,
t
√

1 + t2, and
√

1 + t1/2. Of course, these functions have antideriva-
2Due to Ashleigh Brilliant, used with permission.
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tives (namely their definite integrals on suitable intervals), but we do
not yet know how to write these antiderivatives in “closed form”.

Substitution

Just as the chain rule allows differentiation of composite functions,
the “method of substitution” or “change of variables theorem” allows
antidifferentiation of suitable functions.

Theorem 10.5. Let g : (α, β)→ R be C 1, [a, b] ⊂ (α, β), and assume
f is a continuous function whose domain contains g([a, b]). Then∫ b

a

(f ◦ g) g′ =
∫ g(b)

g(a)

f.

Proof. Let F be an antiderivative of f , and set G = F ◦ g : [a, b]→ R.
The function G is continuously differentiable, and the chain rule implies
G′ = (f ◦ g) g′. By the second fundamental theorem of calculus,∫ b

a

(f ◦ g) g′ =

∫ b

a

G′ = G
∣∣∣b
a

= F
(
g(b)

)− F(g(a)
)

= F
∣∣∣g(b)
g(a)

=

∫ g(b)

g(a)

F ′,

and since F ′ = f the theorem is proved.

In traditional notation with dummy variables, the conclusion of the
change of variables theorem is written

(10.1)
∫ b

a

(
f ◦ g)(t) g′(t) dt =

∫ g(b)

g(a)

f(u) du.

This formulation is particularly compelling in Leibniz notation for der-
ivatives. The “substitution” u = g(t) is differentiated, yielding

du = g′(t) dt =
du

dt
dt,

which looks exactly like cancellation of fractions.3 To change the limits
on the integral, note that if t = a, then u = g(a). Similarly t = b

3Remember that we have not assigned meaning to isolated infinitesimal expres-
sions.
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corresponds to u = g(b). Formal substitution converts the left-hand size
of (10.1) into the right-hand side. Again, this means Leibniz notation
is well-chosen, not that Theorem 10.5 is a tautology.

Example 10.6 Consider∫ 2

0

(1 + t− t3)10 (1− 3t2) dt.

Evaluating directly from the definition is hopeless, as it would first
require multiplying out (to get a polynomial of degree 32), and then
evaluating upper and lower sums and finding the infimum and supre-
mum, respectively. However, the derivative of (1 + t− t3) with respect
to t is 1 − 3t2. If we set u = (1 + t − t3), then u = 1 when t = 0 and
u = −5 when t = 2, so∫ 2

0

(1+t−t3)10 (1−3t2) dt =

∫ −5

1

u10 du =
u11

11

∣∣∣∣u=−5

u=1

=
1

11

(
(−5)11−1

)
.

If an antiderivative had been sought, it could have been found after
antidifferentiating by setting u = (1 + t − t3) instead of plugging in
numerical limits. In Leibniz notation,

d

dt

1

11
(1 + t− t3)11 = (1 + t− t3)10 (1− 3t2),

as is clear from the chain rule. �

Exercises

“Standard” calculus exercises include calculation of lots of antideriva-
tives. While this is an important skill, it is increasingly possible to rely
on symbolic manipulation programs; techniques of integration may fall
by the wayside for non-mathematicians. It is worthwhile to know when
a given function can be expected to have an explicit antiderivative. In
many cases, algebra will convert an apparently impossible function into
one that is easily integrated.

Exercise 10.1 The following functions are given by their value at t.
Find an antiderivative, and check your answer by differentiation. Some
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of them can be done more than one way.

(a1) (1 + t)3 (a2) t(1 + t2)3 (a3) (1 + t2)3

(b1)
√

1 + t (b2) 2t
√

1 + t2 (b3) t/
√

2 + t2

(c1) (1 +
√
t)2 (c2) (t+ t−1)3 (c3) (1− t−2)(t+ t−1)3

(d1) (t+
√
t)2 (d2) (

√
t+ 1/

√
t)2 (d3) (t1/2 + t3/2)3(1 + 3t)/

√
t

(e1) 1/(1− t2) (e2) t/(1− t2) (e3) 1/
(
(t− 1)2(1 + t)

)
Note that you may need different techniques even for a single part.
�
Exercise 10.2 Evaluate

∫ x

0

(1 + t)

(2 + 2t+ t2)3
dt for x ∈ R �

Exercise 10.3 Suppose f : R→ R is continuous.

(a) Define G : R→ R by

G(x) =

∫ x2

0

f =

∫ x2

0

f(t) dt.

Prove that G is differentiable, and find G′(x).
Suggestion: Write G as the composition of two functions you
understand well, and use the chain rule.

(b) Define H : R→ R by

H(x) =

∫ x2

x

f.

Show that H is differentiable, and find H ′(x).

(c) Suppose generally that φ and ψ are differentiable on (α, β), and
define

Φ(x) =

∫ φ(x)

ψ(x)

f for x ∈ (α, β).

Show that Φ is differentiable, and find Φ′(x) in terms of f , φ,
and ψ.

�
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Exercise 10.4 Does there exist an integrable function f : [0, 1] → R
such that ∫ x

0

f = 1 for all x ∈ (0, 1]?

Explain. �
Exercise 10.5 Does there exist an integrable function f : [−1, 1]→ R
such that ∫ x

−1

f =
√

1− x2 for all x ∈ [−1, 1]?

Explain. What if f is only required to be improperly integrable? �
Exercise 10.6 Suppose f and g are integrable functions on [a, b], and
that ∫ x

a

f =

∫ x

a

g for all x ∈ [a, b].

Does it follow that f(x) = g(x) for all x? What if f and g are contin-
uous? �
Exercise 10.7 Let u : R → R be continuous. Prove that for each
c ∈ R, there is exactly one C 1 function f : R→ R satisfying the initial
value problem

f ′ = u, f(0) = c.

�
Exercise 10.8 Let I ⊂ R be an interval, and let f : I → R be C 1.
Prove that there exist non-decreasing functions g1 and g2 with f =
g1 − g2.
Hint: Consider the positive and negative parts of f ′.

Let f(x) = x − x3/3, |x| ≤ 2, see Figure 9.2. On the same set of
axes, sketch f and a pair of non-decreasing functions whose difference
is f . �
Exercise 10.9 Let A : (−1, 1)→ R be the C 1 function characterized
by

A′(x) =
1√

1− x2
, A(0) = 0.

(a) Prove that A is injective.

(b) By (a), A is invertible; let S = A−1. Prove that S ′ =
√

1− S2.

(c) Use (b) to show that S is C 2, and fins S ′′ in terms of S.
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�
Exercise 10.10 Use the change of variables theorem to re-do Exer-
cise 7.13. (Your calculation should be extremely brief. Good theoretical
tools can be a tremendous labor-saving device.) �
Exercise 10.11 Let f : R→ R be continuous.

(a) Define

g(x) =

∫ x

0

tf(t) dt, h(x) =

∫ x

0

xf(t) dt.

Find g′(x) and h′(x).
Suggestion: Rewrite h so that there is no “x” inside the integral.

(b) Use the result of part (a) to show that∫ x

0

f(u)(x− u) du =

∫ x

0

(∫ u

0

f(t) dt

)
du.

Suggestion: Differentiate each side with respect to x. �
Exercise 10.12 Suppose u and v are continuously differentiable func-
tions on [a, b]. Prove the integration by parts formula:∫ b

a

u v′ = uv
∣∣∣b
a
−
∫ b

a

v u′,

and write it in Leibniz notation. Suggestion: Integrate the product rule
for derivatives. �
Exercise 10.13 Formally “show” that

∫ 1

−1

1

x2
dx = −2.

(a) The integrand is positive, but the integral is negative. What went
wrong?

(b) Explain why, when you are asked to evaluate an improper integral,
you must always prove separately that the integral exists.

The lesson is that formal calculation is fine when legitimate, but can
lead to errors if applied mindlessly. �
Exercise 10.14 Use Exercise 10.12 to evaluate the following:∫ b

1

tn log t dt

∫ 1

0

tn log t dt.
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Suggestion: Let u(t) = log t and v(t) = tn. Note that the second
integral is improper, so you must establish convergence. �

Exercise 10.15 Evaluate
∫ 1

0

dt√
t
and

∫ +∞

1

dt

t3
. �

Exercise 10.16 This generalizes the preceding problem. Let r > 0
be rational; evaluate the improper integrals:∫ 1

0

dt

tr
(0 < r < 1)

∫ +∞

1

dt

tr
(1 < r).

�

Exercise 10.17 Evaluate the improper integral
∫ 1

0

t
3
√

1− t2 dt �

Exercise 10.18 Determine which of the following improper integrals
converge; you need not evaluate.

(a)
∫ +∞

0

t dt

t2 + 1

(b)
∫ 1

−1

dt√
1− t2

(c)
∫ 1

−1

t dt√
1− t2

Be sure to split the integral into pieces if necessary. �
Exercise 10.19 Let ψ : R → R be the pseudo-sine function, and
consider the function

F (x) =

{
x2 ψ(1/x2) if x 6= 0

0 if x = 0

Prove that F is differentiable on R, but that F ′ is unbounded near 0.
Is it legitimate to write

F (x) =

∫ x

0

F ′(t) dt

with the understanding that the integral is improper? �
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Exercise 10.20 Suppose F is differentiable on (α, β) ⊃ [a, b], and
that F ′ has only finitely many discontinuities. Prove that∫ b

a

F ′ = F (b)− F (a)

provided the left-hand side is interpreted as an improper integral. Ex-
ercise 10.19 gives an example of a function to which this result applies.
�
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Chapter 11

Sequences of Functions

At this stage we have developed the basic tools of the calculus, differ-
entiation and integration, and have seen how they are related and how
they can be used to study the behavior of functions. What we lack
is a library of functions, especially logarithms, exponentials, and the
trigonometric functions. (We have defined the natural logarithm, but
have not yet proven identities like log(ab) = b log a and exy = (ex)y, so
we are not yet in a position to manipulate logarithms and exponentials
fluently.) There is a reason for our lack of knowledge: In order even to
define non-algebraic functions precisely (in terms of axioms for R), we
must use non-algebraic operations, such as limits and suprema. If you
are skeptical (and you should be!), try to define the cosine of a general
angle without reference to geometry, or explain what is meant by 2

√
2,

using only the axioms of R.
One of the most concrete ways to incorporate limits into the defi-

nition of a function is via power series, namely “polynomials of infinite
degree.” An example is

(11.1) f(x) =
∞∑
k=0

xk

k!
= 1 +

x

1
+

x2

2 · 1 +
x3

3 · 2 · 1 + · · ·+ xk

k!
· · · .

Though literal addition of infinitely many terms is undefined, we may
fix a specific x, regard (11.1) as a numerical series, and ask for which x
the series converges. This is so-called “pointwise convergence.” For
technical reasons that will become apparent, it is instead better to
regard the partial sums of (11.1) as a sequence of functions, and not
merely to ask for which x the series converges, but to demand that the
series converges “at the same rate” on some interval.

325
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Before investigating convergence in detail, let’s see what we stand to
obtain from power series. Optimistically, if the right-hand side of (11.1)
converges for all x in some interval, we hope to manipulate the result-
ing function as if it were a “polynomial with infinitely many terms”;
specifically, we hope to differentiate and integrate term-by-term, to
approximate the numerical value of the series by plugging in specific
values of x, and so forth. Even more ambitiously, we might consider
more general sequences of functions, and ask whether we can integrate
or differentiate the limit function (which may be difficult) using the
approximating functions (which in many cases is simple). There is no
brief answer to these questions in general, but the situation for power
series is as nice as possible: If a power series converges somewhere other
than its center, then it converges on an interval, and on its interval of
convergence may be manipulated exactly as if it were a polynomial.
This, in one sentence, is the philosophical moral of this chapter.

Sequences and series are two ways of describing the same thing.
Though series arise naturally in applications, we use sequence notation
in deducing general theoretical results. Also, though our primary inter-
est is power series, we study general sequences of functions first. This
initial avoidance of unnecessary detail clarifies several technical issues.

11.1 Convergence

Let I ⊂ R be non-empty (usually an interval). Informally, a “sequence
of functions” on I is an ordered collection (fn)∞n=0 of real-valued func-
tions having domain I. Formally, a sequence of functions on I is a
function

F : N× I → R, fn = F (n, · ) : I → R.

The geometric way a limit is taken is to regard the graph of fn as a frame
in an infinite movie (taken “at time n”), then to see what happens as the
film runs on. Roughly, convergence of the sequence means the graphs
“settle down” to an equilibrium graph as n → ∞. It is not difficult to
give a precise definition, but it takes lots of examples to shape intuition
correctly, and a certain amount of hindsight to understand why the
“best” definition of convergence is not the first one that comes to mind.
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Pointwise Convergence

Let (fn) be a sequence of functions on I. For each x ∈ I, the val-
ues fn(x) constitute a sequence of real numbers, and it makes sense to
ask whether or not the limit exists for each x. If

(11.2) f(x) := lim
n→∞

fn(x)

exists for all x ∈ I, then the sequence (fn) is said to converge pointwise
to f , and the function f defined by equation (11.2) is the pointwise
limit of the sequence (fn).

Most students, if asked to define “convergence” of a sequence of
functions, would probably choose a definition equivalent to pointwise
convergence. However, as the following examples demonstrate, a point-
wise limit may not possess desirable properties of the terms of its ap-
proximating sequence. We will consequently be led to seek a stronger
criterion of convergence.
Example 11.1 Let I = [0, 1], and let fn : I → R be the piecewise
linear function

f(x) =

{
1− nx if 0 ≤ x ≤ 1/n

0 if 1/n < x ≤ 1

The sequence (fn) converges pointwise to a function f ; clearly fn(0) = 1
for all n ∈ N, so f(0) = 1. If, instead, x > 0, then for every n > 1/x
we have 1/n < x and therefore fn(x) = 0. It follows that f(x) = 0 for
x > 0.

f1 f4 f

Figure 11.1: A sequence of continuous functions having discontinuous
limit.

In summary, the sequence (fn) converges pointwise to

f(x) =

{
1 if x = 0,

0 if x ∈ (0, 1].



328 CHAPTER 11. SEQUENCES OF FUNCTIONS

0 1 2 3 4 5

φ f3

Figure 11.2: A bump disappearing at +∞.

While each function fn is continuous, the limit function is not. Passing
to the limit of a pointwise convergent sequence can cause the graph to
“break”; the graph of the limit is not the “limit of the graphs” in a naive
geometric sense. �

Example 11.2 Consider the differentiable function φ : R→ R defined
by

φ(x) =

{
30(x− x2)2 if 0 ≤ x ≤ 1

0 otherwise

and define fn(x) = φ(x−n), Figure 11.2. The graph of φ has a “bump”
of width 1 that encloses 1 unit of area, and the graph of fn is translated
to the right by n. In particular, fn is identically zero on the interval
(−∞, n] for each n ∈ N.

If x ∈ R, then there exists a natural number N such that x < N ,
which implies that fn(x) = 0 for all n > N . Consequently,

f(x) := lim
n→∞

fn(x) = 0 for all x ∈ R;

the sequence (fn) converges pointwise to the zero function. �

Features of the fn—in this case, a bump—are not generally inherited
by the limit function. In this example, the bump moves to the right as
n increases, and there is no upper bound on its distance to the origin.
For every x > 0, no matter how large, the bump comes in like a wave
from the left, then passes to the right of x. After that, nothing changes
at x. In a sense, the bump “disappears at infinity.”

Modifications of the preceding example may seem even more sur-
prising. The sequence (nfn)∞n=1 converges pointwise to the zero func-
tion, though the bumps get arbitrarily large as they move to the right.
Moreover, it is not necessary for the bumps to disappear “at infinity”
in space:
Example 11.3 With φ as above, set hn(x) = nφ(nx). It is left to you
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(see Exercise 11.1) to show that the sequence (hn) converges pointwise
to the zero function, despite the fact that the graph of hn has a “spike”
of height n just to the right of 0 for each n > 0.

An additional feature of this example at first seems paradoxical: For
each n, the function hn is integrable on [0, 1], and the limit function is
also integrable. One might therefore expect that

(∗) lim
n→∞

∫ 1

0

hn =

∫ 1

0

(
lim
n→∞

hn

)
.

However, the integral of h1 over [0, 1] is equal to 1, and because the
entire “spike” of hn occurs within the same interval, Exercise 7.13 shows
that ∫ 1

0

hn = 1 for all n ≥ 1,

so the left-hand side of (∗) is equal to 1. But the pointwise limit is the
zero function, so the right-hand side of (∗) is equal to 0. Equation (∗)
is false in this example! �

This example already suggests that pointwise convergence is too
weak a notion of convergence. However, even worse things can happen:
It is possible for the pointwise limit of a sequence of integrable functions
not to be integrable at all.
Example 11.4 Let (ak)

∞
k=1 be a sequence that enumerates the rational

numbers in the interval [0, 1], see Theorem 3.19. For n ∈ N, define

An =
n⋃
k=1

{ak};

the set An consists of “the the first n terms of the sequence (ak). Finally,
let fn : [0, 1] → R be the characteristic function of An. Viewing these
graphs as a movie, we start with the zero function and at time n move
one point on the graph—the point over an—up to height 1. Each
function fn is integrable, since fn is identically zero except at finitely
many points. However, the pointwise limit is the characteristic function
of Q∩[0, 1], which is not integrable as we saw in Chapter 7. �

Uniform Convergence

Pointwise convergence is inadequate because the fundamental opera-
tions of calculus—extraction of limits, integration, and differentiation—
are local in character: They depend not on a function value at a point,
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but on the behavior of a function on open intervals. If the sequence (fn)
converges pointwise on I, then for every x ∈ I and every ε > 0, there
exists an N such that

fn(x) = f(x) + A(ε) for n ≥ N.

If a different point y is chosen, then for the same ε a larger N may be
required, and if x ranges over even an arbitrarily small interval there
may exist no upper bound on the corresponding N .

In hindsight, then, we cannot expect continuity (for example) to
be inherited by the limit of a pointwise convergent sequence of func-
tions. To remedy this situation, we introduce a stronger criterion of
“convergence”.
Definition 11.5 Let (fn) be a sequence of functions on I that con-
verges1 pointwise to a function f : I → R, and letX ⊂ I. The sequence
is said to converge uniformly to f on X if, for every ε > 0, there exists
an index N such that

(11.3) fn = f + A(ε) on X for n ≥ N.

If I is an interval and if (fn)→ f uniformly on every closed, bounded
interval in I, then we say the convergence is uniform on compacta.

If (fn) → f uniformly on I, then a fortiori the convergence is uni-
form on every non-empty subset of I. Uniform convergence has point-
wise convergence built in, but is a stronger condition. Intuitively, “the
same N works for all x,” or “uniform convergence is to pointwise con-
vergence as uniform continuity is to pointwise continuity.” The latter
is not a tautology; rather, it means the terminology is well-chosen. The
concepts—not merely the names we have given them—are analogous.

Uniform convergence has a geometric interpretation. If f : I → R
is a function and ε > 0, then we define the ε-tube about the graph to
be

{(x, y) ∈ R2 : |f(x)− y| < ε, x ∈ I},
namely the set of points that are within a vertical distance of ε from
the graph of f .

To say (fn) converges to f uniformly means that for every ε-tube
about the graph of f , there is an N such that the graph of fn lies
within the tube for all n ≥ N . Said yet another way, the sequence

1It is the sequence that converges, not the functions!
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f

f+

f−

Figure 11.3: The ε-tube about the graph of a function.

(fn) converges uniformly to f on I if the maximum vertical distance
between the graphs of fn and f can be made arbitrarily small. For later
use we state this precisely:

Proposition 11.6. Let (fn) be a sequence that converges pointwise to f
on I, and for each n ∈ N set

an = sup
x∈I |f(x)− fn(x)|.

Then (fn)→ f uniformly on I iff (an)→ 0.

The proof is immediate from the definitions, and is left as an exer-
cise. Proposition 11.6 is useful because the an may often be calculated
easily.
Example 11.7 Let (fn) be the sequence in Example 11.1. As we saw,
this sequence converges pointwise to the characteristic function of {0},
that is

f(x) =

{
1 if x = 0

0 if 0 < x ≤ 1

However, the convergence is not uniform even on the half-open in-
terval (0, 1] where f vanishes identically. In the notation of Propo-
sition 11.6,

an = sup{fn(x) | 0 < x ≤ 1} = 1 for all n,

so (an) does not converge to 0.
By contrast, consider an arbitrary closed interval of the form [δ, 1] ⊂

(0, 1]. Since fn vanishes identically on the interval [ 1
n
, 1], we find that
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an = 0 as soon as n > 1/δ. Thus, the sequence (fn) converges uniformly
to the zero function on each interval [δ, 1] ⊂ (0, 1]. Since every closed
subinterval of (0, 1] is contained in an interval of the form [δ, 1], we see
that (fn) → 0 uniformly on compacta in (0, 1]. Note carefully that
removing a single point was not enough to “fix” the problem at 0, while
removing an arbitrarily small interval was sufficient. �

Example 11.8 Let φ : R→ R be a bounded function, and define

fn(x) =
1

n
φ(nx), for x ∈ R.

Geometrically, the graph of fn is the graph of φ “shrunk” by a factor
of n. Clearly (fn) → 0 uniformly on R, since if |φ| ≤ M on R, then
|an| ≤M/n for each n.

Suppose in addition that φ is differentiable. Then fn is differen-
tiable for each n, and f ′n(x) = φ′(nx). Unless φ′ is a constant function,
the sequence (f ′n) fails to converge even pointwise. In other words, uni-
form convergence of a sequence of differentiable functions does not even
imply pointwise convergence of the sequence of derivatives. �

Despite the last example, some properties of the terms of a se-
quence (fn), such as continuity and integrability, are inherited by a
uniform limit.

Theorem 11.9. Suppose (fn) is a sequence of continuous functions
on I that converge uniformly to f . Then f is continuous.

In words, a uniform limit of continuous functions is continuous.

Proof. We wish to show that if x ∈ I, then f − f(x) = o(1) at x. The
trick is to write

(11.4) f − f(x) =
(
f − fN

)
+
(
fN − fN(x)

)
+
(
fN(x)− f(x)

)
.

Fix ε > 0, and use uniform convergence to choose N such that f−fN =
A(ε/3) on I. Because fN is continuous on I, there exists a neighborhood
of x on which fN − fN(x) = A(ε/3). On this neighborhood each of the
three terms on the right in (11.4) is A(ε/3), so their sum is A(ε). Since
ε > 0 was arbitrary, we have shown that f − f(x) = o(1) at x.

Theorem 11.10. Let (fn) be a sequence of integrable functions on [a, b],
that converges uniformly to f . Then the limit function f is integrable
on [a, b], and

lim
n→∞

∫ b

a

fn =

∫ b

a

f =

∫ b

a

(
lim
n→∞

fn

)
.
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Proof. The strategy for showing the limit function is integrable is simi-
lar to the proof of Theorem 11.9: The limit function is everywhere close
to an integrable function, so its upper and lower integrals cannot differ
much. It is then straightforward to show the integral of the limit has
the “correct” value.

Fix ε > 0, and choose N such that

(11.5) |f(x)− fN(x)| < ε

b− a for all x ∈ [a, b].

By writing this inequality as

fN(x)− ε

b− a < f(x) < fN(x) +
ε

b− a for all x ∈ [a, b],

and using the definitions of lower and upper sums, it is clear that

(11.6) L(fN , P )− ε ≤ L(f, P ) ≤ U(f, P ) ≤ U(fN , P ) + ε

for every partition P of [a, b]. Because fN is integrable, there exists
a partition P such that U(fN , P ) − L(fN , P ) < ε. For this partition,
equation (11.6) implies U(f, P ) − L(f, P ) < 3ε, and since ε > 0 was
arbitrary, f is integrable.

Now consider the sequence (f − fn), which converges uniformly to
the zero function. Fix ε > 0 and choose N as in equation (11.5). Then∣∣∣∣∫ b

a

f −
∫ b

a

fn

∣∣∣∣ =

∣∣∣∣∫ b

a

(f − fn)

∣∣∣∣ ≤ ∫ b

a

|f − fn| < ε

for n ≥ N . This means lim
n→∞

∫ b

a

fn =

∫ b

a

f =

∫ b

a

(
lim
n→∞

fn

)
.

There is, as already suggested, no analogous result for derivatives.
The reason is that a function with small absolute value can have large
derivative. Careful examination of the next theorem shows the hypothe-
ses are qualitatively different from those of Theorems 11.9 and 11.10.
The continuity hypothesis (i) below can be weakened, but the statement
given here is adequate for our purposes.

Theorem 11.11. Let (fn) be a sequence of differentiable functions on
an interval I, and assume in addition that

(i) Each function f ′n is continuous on I;
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(ii) The sequence of derivatives (f ′n) converges uniformly on compacta
to a function g;

(iii) The original sequence (fn) converges at a single point x0 ∈ I.
Then the original sequence (fn) converges uniformly on compacta to a
differentiable function f , and f ′ = g = lim f ′n.

Proof. By the second fundamental theorem of calculus,

fn(x) = fn(x0) +

∫ x

x0

f ′n(t) dt for all x ∈ I.

Set f(x0) = lim fn(x0). By (iii) and Theorem 11.10, the right-hand
converges pointwise to

f(x) := f(x0) +

∫ x

x0

g(t) dt.

The function f is differentiable by the first fundamental theorem of
calculus, and f ′ = g.

It remains to check that (fn) → f uniformly on compacta. Fix
ε > 0 and choose a closed, bounded interval [a, b] ⊂ I that contains x0.
Note that if x ∈ [a, b], then |x − x0| ≤ (b − a). By (ii) and (iii), there
exists N ∈ N such that n > N implies

|f(x0)− fn(x0)| < ε

2
and |g(x)− f ′n(x)| < ε

2(b− a)
for all x ∈ [a, b].

But this means that if n > N , then

|f(x)− fn(x)| ≤ |f(x0)− fN(x0)|+
∫ x

x0

|g(t)− f ′n(t)| dt

<
ε

2
+

ε

2(b− a)
|x− x0| < ε,

for all x ∈ [a, b], which completes the proof.

11.2 Series of Functions
Just as numerical infinite sums are limits of sequences of partial sums,
infinite series of functions are limits of sequences of partial sums. Sup-
pose (fk)

∞
k=0 is a sequence of functions on I, and define the sequence (sn)
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of partial sums by

(11.7) sn(x) =
n∑
k=0

fk(x).

If the sequence (sn) converges uniformly to f , then (fk) is said to be
uniformly summable on I, and we write

f =
∞∑
k=0

fk.

Power series, which have the form

∞∑
k=0

ak (x− x0)k for some x0 ∈ R,

are the prototypical examples, but are by no means the only interest-
ing ones. A power series arises from a sequence (fk) in which fk is a
monomial of degree k (possibly zero) for each k. Not every polynomial
series is a power series; an example is

∞∑
k=0

(xk − x2k),

though this is a difference of two power series. Generally, a sequence
of polynomials can have surprising properties. We will see shortly that
every continuous function f : [0, 1] → R is the limit of a sequence of
polynomials. This is remarkable because a general continuous function
is differentiable nowhere, while a polynomial is infinitely differentiable
everywhere.

Uniform Summability and Interchange of Limits

Theorem 11.10 says that if (fk) is a uniformly summable sequence of
integrable functions on some interval I, and if [a, b] ⊂ I, then

∑
k fk is

integrable on [a, b], and∫ b

a

( ∞∑
k=0

fk

)
=
∞∑
k=0

(∫ b

a

fk

)
.
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Similarly, Theorem 11.11 says that if (fk) is a sequence of continuously
differentiable functions that is summable at a single point, and if the
sequence of derivatives is uniformly summable, then( ∞∑

k=0

fk

)′
=
∞∑
k=0

f ′k.

When these equations hold, we say that the series
∑

k fk can be in-
tegrated or differentiated term-by-term. For finite sums there is no
issue, since integration and differentiation are linear operators, but an
infinite sum involves a second limit operation. These equations assert
that under appropriate hypotheses, two limit operations can be inter-
changed. Remember that we are primarily interested in power series.
The equations above guarantee that on an interval where a power series
is uniformly summable, it may be treated computationally as if it were
a polynomial.

Before we can use these results to full advantage, we need a sim-
ple criterion for determining when a sequence of functions is uniformly
summable, and in particular when a power series is uniformly summable.
The desired simple, general criterion for uniform summability is known
as the Weierstrass M-test, compare Proposition 11.6.

Theorem 11.12. Let (fk) be a sequence of functions on I, and set

ak = sup
x∈I |fk(x)| ≥ 0.

If (ak) is a summable sequence of real numbers, then (fk) is uniformly
summable on I.

Proof. Fix x ∈ I. The sequence
(
fk(x)

)
is absolutely summable since

|fk(x)| ≤ ak and (ak) is summable. Let f : I → R be the pointwise sum
of the sequence (fk). To see that the partial sums converge uniformly
to f , write∣∣∣∣∣f(x)−

n∑
k=0

fk(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(x)| ≤
∞∑

k=n+1

ak.

This is the tail of a convergent sum, which converges to 0 as n → ∞
independently of x.
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−2 −1 0 1 2

Figure 11.4: A Weierstrass nowhere-differentiable function.

Before we consider power series in detail, here is the long-promised
example of a continuous function that is nowhere differentiable. This
function was discovered by Weierstrass in the mid-19th Century, and
shocked mathematicians of the day, who were accustomed to regarding
“functions” as being differentiable more-or-less everywhere.

Example 11.13 Let cb : R→ R be the Charlie Brown function, and
consider the sequence (fk)

∞
k=1 defined by

fk(x) = 4−k cb(4kx).

Geometrically, the graph of fk is the graph of cb “zoomed out” by
a factor of 4k; in particular, fk is periodic with period 4−k, and the
maximum ak of fk is 4−k. The sequence (4−k)∞k=0 is geometric, with
ratio 1/4, hence is summable. By the M-test, the sequence (fk) is
uniformly summable on R, and since each function fk is continuous,
the function

F =
∞∑
k=1

fk

is also continuous. Because cb is even and has period 2, F is even and
has period 2, so it suffices to prove F is nowhere-differentiable in [0, 1].
The recursive structure of F is the key.

There is an easy geometric reason for non-differentiability: Sub-
tracting off the “first mode” gives F (x) − cb(x) = 1

4
F (4x), see Fig-

ure 11.4. In words, up to addition of a piecewise linear term, the graph
of the Weierstrass function is self-similar. In Chapter 8, we saw that
zooming in on the graph of a differentiable function gives the tangent
line. However, self-similarity of the graph guarantees that no matter
how much we zoom in, the graph does not become more nearly linear.
As it stands, this argument does not provide a proof, because we have
not considered what happens at “corners” of the summands, though it
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is probably quite believable that F fails to be differentiable at points
where a partial sum has a corner.

An analytic proof of non-differentiability is not difficult if we orga-
nize our knowledge carefully. It is enough to show that the Newton
quotients fail to exist:

For every x ∈ [0, 1], lim
h→0

F (x+ h)− F (x)

h
does not exist.

Fix a positive integer n and consider the nth partial sum of the series,
and the nth tail:

Fn(x) =
n∑
k=0

4−k cb(4kx), tn(x) =
∞∑

k=n+1

4−k cb(4kx).

The function fn+1 is periodic with period 4−(n+1), so tn is as well. Thus

(11.8) F (x± 4−n)− F (x) = Fn(x± 4−n)− Fn(x) for all n.

Now fix x; we will construct a sequence (hn)∞n=0 with hn = ±4−n such
that the corresponding Newton quotients have no limit as n→∞.

Consider the points xi = i2−(2n+1) for 0 ≤ i ≤ 22n+1. The nth
and (n+ 1)st summands look like this:

xi−1 xi xi+1

fn

fn+1

The period of fn is 4−n, and the distance between adjacent points of
the partition is one-half this distance, which is twice the period of fn+1.
The point x lies in at least one subinterval of the form [xi−1, xi], and
the length of this interval is 2 · 4−(n+1). Consequently, there is at least
one choice of sign so that x± 4−n and x lie in [xi−1, xi]; this defines the
sequence (hn)∞n=0. The positions of a typical such pair are depicted as
dashed lines.

For each summand fk with k ≤ n, the points x and x+ hn lie in an
interval on which fk is linear, so the Newton quotient of fk between x
and x+ hn is ±1. By (11.8),

F (x+ hn)− F (x)

4−n
=
Fn(x+ hn)− Fn(x)

4−n
=

n∑
k=0

fk(x+ hn)− fk(x)

4−n
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is an integer for each n. Moreover, increasing n by 1 does not change
the value of any of the summands on the right, but does add another
term, which changes the quotient by ±1.

This shows that each Newton quotient is an integer, but that consec-
utive quotients differ. Consequently, the sequence of Newton quotients
has no limit, i.e., F is not differentiable at x, for all x ∈ [0, 1]. �

We chose a particular scaling (each summand 1/4 the size of the
previous) in order to simplify the proof of non-differentiability. It is
possible to use similar ideas with sequences that scale differently, ob-
taining more examples.

11.3 Power Series
Recall that a formal power series is an expression of the form

∞∑
k=0

ak(x− a)k;

the coefficients constitute a sequence (ak), and the point a is the cen-
ter of the series. Associated to a formal power series is a sequence
of approximating polynomials, which are obtained by truncating the
series:

pn(x) =
n∑
k=0

ak(x− a)k.

A formal power series defines a function f whose domain is the set of x
for which the series converges, and this always contains at least the
point a, at which the value is a0. It is a convention that (x − a)0 = 1
even when x = a; this does not mean that 00 = 1.

Theorem 11.14. Suppose the power series
∑∞

k=0 ak(x− a)k converges
at x0, and set |x0−a| = η. If |x−a| < η, then the power series converges
at x, and the convergence is uniform on compacta in (a− η, a+ η).

Proof. It suffices to assume a = 0 (and hence define η = |x0|); this
amounts to making a translational change of variable. Suppose the
power series

∑
k akx

k converges at a point x0. In particular, the se-
quence (akx

k
0)∞k=0 converges to 0, which in turn implies the sequence is

bounded: There exists a real number M such that

|akxk0| ≤M for all k ∈ N.
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Now suppose |x| < |x0|, that is, x is closer to the center of the series
than x0. Then 0 < ρ := |x|/|x0| < 1, and

|f(x)− pn(x)| =
∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

akx
k
0 ·
xk

xk0

∣∣∣∣∣
≤

∞∑
k=n+1

|akxk0| · ρk ≤
∞∑

k=n+1

Mρk =
M

1− ρ ρ
n+1

for every n ∈ N. This upper bound can be made arbitrarily small by
taking n sufficiently large; in other words, the power series converges
at x.

It remains to show the convergence is uniform on compacta in (a−
η, a + η). Fix a positive number δ < η, and set ρ = δ/η < 1. If
|x− a| ≤ δ, then the argument above shows that

|f(x)− pn(x)| ≤ M

1− ρ ρ
n+1

independently of x, and this can be made arbitrarily small because
ρ < 1.

Consequently, if a power series converges at a single point x0 6= a,
then it converges on an open interval I = (a− η, a+ η), and converges
uniformly on every closed subinterval of I. On I, the series represents a
differentiable function whose derivative can be computed term-by-term.
Contrapositively, if a power series diverges at x0, then it also diverges
for all x with |x− a| > |x0 − a|.

Given a power series, the set of real numbers is partitioned into
two sets; those at which the series converges, and those at which it
diverges. Theorem 11.14 implies the former is an interval centered
at a; it is, naturally, called the interval of convergence of the power
series. Let R ≥ 0 be the supremum of |x − a| over the interval of
convergence. The interval of convergence of a power series must be one
of the following:

• The singleton {a} (if R = 0);

• A bounded interval centered at a (if 0 < R <∞);

• All of R (if R =∞).
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Example 11.16 demonstrates that the interval of convergence may be
open, half-open, or closed.

The radius of convergence of a power series depends only on the
coefficient sequence (ak) and not on the center. There is a formula, due
to Hadamard, that gives the radius in terms of the coefficients:

1

R
= lim

n→∞
sup
k≥n

k
√
|ak|.

We do not need this generality, and will instead develop simpler formu-
las that work only for certain sequences of coefficients, but including
all those we shall encounter.

Theorem 11.15. Let (an) be a sequence, and suppose

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists. If L > 0, then R = 1/L is the radius of convergence of the power
series ∞∑

n=0

an(x− a)n.

If L = 0, the power series converges for all x ∈ R.

Proof. We use the hypothesis to compare the power series with a ge-
ometric series. Suppose 0 < |x − a| < R, with R as in the theorem.
Then

lim
n→∞

∣∣∣∣an+1(x− a)n+1

an(x− a)n

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ · |x− a| < 1.

Because the limit is strictly smaller than 1, it may be written 1 − 2ε,
with ε > 0. From the definition of convergence, there exists N ∈ N
such that ∣∣∣∣an+1(x− a)n+1

an(x− a)n

∣∣∣∣ < 1− ε =: ρ for n > N.

Induction on m proves that

|aN+m(x− a)N+m| ≤ |aN(x− a)N | ρm, m ≥ 0.

Aside from the first N terms, the power series is therefore dominated
by the terms of a convergent geometric series.

An entirely analogous argument shows that if |x− a| > R, then the
power series diverges; thus R is the radius.
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Theorem 11.15 is called the ratio test. When applicable, it is often
the simplest way to calculate the radius of convergence of a power series.
Note that the ratio does not give any information about convergence at
a ± R. Convergence at endpoints must always be checked separately,
by hand.
Example 11.16 The examples here are centered at 0 to simplify
notation. The ratio test applies to each series, but calculation of the
radius is left to you.

• The power series
∑∞

k=0 x
k has radius 1. When x = ±1 (the end-

points of the interval of convergence), the series diverges, as its
terms do not have limit zero. Consequently, the interval of con-
vergence is (−1, 1).

• The series
∑∞

k=0
xk

k
has radius 1. At x = −1, the series converges

by the alternating series test, while at x = 1 the series is harmonic,
and therefore divergent. The interval of convergence is the half-
open interval [−1, 1).

• The series
∑∞

k=0
xk

k2 has radius 1. At each endpoint, the series con-
verges absolutely by comparison with the 2-series. The interval
of convergence is the closed interval [−1, 1].

• The series
∑∞

k=0
xk

k!
, see equation (11.1), has radius +∞, so the

interval of convergence is R.

• The series
∑∞

k=0 k
kxk has radius 0, so the “interval” of convergence

is the singleton {0}.
As these examples demonstrate, to find the interval of convergence,
you first calculate the radius of convergence, then check the endpoints.
The only time you need not check the endpoints is when there are no
endpoints, either because R = 0 or R = +∞. �

Real-Analytic Functions

Theorem 11.14 says that if a power series centered at a has radius
R > 0, then on the interval (a − R, a + R), the series represents a
continuous function of x. Indeed, if x0 ∈ (a − R, a + R), then there is
a δ > 0 such that

[x0 − δ, x0 + δ] ⊂ (a−R, a+R),
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and the sequence of partial sums converges uniformly on [x0 − δ, x0 +
δ], hence represents a continuous function on this interval, and can
be integrated term-by-term. Since x0 was arbitrary, the power series
represents a continuous function on (a−R, a+R) and can be integrated
termwise on this interval.

In fact, much more is true; the power series obtained by termwise
differentiation has the same radius as the original series, which can be
used to show the original power series represents a differentiable func-
tion on (a−R, a+R). This innocuous fact can be bootstrapped, showing
that a power series represents an infinitely differentiable function on its
open interval of convergence.

We will not prove these claims in full generality, though it is easy
to modify the arguments below, replacing occurrences of the ratio test
with Hadamard’s formula for the radius of a power series. (Naturally,
one must also prove that Hadamard’s formula generally gives the radius
of a power series.)

Theorem 11.17. Let
∞∑
k=0

ak(x− a)k be a power series such that

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists and is positive, and let f : (a−R, a+R)→ R be the sum of the
series. Then f is differentiable; in fact, the termwise derived series

(11.9)
∞∑
k=1

kak(x− a)k−1 =
∞∑
k=0

(k + 1)ak+1(x− a)k

has radius R, and represents f ′ on (a−R, a+R).

Proof. By the ratio test, the derived series has radius

lim
n→∞

∣∣∣∣(n+ 1)an+1

(n+ 2)an+2

∣∣∣∣ = lim
n→∞

(
n+ 1

n+ 2

)(∣∣∣∣an+1

an+2

∣∣∣∣) = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ ,
so on the interval (a−R, a+R), the series (11.9) represents a continuous
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function g that can be integrated termwise. For each x ∈ (a−R, a+R),∫ x

a

g(t) dt =

∫ x

a

( ∞∑
k=1

kak(t− a)k−1

)
dt

=
∞∑
k=1

(∫ x

a

kak(t− a)k−1 dt

)
=
∞∑
k=1

ak(t− a)k
∣∣∣t=x
t=a

=
∞∑
k=1

ak(x− a)k = f(x)− f(a).

Since g is continuous, the second fundamental theorem implies f ′ = g
on (a−R, a+R).

The logic is a little delicate, and bears one more repetition. We
begin with a power series

∑
k akx

k whose radius (as given by the ra-
tio test) is R > 0. The termwise derived series

∑
k kakx

k−1 has the
same radius of convergence, and by a separate argument represents the
derivative of the original series. This establishes our principal goal of
the chapter, to prove that convergent power series can be manipulated
as if they were polynomials with infinitely many terms. But if this
were not enough, we can bootstrap the argument: If f is represented
by a power series on an open interval I, then f ′ is also represented by
a power series on the same interval. Consequently, f ′′ is represented
by a power series on I, and so forth. Formally, induction shows that
the function f is infinitely differentiable, and the successive derivatives
may be found by repeated termwise differentiation.
Definition 11.18 Let I ⊂ R be an open interval. A function f : I →
R is said to be real analytic if, for each a ∈ I, there is a δ > 0 and a
power series centered at a that converges to f(x) for all |x− a| < δ.

Many functions of elementary mathematics are real analytic. The
reason for the apparently convoluted definition is the fact of life that
a single power series is not generally sufficient to represent an analytic
function on its entire domain. Real analytic functions will provide
us with some striking evaluations of infinite sums, and will be crucial
to our construction of the trig functions in Chapter 13. For now we
are content to establish the basic arithmetic properties of real analytic
functions.

Theorem 11.19. Let f and g be real analytic functions on an inter-
val I. Then the functions f + g and fg are real analytic on I, and f/g
is analytic on each interval where g is non-vanishing.
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Proof. Real analyticity is a local property, so the content of the theorem
is really that a sum, product, or quotient of convergent power series can
be represented by a convergent power series (the latter provided the
denominator is non-zero). For simplicity, assume all series are centered
at 0; substituting x− a for x takes care of the general case. Write

f(x) =
∞∑
i=0

aix
i, g(x) =

∞∑
j=0

bjx
j,

and let pn(x) and qn(x) denote the respective nth partial sums. Because
each series converges for some non-zero x, there is an η > 0 such that
each series is uniformly summable on the interval [−η, η].

Sums are done in Exercise 11.3. Products are handled with the
Cauchy formula for the product of absolutely summable series, see
Chapter 4. Formally, we multiply the series and collect terms of de-
gree k:

(11.10)
( ∞∑
i=0

aix
i

)( ∞∑
j=0

bjx
j

)
=
∞∑
k=0

( k∑
i=0

aibk−i

)
xk.

Because a power series converges absolutely inside its interval of con-
vergence, the series on the right is equal to the product of the series on
the left on [−η, η].

Let g be analytic, and assume g(0) 6= 0. In order to prove that 1/g
is analytic at 0, we write g as a power series,

g(x) = a0 + a1x+ a2x
2 + · · · =

∞∑
k=0

akx
k,

and seek a series

h(x) =
∞∑
n=0

bkx
k

such that g(x)h(x) = 1 for all x in some neighborhood of 0. Writing
out the coefficients of the product and equating with the power series
of 1, we have

b0 =
1

a0

,

k∑
i=0

aibk−i = 0 for all k ≥ 1.
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This system of infinitely many equations can be solved recursively. First
rewrite it as

b0 =
1

a0

, bk = − 1

a0

k∑
i=1

aibk−i for k ≥ 1.

Then k = 1 gives b1 = −(a1/a0)b0 = −a1/(a0)2, k = 2 gives

b2 = − 1

a0

(a1b1 + a2b0) = − 1

a0
3
(a0a2 − a2

1),

and so on. To check convergence of the reciprocal series, use the “ge-
ometric series trick”: Write g(x) = a0

(
1 − φ(x)

)
, with φ(x) = O(x).

Then
1

g(x)
=

1

a0

· 1

1− φ(x)
=

1

a0

∞∑
k=0

φ(x)k,

in some neighborhood of 0. See Example 11.23 for a concrete applica-
tion.

Power series and O notation interact very nicely, which explains the
use of O notation in many symbolic computer packages. We state the
result only for power series centered at 0; there is an obvious modifica-
tion for series centered at a.

Corollary 11.20. If f(x) =
∞∑
k=0

akx
k is analytic at 0, then for each

positive integer n we have

f(x) =
n∑
k=0

akx
k +O(xn+1).

Proof. By Theorem 11.19,

f(x)−
n∑
k=0

akx
k =

∞∑
k=n+1

akx
k = xn+1

∞∑
j=0

an+j+1x
j,

and the sum on the right is real-analytic, hence O(1) near 0.

The following result is called the identity theorem for power series.
The practical consequence is that two power series centered at a define
the same function if and only if their coefficients are the same. Again,
we state the result only for series centered at 0.
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Corollary 11.21. If
∞∑
k=0

akx
k ≡ 0 near 0, then ak = 0 for all k.

Proof. We prove the contrapositive. Assume not all the ak are zero,
and let an be the first non-zero coefficient. By Theorem 11.19 and
Corollary 11.20,

∞∑
k=0

akx
k = xn

∞∑
j=0

an+jx
j = xn

(
an +O(x)

)
.

Since an 6= 0, the term in parentheses is non-vanishing on some neigh-
borhood of 0, so the series is non-vanishing on some deleted interval
about 0.

Theorem 11.19 is the basis of calculational techniques for finding
power series of reciprocals. Two examples will serve to illustrate useful
methods.

Example 11.22 Let g(x) = 1− x, which is clearly analytic and non-
zero at 0. The coefficients of g are a0 = 1, a1 = −1. The reciprocal has
power series

h(x) = b0 + b1x+ b2x
2 + b3x

3 + · · · ,
where b0 = 1 and 0 = a0bk + a1bk−1 = bk − bk−1 for all k ≥ 1. We
conclude immediately that all the coefficients of 1/g are equal to 1:

1

1− x = 1 + x+ x2 + x3 + · · · =
∞∑
k=0

xk.

This is nothing but the geometric series formula. �

The geometric series trick in the proof of Theorem 11.19 is a nice
calculational means of finding the coefficients of a reciprocal series if
only the first few coefficients are needed.

Example 11.23 Suppose f(x) = 1 − 1
2
x2 + 1

4!
x4 + O(x6) (a certain

interesting series starts this way) and that we wish to find the power
series of 1/f . Write f(x) = 1 − φ(x), then use the geometric series
formula:

1

1− φ(x)
= 1 + φ(x) + φ(x)2 + φ(x)3 + · · ·
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This procedure is justified because φ(0) = 0, so we have |φ(x)| < 1 on
some neighborhood of 0 by continuity. Algebra gives

φ(x) =
1

2
x2 − 1

4!
x4 +O(x6)

φ(x)2 =
1

4
x4 +O(x6)

φ(x)3 = O(x6)

1

f(x)
= 1 +

1

2
x2 +

5

24
x4 +O(x6).

We cannot get any more terms with the information given, but if f is
known up to O(xn) then we are guaranteed to find the reciprocal up to
the same order. �

11.4 Approximating Sequences

Power series are not the only interesting approximating sequences. In
this section we introduce a couple of more specialized examples.

Picard Iterates

Recursively defined sequences of functions arise naturally in approxi-
mating solutions of differential equations. The general first-order dif-
ferential equation in one space variable may be written

(11.11) y′(t) = f
(
t, y(t)

)
, y(t0) = y0.

The second equation is called an initial value, and is often regarded
as specifying the value of y at time t0. Integrating both sides of this
equation from t0 to t gives the equivalent integral equation

(11.12) y(t) = y(t0) +

∫ t

t0

f
(
s, y(s)

)
ds.

The right-hand side of this equation may be regarded as a function
of t that also depends on the function y.2 In other words, there is an

2The right-hand side depends upon f , but we regard f as fixed in this discussion.
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operator P that maps functions to functions; a function y is mapped
to the function Py defined by

Py(t) = y(t0) +

∫ t

t0

f
(
s, y(s)

)
ds.

A solution of (11.12) is exactly a function y such that Py = y,
namely a fixed point of P . Motivated by recursively defined numerical
sequences, we hope to find fixed points of P by starting with an initial
guess and iterating P . Our initial guess is the constant function y0,
and we set yn+1 = Pyn for n ≥ 0, namely

(11.13) yn+1(t) = y0 +

∫ t

t0

f
(
s, yn(s)

)
ds.

The terms of the sequence (yn)∞n=0 are called Picard iterates for the
initial-value problem (11.11). Under a fairly mild restriction on f , the
sequence of Picard iterates converges uniformly on some neighborhood
of t0 to a fixed point of P .
Example 11.24 To get a feel for Picard iterates in a specific example,
consider the initial-value problem

(11.14) y′ = y, y(0) = 1,

whose solution is the natural exponential function. Here f(t, y) = y,
so f

(
s, yn(s)

)
= yn(s). We make the initial guess y0(t) = 1 for all t in

some interval about 0. Equation (11.13) gives

y1(t) = 1 +

∫ t

0

y0(s) ds = 1 + t

y2(t) = 1 +

∫ t

0

y1(s) ds = 1 + t+
t2

2 · 1
y3(t) = 1 +

∫ t

0

y2(s) ds = 1 + t+
t2

2 · 1 +
t3

3 · 2 · 1 ,

and so forth. It seems we are recovering our old friend from (11.1), and
indeed it is easy to check by induction on n that

yn(t) =
n∑
k=0

tk

k!
for n ≥ 0.

Formally, if we iterate an infinite number of times we obtain the power
series (11.1). Differentiating this series as if it were a polynomial, we
find that the derivative of each summand in (11.1) is the preceding
summand, so (at least formally) y′ = y. �
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Approximate Identities

In this section we study the “convolution product” of functions, an oper-
ation of considerable importance in signal processing. The convolution
product also has important theoretical applications to approximation.
We will prove the striking fact that a continuous function on a closed,
bounded interval can be uniformly approximated by a sequence of poly-
nomials.

Formally, the convolution product of f and g is defined by

(11.15) (f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt.

However, this improper integral is not generally convergent. Our first
task is to restrict attention to a suitable vector space of functions.

A function f ∈ F (R,R) is compactly supported if there exists an R
in R such that f(x) = 0 for |x| > R. In words, f is identically zero
outside some closed interval. The set of continuous, compactly sup-
ported functions on R is denoted C 0

c (R). This set is a vector subspace
of F (R,R): If f and g are continuous and compactly supported, then
f + g and cf are clearly continuous and compactly supported.

Lemma 11.25. If f and g are in C 0
c (R), then so is f ∗ g.

Proof. Suppose f(x) = 0 for |x| > R1 and g(x) = 0 for |x| > R2. We
claim that if |x| > R1 + R2, then f(t)g(x − t) = 0 for all t, so surely
(f ∗ g)(x) = 0. But the reverse triangle inequality says that if |t| ≤ R1,
then

|x− t| ≥ ∣∣|x| − |t|∣∣ > (R1 +R2)−R1 = R2.

In other words, if f(t) 6= 0, then g(x− t) = 0.

A continuous, compactly supported function is a model of a “signal”
that is only non-zero for a bounded interval of time, or a “response
curve of a filter”. Convolving a signal f with a filter response g gives
the output signal.
Example 11.26 Let g = (b − a)−1χ[a,b] be a “unit impulse” in [a, b].
Then g(x− t) = 1/(b− a) if x− b ≤ t ≤ x− a and is zero otherwise, so

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt =
1

b− a
∫ x−a

x−b
f(t) dt

for all f ∈ C 0
c (R). The integral on the right is the average value of f

on [x− b, x− a].
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More generally, if g(x) > 0 for x ∈ (a, b) and is zero elsewhere, and
if g encloses one unit of area, then f ∗ g may be viewed as the result of
“averaging” f over intervals of length b−a. �

Despite its seemingly strange definition, the convolution product
satisfies two beautiful identities:

Proposition 11.27. Let f1, f2, and f3 be continuous and compactly
supported. Then f1 ∗ f2 = f2 ∗ f1 and (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).

In words, convolution is commutative and associative. The proof of
commutativity is left to you, see Exercise 11.14. Associativity requires
a result from integration in two variables (“Fubini’s theorem”), and is
mentioned only for conceptual reasons; we do not use associativity in
this book.

The Dirac δ-Function

Dirac’s δ-function is a fictitious “function” with the following properties:

•
∫ ∞
−∞

δ(t) dt = 1.

• δ(t) = 0 if t 6= 0.

For example, δ(x− t) is a “unit impulse concentrated at x”, so formally

(f ∗ δ)(x) =

∫ ∞
−∞

f(t)δ(x− t) dt = f(x);

convolving with δ is the identity mapping.
Unfortunately, the properties above are logically incompatible: If

a function satisfies the second property, then its integral is 0. How-
ever, physicists and electrical engineers have found this “function” to
be extremely useful in their work, and if pressed by a mathematician
will usually reconcile the two properties above by saying, “Yes, but
δ(0) = ∞”. Engineers are even willing to regard the δ-function as
the derivative of the “Heaviside step function”, defined by H(x) = 0 if
x < 0, H(x) = 1 if x ≥ 0!

The utility of the δ-function strongly suggests that a precise mathe-
matical concept is lurking. Physicists started using the δ-function in the
early days of quantum mechanics, and within 20 years mathematicians
had found at least three rigorous interpretations. We introduce one of
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these, the “approximate identity”. Rather than think of the Dirac δ as
a single function, we construct a sequence that approximately satisfies
the conditions above.
Definition 11.28 A sequence of non-negative functions (δn) is an
approximate identity if:

• For all n ∈ N, δn is integrable, and
∫ ∞
−∞

δn = 1.

• For every β > 0, lim
n→∞

∫ β

−β
δn = 1.

The second condition formalizes the idea that “the integrals concen-
trate at 0”. We have assumed δn ≥ 0 only for simplicity; with more
work, the proofs below can be extended to remove the non-negativity
hypothesis. The formal calculation that f ∗ δ = f takes the following
rigorous form; again, you should think of the Goethe quote!

Theorem 11.29. Let f ∈ C 0
c (R), and let (δn) be an approximate iden-

tity. The sequence (fn) defined by fn = f ∗δn converges uniformly to f .

Proof. By commutativity of the convolution product, we have

fn(x) =

∫ ∞
−∞

f(x− t)δn(t) dt, f(x) =

∫ ∞
−∞

f(x)δn(t) dt

for all n. Linearity of the integral, non-negativity of the δn, and the
triangle inequality imply∣∣f(x)− fn(x)

∣∣ =

∣∣∣∣ ∫ ∞−∞[f(x)− f(x− t)] δn(t) dt

∣∣∣∣
≤
∫ ∞
−∞

∣∣∣f(x)− f(x− t)
∣∣∣ δn(t) dt.

We wish to show that this can be made small independently of x by
choosing n sufficiently large. For every β, the last integral may be split
into∫ β

−β

∣∣∣f(x)− f(x− t)
∣∣∣ δn(t) dt+

∫
|t|≥β

∣∣∣f(x)− f(x− t)
∣∣∣ δn(t) dt.

The idea is that for small t, the increment of f is small (so the first
term is small), while for large t the contribution is small because the δn
concentrate at 0.
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Fix ε > 0. Because f is continuous and compactly supported, f is
uniformly continuous on R: There exists β > 0 such that |t| ≤ β
implies |f(x)− f(x− t)| < ε. It also follows that f is bounded: There
exists M > 0 such that |f(x)− f(x− t)| ≤M for all x, t ∈ R. Use the
second property in Definition 11.28 to choose N such that∫

|t|≥β
δn(t) dt <

ε

M
for n ≥ N.

With these choices, if n ≥ N , then∫ β

−β

∣∣∣f(x)− f(x− t)
∣∣∣︸ ︷︷ ︸

< ε

δn(t) dt+

∫
|t|≥β

∣∣∣f(x)− f(x− t)
∣∣∣︸ ︷︷ ︸

≤M

δn(t) dt

<

∫ β

−β
εδn(t) dt+

∫
|t|≥β

Mδn(t) dt ≤ ε+M · ε
M

= 2ε

independently of x.

The Weierstrass Approximation Theorem

We have seen two ways in which a sequence of polynomials can be used
to approximate a function f . The first, Lagrange interpolation (Chap-
ter 3), constructs polynomials that agree with f at specified points.
However, there is no guarantee that the approximation is good over
the entire domain of f . The second, partial sums of a power series,
is only applicable to real-analytic functions. Chapter 14 is devoted to
careful study of analytic functions and their approximating polynomi-
als. In this section we mention a third type of approximation, due
to K. Weierstrass, in which a sequence of polynomials is used to ap-
proximate a general continuous function uniformly. The sequence is
constructed by convolving with a suitably chosen approximate identity.

Theorem 11.30. Let f : [a, b] → R be continuous. There exists a
sequence (pn) of polynomials such that (pn)→ f uniformly on [a, b].

Proof. By adding a linear polynomial (as in the proof of the mean value
theorem) we may assume that f(a) = f(b) = 0: We can approximate f
by polynomials iff we can approximate

g(x) = f(x)− f(a)− f(b)− f(a)

b− a (x− a)
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by polynomials. Second, we may substitute x = a+ (b− a)u, reducing
to the case [a, b] = [0, 1]. In more detail, if we write φ̃(u) = φ(x), then
(pn) → f uniformly on [a, b] iff (p̃n) → f̃ uniformly on [0, 1]. Thus it
suffices to prove the theorem for a continuous function f : [0, 1] → R
that satisfies f(0) = f(1) = 0.

We first construct an approximate identity consisting of piecewise
polynomial functions. Let cn be defined by

cn

∫ 1

−1

(1− x2)n dx = 1,

and set

δn(x) =

{
cn(1− x2)n if −1 ≤ x ≤ 1

0 otherwise

In Chapter 15 we will evaluate cn explicitly, but for now the following
estimate is enough:

1

cn
=

∫ 1

−1

(1− x2)n dx = 2

∫ 1

0

(1− x2)n dx

> 2

∫ 1/
√
n

0

(1− x2)n dx > 2

∫ 1/
√
n

0

(1− nx2) dx =
4

3
√
n

;

The second inequality is a consequence of Exercise 2.5, part (b). We
deduce immediately that (δn) is an approximate identity, since

0 ≤ δn(x) ≤ 3
√
n

4
(1− x2)n,

and the upper bound converges uniformly to 0 off [−β, β] for all β > 0.
Now set pn = f ∗ δn; because f = 0 outside [0, 1], we have

pn(x) =

∫ ∞
−∞

f(t)δn(x− t) dt =

∫ 1

0

f(t)δn(x− t) dt.

If x ∈ [0, 1], then x − t ∈ [−1, 1] for 0 ≤ t ≤ 1, so δn(x − t) =
cn
(
1− (x− t)2

)n. The integrand f(t)δn(x− t) is therefore a polynomial
in x whose coefficients are continuous functions of t; upon integrating
in t from 0 to 1, we find that pn is a polynomial in x.

By Theorem 11.29, (pn)→ f uniformly on [0, 1].

Several points are worth emphasizing. First, the approximate iden-
tity is explicit, so for a specific function f there is an effective com-
putational way of finding the approximating polynomials. Second, the
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space of continuous functions is large and complicated, while the space
of polynomials is simple and explicit. Conceptually, the Weierstrass
theorem is analogous to the density of Q (a simple set of numbers)
in R (an enormous, complicated set). Finally, a general continuous
function is differentiable nowhere, yet is uniformly approximated on
every closed, bounded interval by smooth functions.

Exercises

Exercise 11.1 Let φ : R→ R be as in Example 11.3, and let (hn)∞n=0

be the sequence defined by hn(x) = nφ(nx). Carefully sketch the graphs
of φ and hn (n = 1, 2, 3) on a single set of axes. Prove that (hn)
converges pointwise to the zero function. �
Exercise 11.2 Let φ : R→ R be continuous, and define (fn) by

fn(x) =
1

n
φ(x), for x ∈ R.

(a) Prove that (fn)→ 0 uniformly on compacta.

(b) Prove that (fn)→ 0 uniformly if and only if f is bounded.

(c) Suppose
∞∑
k=0

akx
k

converges pointwise on R (i.e., has infinite radius of convergence).
Prove that the partial sums converge uniformly on R if and only
if the sum is finite.

�
Exercise 11.3 Prove that if f and g are real analytic in a neighborhood
of 0, then f + g is real analytic. Hint: All the necessary estimates can
be found in earlier parts of the text. �
Exercise 11.4 Compute the power series of 1/(1 + x) and 1/(1 + x2).
What are the radii of convergence? Use the sum and product formulas
for series to verify that

1

1− x +
1

1 + x
=

2

1− x2
and

1

1− x ·
1

1 + x
=

1

1− x2
.
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�
Exercise 11.5 Use the reciprocal trick to compute the series of

1

1− x2 + x4

up to and including terms of degree 6. �
Exercise 11.6 Use the product and geometric series formulas to com-
pute the power series of

1 + x

1− x.
What is the radius? �
Exercise 11.7 Let

f(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · =

∞∑
k=0

xk

k!
.

Compute the radius of convergence, and prove that f ′ = f on its in-
terval of convergence. Find the power series of

(
f(x) − 1

)
/x, and use

your answer to compute the reciprocal series, x/
(
f(x)− 1

)
, up to (and

including) terms of degree 3.
Hint: When computing powers in the reciprocal trick, you needn’t carry
terms whose degree is larger than 3. �
Exercise 11.8 Let f(x) be the series of the preceding problem. Use
the product formula for series and the binomial theorem to show that

f(x)f(y) = f(x+ y) for all x, y ∈ R.

Does this confirm anything you already know? �
Exercise 11.9 The geometric series formula says

1

1− x = 1 + x+ x2 + x3 + · · · =
∞∑
k=0

xk.

What does this equation say (formally) if x = 1? What if x = −1?
x = 2? Do any of these formulas make sense? Explain. �
Exercise 11.10 Differentiate the geometric series formula—as given
in the previous exercise—on the open interval (−1, 1). Use the result
to find closed-form expressions for the power series

f(x) =
∞∑
k=1

kxk, g(x) =
∞∑
k=1

k2xk, −1 < x < 1.
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Similarly, integrate the geometric series from 0 to x, and express the
result in closed form. For which x is the resulting formula true? �
Exercise 11.11 Find all real x such that the following is correct:

1

x
+

1

x2
+

1

x3
+ · · · =

∞∑
k=1

(
1

x

)k
=

1
x

1− 1
x

=
1

x− 1
.

Can we conclude that −
∞∑
k=0

xk = − 1

1− x =
∞∑
k=1

(
1

x

)k
? �

Exercise 11.12 Find all real x such that
∞∑
k=0

ekx converges, and express

the sum in closed form. �
Exercise 11.13 Find the radii of the following power series:

(a)
∞∑
k=1

(−x)kk!

kk
(b)

∞∑
k=1

xk!

�
Exercise 11.14 Prove the commutativity part of Proposition 11.27.
�
Exercise 11.15 Let (fn)∞n=1 be a sequence of non-decreasing functions,
and assume the series

∑
n |fn(0)| and ∑n |fn(1)| converge.

(a) Prove that the series
∞∑
n=1

fn(x) is convergent for each x ∈ [0, 1].

(b) Prove that the function f :=
∑

n fn is non-decreasing.

(c) Prove that the convergence in part (a) is uniform on [0, 1].

(d) Let (an)∞n=1 be a sequence in [0, 1], and assume the terms are
distinct: an 6= am if n 6= m. Define

fn(x) =

{
0 if 0 ≤ x ≤ an

2−n if an < x ≤ 1
0 an

2−n

1

y = fn(x)

Prove that f is discontinuous at x ∈ [0, 1] iff x = ak for some k.

(e) Show that there exists an increasing function f : [0, 1] → [0, 1]
that is discontinuous at x for every x ∈ Q ∩ [0, 1].

�
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Chapter 12

Log and Exp

Aside from “pathological” or piecewise defined examples, the natural
logarithm function log and its inverse, the natural exponential func-
tion exp, are the first non-algebraic functions studied in this book.
Their importance cannot be summarized in just a few sentences, though
their ubiquity throughout the natural sciences can be explained fairly
simply: The natural exponential function arises in any situation where
the rate of change of some quantity is proportional to the quantity itself.
Populations grow at a rate roughly proportional to their size; money
accrues interest at a rate proportional to the principle; to a good ap-
proximation, many chemical reactions proceed at a rate proportional to
the concentrations of the reactants; radioactive nuclei decay at random,
so the number of decays per second is proportional to the number of
nuclei in a sample. In each situation, the amount of “stuff” present at
time t will be well-approximated by an exponential function of t.

Logarithms are a convenient language in any situation where a quan-
tity varies over a large range, speaking in terms of ratios. The energy
carried by a sound wave or the concentration of hydrogen ions in a
solution are quantities that in realistic situations range over many or-
ders of magnitude. Logarithmic units (such as decibels or pH) make
such quantities more manageable. (The loudest sound a human ear
can tolerate without pain carries billions of times more energy than a
whisper, for example, but we speak conveniently of 130 decibels versus
30 decibels.)

Logarithmic and exponential functions have axiomatic definitions
(see below), that were historically the basis for their discovery. Our
treatment inverts the historical order for logical reasons.

359
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12.1 The Natural Logarithm
Historically, a “logarithm” is a function L, not identically zero, that
converts multiplication into addition in the sense that

(12.1) L(xy) = L(x) + L(y) for all positive, real x and y.

In school courses, it is granted that such functions exist, and this equa-
tion is taken as an axiom. We are now in a position to introduce and
study functions with this property, but for us the previous equation
will be a theorem.

The natural logarithm is the function log : (0,∞)→ R defined by

(12.2) log x =

∫ x

1

1

t
dt for x > 0.

Properties of the integral immediately imply that log(1) = 0. The
second fundamental theorem shows that log is differentiable, and that

(12.3) log′ x =
1

x
, x > 0.

Consequently log is increasing on (0,∞), and in particular is positive
iff x > 1, see Figures 12.1 and 12.2.

Theorem 12.1. log(xy) = log x+ log y for all x, y > 0.

Proof. If x and y are positive real numbers, then

log(xy) =

∫ xy

1

dt

t
=

∫ x

1

dt

t
+

∫ xy

x

dt

t

=

∫ x

1

dt

t
+

∫ y

1

du

u
= log(x) + log(y).

The change of limits on the second integral is justified by setting t = xu
(remember that “x is a constant”) and invoking Exercise 7.13.

In Leibniz notation, the logarithm property (12.1) follows from scale
invariance of the integrand dt/t:

dt

t
=
d(xu)

(xu)
=
du

u
for all x > 0.

It is not difficult to show (Exercise 12.1) that up to an overall multi-
plied constant, dt/t is the only continuous integrand with the requisite
invariance property.
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0 1 x

y = 1
t

Area = log x

Figure 12.1: The definition of the natural logarithm as an integral.

Equation (12.1) implies log(1/x) = − log x for all x > 0, and (by
induction on p) that log(xp) = p log x for all p ∈ N. Setting x = y1/q

for q ∈ N and assembling the previous observations shows that

(12.4) log(yr) = r log y for all real y > 0, all r = p
q
rational.

The real number log 2 is positive, and log(2n) = n log 2 for all in-
tegers n. By the Archimedean property of R, the log function attains
arbitrarily large (positive and negative) values. Since log is continuous,
it has the intermediate value property, so we conclude that log maps
(0,∞) onto R. Because log is increasing, every real number is the
logarithm of a unique positive real number.

Note carefully that the tangent lines to the graph of log become
arbitrarily close to horizontal (because log′ x = 1/x), but the graph has
no horizontal asymptote!

12.2 The Natural Exponential

Historically, an exponential function is a function E : R→ R such that

(12.5) E(x+ y) = E(x)E(y) for all x, y ∈ R,

cf. (12.1). Recall that we defined the natural exponential function exp :
R→ (0,∞) to be the inverse of log, the natural logarithm. The reason
for the definition is historically rooted:
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0 1 xe

log x

1

Figure 12.2: The graph of the natural logarithm function.

Lemma 12.2. If L : (0,∞) → R is a logarithm function, then its
inverse E : R→ (0,∞) is an exponential function.

Proof. A logarithm, by definition, satisfies the identity L(xy) = L(x)+
L(y) for all positive x and y. If we write x = E(u), y = E(v), and
apply E to the logarithm identity, we find that

E(u) · E(v) = xy = E
(
L(x) + L(y)

)
= E(u+ v) for all u and v,

which is the characteristic property of an exponential function.

The Number e

The number e := exp 1 is one of the most prominent constants in math-
ematics. Note that by definition, log e = 1; e is the unique real number
for which the region in Figure 12.1 has unit area. Exercise 7.17 (d)
shows that 2 < e < 4; the actual value is roughly

e = 2.718281828459045 . . . ,

see Corollary 12.8.

12.3 Properties of exp and log
Equation (12.4) says yr = exp(r log y) for all real y > 0, all rational r.
The expression on the left has a purely algebraic definition (involving
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−4 −2 0 2

1

e

Figure 12.3: The graph of the natural exponential function.

nothing but multiplication of real numbers), while the right-hand side
is not purely algebraic, but has the advantage of being defined for all
real r. We are led to define

(12.6) xr = exp(r log x) for x > 0, r ∈ R.

In particular,
ex = expx for all x ∈ R.

If b > 0, the exponential function to the base b, denoted expb, is defined
by

expb x = exp(x log b) for all x ∈ R.

The name will be justified shortly.
An exponential function is proportional to its own derivative, and

exponential functions are characterized by this property:

Theorem 12.3. Let b > 0 be fixed. The function expb is differentiable,
and

exp′b x = (log b) expb x for all x ∈ R.

Conversely, if k ∈ R and if f is a differentiable function satisfying the
differential equation f ′ = kf , then f(x) = f(0)ekx for all x ∈ R.

Proof. Recall that exp′ = exp; the proof is instructive, and is repeated
here. First, log(exp x) = x for all x ∈ R. Second, log is differ-
entiable and has non-vanishing derivative, so its inverse function is
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differentiable. It is therefore permissible to differentiate the equation
x = log(expx) with respect to x. The chain rule gives

1 = log′(expx) exp′ x =
1

expx
exp′ x for all x,

proving exp′ = exp. If k ∈ R, the chain rule implies d
dx
ekx = kekx. Since

expb x = exp(x log b) by definition, the derivative formula is immediate.
Conversely, suppose f : R → R is a differentiable function such

that f ′ = kf . Define g by g(x) = f(x)/ekx; this is sensible because exp
is non-vanishing on R. The function g is differentiable as a quotient of
differentiable functions, and the quotient rule implies

g′(x) =
ekxf ′(x)− kekxf(x)

(ekx)2
=
f ′(x)− kf(x)

ekx
= 0 for all x

since f ′(x) = kf(x) for all x by hypothesis. But this means g is a
constant function, and setting x = 0 shows g(x) = f(0) for all x.

Corollary 12.4. Let r ∈ R be fixed. If f(x) = xr for x > 0, then f is
differentiable, and f ′(x) = rxr−1. In Leibniz notation,

d

dx
xr = rxr−1 for all r ∈ R.

The proof is left to you, Exercise 12.6. Theorem 12.3 also implies
some familiar algebraic properties of exp:

Theorem 12.5. For all x, y ∈ R, ex+y = exey and exy = (ey)x.

Proof. Fix y ∈ R, and consider the function f : R → R defined by
f(x) = ex+y. By the chain rule, f is differentiable, and f ′ = f . Since
f(0) = ey, Theorem 12.3 implies ex+y = exey for all x.

To prove the second assertion, fix y and define g : R → R by
g(x) = (ey)x. Applying the first part of Theorem 12.3 with b = ey, we
see that

g′(x) = log(ey)(ey)x = yg(x).

The second part of Theorem 12.3 implies g(x) = exy, since g(0) = 1.
As a fringe benefit, we have shown that (ey)x = (ex)y, since each term
is equal to exy.
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Theorem 12.5 justifies the name “exponential function to the base b”:

expb(x) = exp(x log b) =
(
exp(log b)

)x
= bx for all x ∈ R.

Easy modifications of the proof establish the identities

bx+y = bxby, bxy = (bx)y for all b > 0, x, y ∈ R.

If you attempt to prove these identities directly from equation (12.6),
you will be impressed by the simplicity of the argument just given. One
of the powers of calculus is its ability to encode algebraic information
in differential equations that have unique solutions.

You may have wondered more than once why we do not define 00 =
1. Here is a limit of the form 00 that is not equal to 1:

lim
x→0

exp(α/x2)x
2

= lim
x→0

(
e(α/x2)

)x2

= eα for all α < 0,

by Theorem 12.5. It is left to you to find functions f and g such that
lim(f, 0) = lim(g, 0) = lim(f g, 0) = 0.

The inverse of expb is the logarithm to the base b, and is denoted
logb:

y = logb x iff x = by = expb y.

Theorem 12.5 implies logb(x
y) = y logb x for all x > 0, y ∈ R.

The next result says the logarithm to the base b is proportional to
the natural logarithm. For this reason, logarithm functions other than
the natural logarithm appear only rarely in mathematics.

Proposition 12.6. If b > 0, then logb x = (log x)/(log b) for all x ∈ R.
The function logb is differentiable, and

log′b x =
1

x log b
for all x > 0.

Proof. To say y = logb x means x = by = exp(y log b). Taking the natu-
ral logarithm of this equation gives y = (log x)/(log b). The statement
about derivatives follows immediately.
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Two Representations of exp

The characterization of exp as the solution of the differential equation
f ′ = f satisfying f(0) = 1 implies a couple of striking, non-trivial
representations.

Theorem 12.7. ex =
∞∑
k=0

xk

k!
for all x ∈ R.

Proof. The power series on the right has ak = 1/k!, so the ratio test
implies that the radius of convergence is

lim
k→∞

ak
ak+1

= lim
k→∞

(k + 1)!

k!
= lim

k→∞
k + 1 =∞.

The associated function f is defined for all x ∈ R, and is differentiable.
The derivative f ′ is found by differentiating term-by-term:

f ′(x) =
∞∑
k=0

1

k!
kxk−1 =

∞∑
k=1

xk−1

(k − 1)!
= f(x)

for all x. Since f(0) = 1 (all terms but the first vanish), Theorem 12.3
implies f(x) = ex for all x.

Corollary 12.8. e =
∞∑
k=0

1

k!
= 1 +

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

In order to turn the result of this corollary into an effective compu-
tational fact, we need to know the size of the error if we approximate e
by adding up finitely many terms of this series. Merely summing the
first four terms shows that 2.66̄ < e, which is already a substantial
improvement over 2 < e. A good numerical estimate is found in Exer-
cise 12.23.

Theorem 12.9. ex = lim
n→∞

(
1 +

x

n

)n
for all x ∈ R.

Proof. Remember that x is fixed as the limit is taken. We begin by
explicitly allowing “n” to take arbitrary positive real values, rather
than integer values. The “change of variable” h = 1/n converts the
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desired limit to

lim
h→0+

(1 + xh)1/h = lim
h→0+

exp

[
1

h
log(1 + xh)

]
= lim

h→0+
exp

[
x

log(1 + xh)− log 1

xh

]
since log 1 = 0

= exp

[
x lim
h→0+

log(1 + xh)− log 1

xh

]
continuity of exp.

Setting η = xh and noticing that the limit term is the Newton quotient
for the natural logarithm shows the previous expression is equal to

exp

[
x lim
η→0

log(1 + η)− log 1

η

]
= exp [x log′(1)] = exp x,

and this is ex by definition.

Theorem 12.9 characterizes the natural exponential function as a
limit of geometric growth. If, for example, x is the annual interest rate
on a savings account, and there are n compoundings per year, then the
multiplier on the right gives the factor by which the savings increase
over one year. As the number of compoundings per year grows without
bound, the balance does not become infinite in a finite time. Instead,
if $1 is allowed to accrue interest with continuous compounding, then
in the time it would take the savings to double without compounding,
the balance increases to $2.72 (rounded to the nearest penny).

Exercises

Exercise 12.1 Let f : (0,∞) → R be a continuous function, and
define

L(x) =

∫ x

1

f(t) dt.

Prove that if L satisfies (12.1), then there exists a real k such that
f(t) = k/t for all t > 0. �
Exercise 12.2 Let a, b, and c be positive real numbers. Is it more
sensible to agree that abc is equal to (ab)c or to a(bc), or does it matter?
�
Exercise 12.3 Prove that xlog y = ylog x for all x, y > 0. �
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1 2 3 4 5 6 7 8 9 10 20 30 40 50 · · ·

1 2 3 4 5 6 7 8 9 10 20 30 40 50

Figure 12.4: A ruler marked with common (base 10) logarithms.

Exercise 12.4 Explain how you would use two logarithmic scales, as
in Figure 12.4, to multiply numbers. �
Exercise 12.5 Let u be a differentiable function. Find the derivative
of exp ◦u, and the derivative of log ◦|u| at points where u is non-zero.
Write your formulas in both Newton and Leibniz notation. �
Exercise 12.6 Prove Corollary 12.4.
Hint: Begin with the definition of xr for real r. �
Exercise 12.7 Let f(x) = e−x(x2 − 1) for x ∈ R.

(a) Sketch the graph of f , using information about the first two deriva-
tives to determine intervals on which f is monotone, convex, and
concave.
Suggestion: Introduce symbolic constants to simplify calcula-
tions.

(b) How many solutions does the equation f(x) = a have? (Your
answer will depend on a.)

�
Exercise 12.8 If f : (0,∞) → R is defined by f(x) = xx, find f ′.
Prove that f has a unique minimum, and find the location and value of
the minimum. Hint: Write f(x) = eu(x) for an appropriate function u.
�
Exercise 12.9 Evaluate the following limits:

(a) lim
x→0+

x log x (b) lim
x→0+

xx (c) lim
x→+∞

x1/x (d) lim
x→+∞

(1 + x)1/x

�
Exercise 12.10 Evaluate the following limits:

(a) lim
x→+∞

x

log x
(x1/x−1) (b) lim

x→0+

e− (1 + x)1/x

x
�
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Exercise 12.11 Let n be a positive integer. Evaluate

(a) lim
x→+∞

(log x)n

x
(b) lim

x→+∞
xn

ex
= lim

x→+∞
xne−x

Use your results to prove that for all α > 0, log x = o(xα) near +∞.
Find a similar little-o expression for power and exponential functions.
�
Exercise 12.12 Find the maximum value of fn(x) = xne−x for x ≥ 0.
(In particular, you must prove that a maximum value exists.) �

Exercise 12.13 Prove that
∫ ∞

0

e−t
2

dt converges. �

Exercise 12.14 Let Fn(x) =

∫ x

0

tne−t dt.

(a) Use integration by parts (Exercise 10.12) to find a recursion for-
mula for Fn in terms of Fn−1.

(b) Use part (a) and induction on n to prove that

Fn(x) = n!
(

1− e−x
n∑
k=0

xk

k!

)
.

(c) Evaluate the improper integral
∫ ∞

0

tne−t dt

This integral is defined for all real n > −1, and is denoted Γ(n + 1).
�
Exercise 12.15

(a) Use part (b) of the previous exercise and a change of variable to
find a formula for ∫ x

0

tne−αt dt, α ∈ R.

(b) Prove that the improper integral
∫ 1

0

(log u)n du converges.

(c) Use the change of variable u = et to evaluate the improper integral
of part (b).
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�
Exercise 12.16 Let f : (0,+∞) → R be an increasing function.
Recall that f is integrable on [a, b] for all 0 < a < b.

(a) Prove that
n−1∑
k=1

f(k) ≤
∫ n

1

f(t) dt ≤
n∑
k=2

f(k)

for all n ∈ N. (A sketch should help. Compare Proposition 7.23.)

(b) Taking f = log in part (a), prove that

(n− 1)! ≤ e
(n
e

)n
≤ n!

for all n ∈ N.

(c) Evaluate lim
n→∞

(n!)1/n

n
.

There is a much more precise estimate of n! called Stirling’s formula.
�
Exercise 12.17 Determine (with proof, of course) which of the fol-
lowing converge; do not attempt to evaluate the sums!

(a)
∞∑
n=1

log n

n3/2
(b)

∞∑
n=1

(−1)n
log n

n
(c)

∞∑
n=2

1

n(log n)2

(d)
∞∑
n=1

(n+ 1)n

nn+1
(e)

∞∑
n=1

n!

nn

Hint for (a): “Borrow” a small power of n to nullify the log. �
Exercise 12.18 Let n be a positive integer. �
Exercise 12.19 Define f : R→ R by

f(x) =

{
exp(−1/x2) if x 6= 0

0 if x = 0

Prove that f (k)(0) exists and is equal to zero for all k ∈ N.
Suggestion: First use induction on the degree to prove that for every
polynomial p,

lim
x→0

p(1/x) f(x) = 0.
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Then show inductively that every derivative of f is of this form. Finally,
show that no derivative of f can be discontinuous at 0. �
Exercise 12.20 Fix b > 0, and define a sequence (xn)∞n=0 by

x0 = 1, xn+1 = bxn for n ≥ 0.

Thus x1 = b, x2 = bb, x3 = bb
b , and so forth. Prove that if (xn) → `,

then b` = `. Use this observation to determine the set of b for which the
sequence converges. Then show that ` is an increasing function of b,
and find the largest possible value of `.

Two people are arguing. One says that if b =
√

2, then ` = 2, since√
2

2
= 2; the other says ` = 4 because

√
2

4
= 4. Who—if either—is

correct, and why? �
Exercise 12.21 Let n and x be positive integers. Prove that

n ≤ log10 x < n+ 1 iff 10n ≤ x < 10n+1,

iff x is an integer having n+ 1 digits. In words, the integer part of the
base 10 logarithm of x is one less than the number of digits of x.

Which is larger, 2222
22

or 1010100? How many digits does each
number have? �
Exercise 12.22 The mother of all l’Hôpital’s rule problems: Prove
that

lim
x→∞

ee
ex+e−(a+x+ex+eex

)

− eeex

= e−a

for all a ∈ R. �
Exercise 12.23 The error in using the first n + 1 terms of the series
in Corollary 12.8 to estimate e is

(∗) e−
n∑
k=0

1

k!
=

∞∑
k=n+1

1

k!
.

(a) Show that (n + m)! ≥ (n + 1)m n! for m ≥ 1. (If you write out
what this means for m = 2 the inductive proof should be clear.)

(b) Show that the error in (∗) is no larger than 1/(n · n!).
Suggestion: Use part (a) and a geometric series.

(c) Use part (b) to show that 2.7166̄ < e < 2.71833̄. You may use
only the arithmetic operations on a calculator.
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(d) How many terms suffice to give 20 decimals of accuracy? Give as
small an answer as you can. (Surely 1020 terms suffice!)

�
Exercise 12.24 Prove that e is irrational. Hint: Assume e = p/q is
rational, in lowest terms. By Exercise 12.23,

0 <
p

q
−

n∑
k=0

1

k!
<

1

n(n!)
for each n ∈ N.

Take n = q and deduce there is a positive integer smaller than 1/q.
(Remember: If k ≤ q, then k! divides q! evenly.) �



Chapter 13

The Trigonometric Functions

Trigonometric functions are usually introduced via geometry, either as
ratios of sides in a right triangle, or in terms of points on the unit circle.
The approach taken here may, by contrast, seem opaque, even artificial.
However, our aim is to define everything in terms of axioms of R, so we
shall give an analytic definition of the trig functions. In order to make
contact with geometry, we must show that our definitions coincide with
the familiar geometric definitions. These arguments will necessarily be
geometric, but as their purpose is pedagogical (rather than logical) the
reliance on geometry will not detract from the logical structure of the
chapter.

13.1 Sine and Cosine

The exponential function exp is characterized by a first-order differen-
tial equation, namely it is the unique differentiable function f : R→ R
such that

(13.1) f ′ = f and f(0) = 1.

The uniqueness assertion—equation (13.1) has at most one solution—
used little more than the mean value theorem, while the existence
part—(13.1) has at least one solution—required some additional ma-
chinery, either integration or power series. Our approach to the el-
ementary circular trig functions is similar. The following definition
relies implicitly on theorems that the given criteria do indeed uniquely
define functions; these theorems will presently be formally stated and

373
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proved. Uniqueness will be an easy argument using the mean value
theorem, while existence will depend on power series.
Definition 13.1 The sine function sin : R→ R is the solution of the
initial-value problem

(13.2) f ′′ + f = 0, f(0) = 0, f ′(0) = 1.

The cosine function cos : R → R is the solution of the initial-value
problem

(13.3) f ′′ + f = 0, f(0) = 1, f ′(0) = 0.

The tangent, cotangent, secant, and cosecant functions are defined
(with their natural domains) to be ratios of sin and cos in the usual
manner:

tan =
sin

cos
, cot =

cos

sin
, sec =

1

cos
, csc =

1

sin
.

Uniqueness

We show first that at most one twice-differentiable function satisfies
each of (13.2) and (13.3). A key observation is that the differential
equation y′′ + y = 0 is linear, in the sense that if f and g are solutions
and c is a constant, then (cf + g) is also a solution. Most differential
equations do not have this property.

Proposition 13.2. Let y : R → R be a twice-differentiable function
satisfying y′′+y = 0 on R. If y(0) = y′(0) = 0, then y(x) = 0 for all x.

Proof. If y′′ + y = 0 on R, then we deduce that(
(y′)2 + y2

)′
= 2y′y′′ + 2yy′ the chain rule
= 2y′ · (y′′ + y) factoring
= 0 by hypothesis.

This means that the function (y′)2 + y2 is constant on R. Evaluating
at 0 and using y′(0) = y(0) = 0, we find that (y′)2 +y2 = 0 on R, which
in turn implies that y vanishes identically.

Corollary 13.3. Let f : R → R be a function satisfying f ′′ + f = 0,
f(0) = a and f ′(0) = b. Then f(x) = a cosx+ b sinx for all x ∈ R.
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Proof. Set y = f − (a cos +b sin). Linearity of the differential equation
f ′′ + f = 0 implies y is also a solution. The initial conditions on sin
and cos imply that y(0) = y′(0) = 0. By Proposition 13.2, y is the zero
function.

It is difficult to overestimate the importance of this corollary. The
basic properties of the trig functions are all immediate consequences,
obtained by cooking up functions and showing that they satisfy the
defining differential equation with appropriate initial conditions.

Existence

At present we have no logical basis for believing the differential equation
y′′+ y = 0 has any non-trivial solutions at all. We do, however, possess
a powerful tool to attempt to guess the form of a solution, namely
power series. Let us assume that

y(x) =
∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·

is a real-analytic solution of (13.2). Using the differential equation, we
deduce the coefficients. Term-by-term differentiation (and shifting the
index of summation) gives

y′(x) =
∞∑
k=0

(k + 1)ak+1x
k,

y′′(x) =
∞∑
k=0

(k + 2)(k + 1)ak+2x
k.

(13.4)

The initial conditions determine the first two coefficients: y(0) = a0 =
0, and y′(0) = a1 = 1. Because y′′ = −y by assumption, equation (13.4)
implies

(13.5) ak+2 = − ak
(k + 2)(k + 1)

for k ≥ 0.

We find immediately that 0 = a0 = a2 = a4 = · · · , while a3 = −1/(3·2),
a5 = 1/(5 · 4 · 3 · 2), and so on. With a bit of thought, we guess that

a2k = 0, a2k+1 =
(−1)k

(2k + 1)!
for k ≥ 0,
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which is easily proven by induction on k. Thus

(13.6) y(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

is a candidate solution of (13.2). You should quickly check formally
that the second derivative of this series is the negative of the original.
This argument proves merely that if (13.2) has a real-analytic solution,
then this solution is given by (13.6). Now we verify that (13.6) is
indeed a real-analytic solution of (13.2). The series in (13.6) converges
provided the ratio of consecutive non-zero terms approaches a limit that
is smaller than 1 in absolute value. However, for all x ∈ R,

lim
k→∞

∣∣∣∣a2k+3 x
2k+3

a2k+1 x2k+1

∣∣∣∣ = lim
k→∞

∣∣∣∣(2k + 1)!x2

(2k + 3)!

∣∣∣∣ = lim
k→∞

∣∣∣∣ x2

(2k + 3)(2k + 2)

∣∣∣∣ = 0,

so the power series (13.6) converges absolutely for all real x, and there-
fore defines a function s : R → R. Termwise differentiation shows
that s′′ + s = 0 on R; the choice of coefficients was motivated by the
wish that this equation hold, after all! The initial values s(0) = 0 and
s′(0) = 1 were also built into the choice of coefficients; we have therefore
shown that (13.2) has a solution, in fact, has a real-analytic solution.

Equation (13.3) may be treated by parallel arguments, see Exer-
cise 13.1. We shall henceforth use the fact that (13.2) and (13.3) have
real-analytic solutions, and that the respective power series converge
on all of R.

Summary

By a combination of judicious guessing and appropriate use of powerful
tools, we have shown there exist real-analytic functions sin and cos :
R→ R that satisfy

sin′′ = − sin, sin 0 = 0, sin′ 0 = 1

cos′′ = − cos, cos 0 = 1, cos′ 0 = 0

These functions are defined on R by the power series

(13.7) sinx =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, cosx =

∞∑
k=0

(−1)k
x2k

(2k)!
.
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Further, every twice differentiable function y : R→ R that satisfies the
differential equation y′′ + y = 0 is a linear combination of sin and cos,
and is consequently real-analytic. Finally, sin and cos are characterized
by the initial-value problems they satisfy. In order to show that some
function f is the sine function, it suffices to show that f ′′ + f = 0, and
that f(0) = 0, f ′(0) = 1.

Several useful properties of sin and cos can be derived from this
characterization. These are collected as Theorem 13.4 below. This
characterization will also be used to relate geometric definitions with
our analytic definitions; we will define functions in terms of areas of an-
gular sectors and prove (geometrically) that these functions satisfy the
initial-value problems that characterize the sine and cosine functions.

Theorem 13.4. The sine function is odd; the cosine function is even.
The derivatives of sin and cos are given by

(13.8) sin′ = cos, cos′ = − sin .

For all x ∈ R, sin2 x + cos2 x = 1. Finally, sin and cos satisfy the
following addition formulas:
(13.9)

sin(a+ b) = sin a cos b+ sin b cos a
cos(a+ b) = cos a cos b− sin a sin b

for all a, b ∈ R.

In particular, sin(2x) = 2 sinx cosx and cos(2x) = cos2 x − sin2 x for
all x ∈ R.

Proof. It is apparent that sin is an odd function from its power series
representation; however, a direct proof (in the spirit of the theorem)
can be given using Corollary 13.3. Indeed the function g : R → R
defined by g(x) = sin(−x) satisfies the differential equation g′′ + g = 0
and the initial conditions g(0) = 0, g′(0) = −1, so the corollary implies
g = − sin. Evenness of cos is seen similarly.

If y = sin′, then y′′ + y = 0; this follows immediately upon differen-
tiating the equation sin′′+ sin = 0. But y(0) = 1 by definition of sin,
and y′(0) = sin′′ 0 = − sin 0 = 0. By Corollary 13.3, sin′ = cos. A
similar argument shows cos′ = − sin.

Consider the function f = sin2 + cos2. The results of the previous
paragraph imply that

f ′ = 2 sin sin′+2 cos cos′ = 2 sin cos +2 cos(− sin) = 0,
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which means f is constant. Since f(0) = sin2 0 + cos2 0 = 1, f is equal
to 1 everywhere.

To prove the addition formulas, fix b ∈ R and consider the function y
defined by y(x) = sin(x + b). The chain rule implies y′′ + y = 0 on R,
and the derivative formula for sin implies y′(x) = cos(x + b) for all
x ∈ R. Substituting x = 0 gives y(0) = sin b and y′(0) = cos b, so

sin(a+ b) = y(a) = sin a cos b+ sin b cos a for all a ∈ R

by Corollary 13.3. The addition formula for cos is proved similarly.

Some standard limits are easy consequences of the power series rep-
resentations of sin and cos. These limits are usually derived from ge-
ometric considerations and used to prove the derivative formulas in
Theorem 13.4.

lim
x→0

sinx

x
= 1; lim

x→0

1− cosx

x2
=

1

2
.

Though each limit can be derived easily from l’Hôpital’s rule, it is not
logically permissible to do so if one plans to use the result to deduce
the formula sin′ = cos, since the resulting argument would be circular!
In any case, the power series for sin and cos allow these limits to be
evaluated directly. For x 6= 0,

sinx

x
=
∞∑
k=0

(−1)k
x2k

(2k + 1)!
= 1− x2

3!
+
x4

5!
− · · · .

By the ratio test, the series on the right represents a continuous function
on R, hence may be evaluated at 0 by setting x = 0; plainly this gives 1.
The second limit is treated in Exercise 13.3.

Periodicity

In this section we prove that sin and cos are periodic. Their common
period will be defined to be 2π; this is a non-geometric definition of the
fundamental constant π, in contrast to the usual geometric definition,
such as “the area of a unit disk” or “one-half the perimeter of a unit
circle.” The present definition is amenable to theoretical purposes and
to numerical evaluation. Naturally, the geometric definitions will be
recovered as theorems.
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A physicist would suspect that sin and cos exhibit oscillatory be-
havior on two grounds: First, the equation y′′+y = 0 is the equation of
motion for a mass on a spring in suitable units. (The fact that (y′)2 +y2

is constant is, in this situation, exactly conservation of energy.) Sec-
ond, the equation y′′ = −y says qualitatively that when y is positive,
its graph is concave down, and vice versa. Thus the graph of y always
bends toward the horizontal axis. Since the equation is “time indepen-
dent”, each time the solution crosses the axis from below to above, the
solution is in the same “physical state” as it was the last time it crossed
in this direction, so its future behavior repeats its past behavior.

In a sense, the mathematical proof of periodicity simply makes the
physical intuition precise. The first step is to prove that the cosine func-
tion has a smallest positive zero, which for the moment we shall denote
by α. Existence of α is accomplished via the following estimate, whose
proof is deferred to the end of this section for conceptual continuity.

Proposition 13.5. For all real x, 1− x2

2!
≤ cosx ≤ 1− x2

2!
+
x4

4!
.

Granting this result, we find that

0 ≤ cos
√

2, cos
(√

6−√12
)
≤ 0,

since
√

6−√12 is the first positive root of the quartic upper bound;
see Figure 13.1. The intermediate value theorem implies cos has a
zero between

√
2 ' 1.41421 and

√
6−√12 ' 1.59245. We now define

π = 2α, and observe that Proposition 13.5 implies

2.82842 ≤ π ≤ 3.1849.

These crude bounds are analogous to the estimate 2 ≤ e ≤ 4 that was
obtained immediately from the definition of e. We will eventually find
numerical series that converge fairly rapidly to π, which allows more
accurate bounds to be obtained.

Returning to the main argument, Proposition 13.5 implies that cos
has a smallest positive root: cosα = 0, and cos′ α = − sinα is either 1
or −1 because cos2 + sin2 = 1. Because cos 0 = 1 and α is the smallest
positive zero, cos is non-negative on the interval [0, α]. It follows that
cos′ α = −1, for if it were 1 then cosine would be negative on some
interval to the left of α. Evenness of cos implies that the largest negative
zero of cos is −α; in particular, there is an interval of length π, namely
(−α, α), on which cos is positive.
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y = 1− 1
2!
x2

y = 1− 1
2!
x2 + 1

4!
x4

α
√

2

√
6−√12

0 1 2 3

1

Figure 13.1: The smallest positive zero of the cosine function (bold).

By the addition formula for sin,

sin(x+ α) = sinx cosα + sinα cosx

= sinα cosx = cosx for all x ∈ R,

since sinα = − cos′ α = 1. Geometrically, the graph of cos is the
graph of sin translated to the left by α. A similar argument shows that
sin(x+ π) = − sinx for all x ∈ R. Applying this equation twice shows
that

(13.10) sin(x+ 2π) = − sin(x+ π) = sin x for all x ∈ R.

The cosine function is 2π-periodic as well since cosx = sin(x+α) for all
x ∈ R. Finally, there is no smaller positive period, since cos is positive
on (−α, α) and negative on (α, 3α). In other words, the fact that 2π is
the smallest positive period of sin and cos is a consequence of the fact
that α is the smallest positive zero of cos.

The remaining piece of the proof of periodicity is Proposition 13.5.
The argument is nothing more than repeated integration of an ele-
mentary inequality, but is completely different in character than the
arguments above. To start, note that the equation sin2 + cos2 = 1 im-
plies that −1 ≤ cos t ≤ 1 for all t ∈ R. Fix x > 0 and integrate from 0
to x, using the fundamental theorem of calculus:

−x ≤
∫ x

0

cos t dt = sin t
∣∣∣x
t=0

= sinx ≤ x.

Thus −t ≤ sin t ≤ t for t ≥ 0. Integrating this from 0 to x gives

−x
2

2
≤
∫ x

0

sin t dt = 1− cosx ≤ x2

2
,
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and since x ≥ 0 was arbitrary it follows that

1− t2

2
≤ cos t ≤ 1 for t ≥ 0.

Another integration (and renaming of variable) gives x − (x3/6) ≤
sinx ≤ x for x ≥ 0, and a fourth gives x2/2−x4/24 ≤ 1−cosx ≤ x2/2,
or

(13.11) 1− x2

2
≤ cosx ≤ 1− x2

2
+
x4

24
for x ≥ 0.

This last set of inequalities is also true for x < 0 because each term is
even in x. This completes the proof of Proposition 13.5.

y = 1− 1
2!
x2

y = cos x

y = 1− 1
2!
x2 + 1

4!
x4

−2

0

2

−4 −2 0 2 4

Figure 13.2: Upper and lower bounds on the cosine function.

The power series for cos has alternately positive and negative terms,
and equation (13.11) suggests that the odd partial sums (ending with a
positive term) are all upper bounds of cos while the even partial sums
(ending with a negative term) are all lower bounds. The visual evidence
is compelling, Figure 13.2. The claims just outlined are indeed true,
as can be shown by induction on the process in the proof of Proposi-
tion 13.5. Moreover, the approximations get better as the degrees of
the approximating polynomials get larger. It is important to empha-
size, however, that the conclusion cannot be deduced solely on the basis
of the signs of the terms; it is essential to consider the actual coeffi-
cients in the power series. Polynomial approximation is investigated
systematically in Chapter 14.
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13.2 Auxiliary Trig Functions

−3π
2

−π
2

π
2

3π
20

1

Figure 13.3: The graphs of cos (bold) and sec.

The sine function vanishes exactly at integer multiples of π, while the
cosine function vanishes at “odd half-integer” multiples of π, namely at
(k + 1

2
)π for k ∈ Z. Both sin and cos are “anti-periodic” with period π

in the sense that

sin(x+ π) = − sinx, and cos(x+ π) = − cosx for all x ∈ R.

The secant function, sec = 1/ cos, is undefined where cos vanishes, is
even and has period 2π, and is anti-periodic with period π. Because
| cosx| ≤ 1 for all x ∈ R, | secx| ≥ 1 for all real x in the domain of sec.
The cosecant function, csc = 1/ sin, satisfies csc(x+ π

2
) = sec x because

of the analogous relation between sin and cos.
The tangent function, tan = sin / cos, is undefined where cos van-

ishes, and is periodic with period π (why?). The tangent function is
odd, as a quotient of an odd function by an even function. Its behavior
is completely determined by its behavior on the fundamental interval
(−π/2, π/2), to which we now turn.

The tangent function is differentiable on (−π/2, π/2), and its deriva-
tive is found by the quotient rule to be

tan′ =
cos sin′− sin cos′

cos2
=

cos2 + sin2

cos2
=

1

cos2
= sec2 .

In particular, tan′ > 0 on (−π/2, π/2), which implies tan is increasing
on this interval. As already noted, cos is positive on (−π/2, π/2) while
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−π 0 π

Figure 13.4: The graphs of sin (bold) and csc.

−6 −4 −2 0 2 4 6

0 π−π
2

π
2

−3π
2

3π
2−π

Figure 13.5: The graph of tan.

sin is positive on (0, π/2) and thus negative on (−π/2, 0). As x → π
from below, tanx→ +∞, and since tan is odd,

lim
x→−π/2+

tanx = −∞.

In summary, tan maps (−π/2, π/2) bijectively to R, and is increasing
on every interval of the form

(
(k − 1

2
)π, (k + 1

2
)π
)
, with k ∈ Z.

The cotangent function, cot = cos / sin, is not exactly the recipro-
cal of tan because of zeros and poles (places where the denominator
vanishes); however, these functions are reciprocal everywhere they are
both defined, zeros of tan are exactly poles of cot, and vice versa. The
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derivative of cot is found to be −1/ csc2, which shows that cot is de-
creasing on every interval in its domain, in particular on every interval
of the form

(
kπ, (k + 1)π

)
with k ∈ Z.

Hyperbolic Trig Functions

The six trigonometric functions mentioned so far are sometimes called
circular trig functions, because of their connection with the geometry
of circles. Indeed, the identity cos2 + sin2 = 1 means that the point
(cos t, sin t) lies on the unit circle for all real t. There is a “dual” family
of functions called hyperbolic trig functions, that have analogous names
with an “h” appended, as in cosh, sinh (variously pronounced “cinch”
or “shine”), and tanh (rhymes with “ranch”). These are, perhaps crypti-
cally, defined directly in terms of the natural exponential function. The
hyperbolic cosine and sine functions are the even and odd parts of exp,
respectively:

(13.12) coshx =
ex + e−x

2
, sinhx =

ex − e−x
2

.

The auxiliary hyperbolic functions are defined by analogous equations,

−2 −1 0 1 2

cosh

sinh

y = 1
2
ex y = 1

2
e−x

−2

−1

1

2

3

Figure 13.6: The graphs of cosh and sinh.
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e.g.

tanhx =
sinhx

coshx
=
ex − e−x
ex + e−x

, sechx =
1

coshx
.

The remaining functions, coth and csch, are rarely encountered, but

−3 −2 −1 0 1 2 3

tanh

−1

1

Figure 13.7: The graphs of tanh and sech.

the first four arise surprisingly often, in settings as diverse as hanging
chains, soap films, non-Euclidean geometry, and solitary waves. There
are numerous formal similarities between the circular and hyperbolic
trig functions, some of which are investigated below. The underlying
reason for these similarities is both deep and simple, but cannot be seen
without defining all the functions over the set of complex numbers, see
Chapter 15.

Simple calculations (left as exercises) verify that cosh2− sinh2 = 1,
and that

(13.13) cosh′ = sinh, sinh′ = cosh, tanh′ = sech2 .

The equation cosh2− sinh2 = 1 means that the point (cosh t, sinh t) lies
on the unit hyperbola (with Cartesian equation x2−y2 = 1) for all real t.
The derivative expressions are analogous to circular trig formulas, but
contain no signs, and can be traced to the fact that sinh and cosh are
characterized as solutions of differential equations:

sinh : y′′ − y = 0, y(0) = 0, y′(0) = 1,

cosh : y′′ − y = 0, y(0) = 1, y′(0) = 0.

There are addition formulas for sinh and cosh analogous to (13.9), as
you can check directly with a bit of perseverance. To complete the
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analogy, the power series representations of sinh and cosh may be found
from the power series for exp; the result,

sinhx =
∞∑
k=0

x2k+1

(2k + 1)!
coshx =

∞∑
k=0

x2k

(2k)!
,

clearly shows the similarity between the circular and hyperbolic trig
functions.

13.3 Inverse Trig Functions
Each circular trigonometric function is periodic, hence has no inverse.
Among the hyperbolic trig functions, sinh and tanh are injective, hence
have “global” inverses. The functions cosh and sech are even, hence not
one-to-one, but each is injective when restricted to the positive real axis.
In this section we will investigate branches of inverse of the various trig
functions. Perhaps the most remarkable feature is that while the inverse
functions are not algebraic functions, their derivatives are algebraic.
This is no accident, but a straightforward consequence of the differential
equations that characterize the elementary trig functions.

The Functions arcsin and arccos

π
2

−π
2

Figure 13.8: Sin.

−1 0 1

π
2

−π
2

Figure 13.9: arcsin.

Cosine is positive on the interval (−π/2, π/2); thus the sine function
is increasing on this interval, since sin′ = cos. Because sin(π−x) = sinx
for all real x, there is no larger open interval on which sin is injective.
The restriction of sin to the closed interval [−π/2, π/2] is denoted Sin.
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The inverse function Sin−1 : [−1, 1] → [−π/2, π/2], sometimes de-
noted arcsin, is called the principle branch of arcsine. Thus

(13.14) sin(Sin−1x) = x for all x ∈ [−1, 1],
Sin−1(sinx) = x for all x ∈ [−π/2, π/2].

The sine function is decreasing on [π/2, 3π/2] because sin(π− x) =
sinx. Periodicity implies that sin is one-to-one on

[
(k− 1

2
)π, (k+ 1

2
)π
]
for

every integer k. For each k, there is a corresponding branch of arcsin,
namely the inverse of the restriction of sin to

[
(k − 1

2
)π, (k + 1

2
)π
]
. On

rare occasions when one considers a non-principle branch of arcsin, it
is denoted sin−1, and k is supplied by context.

More-or-less identical remarks hold for cos. The principle branch
is Cos−1 : [−1, 1] → [0, π], and for each integer k there is a branch of
arccos taking values in [kπ, (k + 1)π]. The identity sin(x + π

2
) = cosx

becomes

(13.15) Cos−1x =
π

2
+ Sin−1x for all x ∈ [−1, 1].

We now wish to find the derivative of Sin−1. First of all, sin′ = cos
is non-vanishing on (−π/2, π, 2), so Sin−1 is differentiable on (−1, 1).
This means we may differentiate the first equation in (13.14):

cos(Sin−1x) · (Sin−1)′(x) = 1 for all x ∈ (−1, 1).

The function Sin−1 takes values in (−π/2, π, 2), and cos is positive on
this interval. Thus cos =

√
1− sin2 on this interval, so the previous

equation can be rewritten

(Sin−1)′(x) =
1

cos(Sin−1x)
=

1√
1− sin2(Sin−1x)

=
1√

1− x2
for all x ∈ (−1, 1).

(13.16)

Because Sin−1 and Cos−1 differ by an additive constant, their deriva-
tives are equal:

(13.17) (Cos−1)′(x) =
1√

1− x2
for all x ∈ (−1, 1).

These equations will be crucial when we equate geometric definitions
of sin and cos with our analytic definitions.
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The Other Circular Trig Functions

The tangent function maps (−π/2, π/2) bijectively to R. The inverse of
the restriction of tan to this interval is the principle branch of arctan,
denoted Tan−1 : R → (−π/2, π/2). Because tan is π-periodic, the
other branches of arctan differ from the principle branch by an added
multiple of π. The derivative of Tan−1 is found by differentiating the
first of

(13.18) tan(Tan−1x) = x for all x ∈ R,
Tan−1(tanx) = x for all x ∈ [−π/2, π/2].

The short calculation is left as an exercise; the result is

(13.19) (Tan−1)′(x) =
1

1 + x2
for all x ∈ R.

This is even more remarkable than equation (13.16); the derivative
of Tan−1 is a rational function, not merely an algebraic function! To
emphasize a philosophical point, the derivative of a rational function
is always a rational function, but an antiderivative need not be. We
have already seen this for the reciprocal function, but the point bears
repeating.

π
2

−π
2

Figure 13.10: The principle branch of arctan.

The inverses of the other circular trig functions are less prominent
in applications, though arcsec does arise in evaluating certain integrals.
To describe the domain and image in detail, consider the cosine function
restricted to [0, π]. Its reciprocal, the restriction of sec, is defined on the
union [0, π/2) ∪ (π/2, π]. The principle branch of arcsec is the inverse
of this restriction; its domain is (−∞,−1] ∪ [1,∞).
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The Hyperbolic Trig Functions

The inverse hyperbolic trig functions can be calculated directly from
their definitions. To solve the equation y = coshx = (ex+e−x)/2 for x,
multiply both sides by 2ex and rearrange to get

(ex)2 − (2y)ex + 1 = 0.

This is a quadratic equation in ex, and can be solved using the quadratic
formula:

(13.20) x = log
(
y ±

√
y2 − 1

)
, y ≥ 1.

We expect two real branches because cosh is not one-to-one. As a
consistency check, observe that y −√y2 − 1 = 1/(y +

√
y2 − 1) for

|y| ≥ 1, and both these quantities are positive for y ≥ 1, so

log
(
y ±

√
y2 − 1

)
= ∓ log

(
y −

√
y2 − 1

)
,

and the two branches do indeed differ by a sign. A similar calculation
shows that sinh−1 is defined by

(13.21) sinh−1 x = log
(
x+
√
x2 + 1

)
.

There is no ambiguity with signs because only this choice leads to a real-
valued function when x is real. You may also verify that the expression
on the right is an odd function of x.

The inverse of tanh is even easier to find. Simple algebra shows that

y =
ex − e−x
ex + e−x

=
e2x − 1

e2x − 1

if and only if

(13.22) tanh−1 y = x =
1

2
log

(
1− y
1 + y

)
, −1 < y < 1.

As a consistency check, the expression on the right is an odd function
of y.

The derivatives of these inverse functions are algebraic functions
that look very similar to their circular counterparts. It is left as an
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exercise to show that

(cosh−1)′(x) =
1√

x2 − 1
,

(sinh−1)′(x) =
1√

x2 + 1
,(13.23)

(tanh−1)′(x) =
1

x2 − 1
.

13.4 Geometric Definitions
This section does not contribute, strictly speaking, to the logical de-
velopment of the circular trigonometric functions. The intent is rather
to connect the trig functions as already introduced with the familiar
pictures of arclength along the unit circle and area enclosed by a cir-
cular sector. The presentation is relatively informal, and uses pictures
and geometric intuition freely. In order to emphasize that something
non-trivial is being shown, geometric versions of trig functions will be
denoted with capital letters (e.g., COS) until they are proven to be the
same as the functions defined analytically above.

The word “trigonometry” comes from Greek roots meaning “trian-
gle measurement.” It is a feature of Euclidean geometry that similar
triangles exist; there exist non-congruent triangles that have the same
internal angles.1 The shape of a right triangle is determined, up to
similarity, by the ratios of its side lengths. It is also determined, up
to similarity, by one of its acute angles. The circular trig functions
are the ratios of side lengths as a function of an acute angle, see equa-
tion (13.24) below. Many students of trigonometry learn a mnemonic2

of some sort to remember which function is which ratio. This defini-
tion is only sensible for acute angles; to define the trig functions for
arbitrary real numbers one extends by symmetry and periodicity. In
order to motivate these extensions, introduce a Cartesian coordinate
system with the acute angle θ at the origin and the hypotenuse scaled

1Strange as it may seem, not all geometries have this property. Think of measur-
ing patches of the surface of a sphere; the sides of triangles are arcs of great circles.
If the three internal angles of a triangle are known, then the side lengths may be
deduced; consequently, two triangles with the same internal angles are actually
congruent.

2Like sohcahtoa.



13.4. GEOMETRIC DEFINITIONS 391

to have unit length, as in the first half of Figure 13.11. The trian-
gle itself is then demoted to a secondary role, and θ is allowed to be
arbitrary, even negative (corresponding to a “clockwise” angle). The
trigonometric ratios are defined to be

(13.24) x = COS θ, y = SIN θ,
y

x
= TAN θ.

If an angle of 2Π corresponds to a full revolution, then SIN and COS are
2Π periodic. The angle θ is determined only up to an added multiple
of 2Π by the point (x, y).

0 1x

y

θ
0 1x

y

θ

Figure 13.11: Circular sectors subtended by a ray through the origin.

It is perhaps intuitively clear that there is a numerical quantity
called “angle,” but it is probably not obvious how to measure it “natu-
rally.” For historical reasons originating in astronomy, the Babylonians
divided the circle into 360 pieces, called degrees. Even modern English
uses idioms based on this system.3 There is nothing mathematically
natural about degrees as a measure of angle, any more than base 10 no-
tation is the natural means of writing integers. Instead, nature prefers4
angles to be measured geometrically, either in terms of arclength around
the circle, or in terms of areas of circular sectors.

The length of an arc of the unit circle is closely related to the area
of the sector it defines. In Cartesian coordinates (u, v), the circle has
equation u2 + v2 = 1. Each ray through the origin intersects the circle
in a unique point (x, y). (The completeness axiom for R is implicit
here.) Let θ be the arclength between (0, 0) and (x, y), measured coun-
terclockwise5 along the circle, and let 2Π be the circumference. There is

3“No it doesn’t,” said the author, making a 180◦ reversal of his claim. “Wait, I
was wrong. It does,” he added, coming around a full 360.

4This claim will be fully justified shortly.
5This is also a convention, but a harmless one.
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a corresponding sector of the circle, enclosed by the positive u-axis, the
arc, and the ray, as in Figure 13.11. As was known to Archimedes, the
area of the sector is θ/2. He showed this with the following argument,
see Figure 13.12 for the case where the entire disk is considered.

Half the circumference

Figure 13.12: Archimedes’ dissection of a disk to an approximate rect-
angle.

Let A be the area of the sector with angle θ at the origin. Divide
the sector into N congruent pieces, each of which is approximately
an isosceles triangle of base θ/N and height 1. Each slice has area
approximately θ/2N , so the total area A is approximately θ/2. The
approximation can be made arbitrarily accurate by taking N large, so
A = θ/2.6 In particular, the area of the unit disk is Π.

Intuitively, the sector can be cut into infinitely many infinitely
thin triangles which are rearranged into a rectangle of height 1 and
width θ/2, but this intuition is not literally correct. The language of
integrals is suitable for making this assertion rigorous, but you should
once again be reminded of the Goethe quote at the beginning of the
book.

Proposition 13.6. The area of a circular sector pictured below is

A(x) =
x

2

√
1− x2 +

∫ 1

x

√
1− u2 du

for −1 ≤ x ≤ 1.

6If two numbers are ε-close for all ε > 0, then they are equal.
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0 1x
θ

0 1x

Area = A(x)

θ

Proof. Since (x, y) lies on the upper half of the unit circle, y =
√

1− x2.
If x > 0 (the left-hand picture), then x

√
1− x2/2 is the area of the right

triangle, while the integral is the area of the curved region. On the other
hand, if x < 0 (the right-hand picture), then x

√
1− x2/2 is negative,

but has absolute value equal to the area of the right triangle, while the
integral is the area of the entire enclosed region. Again, the sum—which
is the difference in areas—is the area of the circular sector.

The particular case x = −1 is interesting:

Corollary 13.7.
Π

2
=

∫ 1

−1

√
1− u2 du.

However, an even more substantial conclusion results from differentiat-
ing. By the fundamental theorem,

A′(x) =

√
1− x2

2
+ x · −x

2
√

1− x2
−
√

1− x2 = − 1

2
√

1− x2

for −1 < x < 1: The functions 2A and Cos−1 have the same derivative.
In addition, they agree at 1, so they are the same function. This is
the first link between the circular trig functions and the geometrically
defined function A.

Note also that A(−1) = Cos−1(−1) = π; Corollary 13.7 implies that
π = Π; the period of sin and cos is the circumference of the unit circle.
To tie up the remaining loose end, Archimedes’ theorem on areas of
sectors says (in the notation of Figure 13.6) x = cos θ for θ ∈ [0, π].
This equation is true when θ ∈ [−π, 0] because of two facts: (i) cos is
an even function, and (ii) the figure in Proposition 13.6 is symmetric on
reflection in the horizontal axis, which exchanges θ and −θ. Combining
these observations, cos = COS on the interval [−π, π], and since both
functions are 2π-periodic, they are equal everywhere. This means the
circular trig functions (defined as solutions of a differential equation)
are the same as the functions COS and SIN defined as horizontal and
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vertical coordinates of a point on a circle. The “variable” is measured
not in degrees, but in radians—units of arclength along the circle.

It was asserted earlier that radians are the “natural” measure of
angle. The main justification is that SIN′ = COS and COS′ = −SIN.
Suppose degrees had been used to define circular trig functions SIN◦

and COS◦. (The function COS◦ is “just like COS, but takes input
in degrees”.) Equations like COS◦ 90 = 0 and SIN◦ 90 = 1 would hold
(which would not be a problem), but the equations (SIN◦)′ = COS◦ and
(COS◦)′ = −SIN◦ would be false (which would be badly inconvenient).
To see what equations would replace them, observe that COS and COS◦

differ by scaling the domain. Precisely,

COS (π ·Θ/180) = COS◦Θ for all Θ ∈ R,

since Θ degrees is the same angle as π · Θ/180 radians. From this
equation, it is easy to check that

(COS◦)′ = − π

180
SIN◦.

This equation is at best aesthetically unpleasing, as it builds an arbi-
trary number (namely 180) into a fundamental trigonometric relation.

Exercises

Exercise 13.1 Mimic the construction of sin in detail to construct cos.
The only difference is in the initial conditions. �
Exercise 13.2 Use termwise differentiation to give an alternative proof
that sin′ = cos and cos′ = − sin. �
Exercise 13.3 Prove that lim

x→0

1− cosx

x2
=

1

2
, both with l’Hôpital’s

rule and using power series. �

Exercise 13.4 Evaluate lim
x→0

∫ x2

0

1− cost
x6

dt �

Exercise 13.5 Prove that sec′ = sec · tan (don’t forget to show the
domains are the same). �
Exercise 13.6 Use the identity sec2 = 1 + tan2 to prove (13.19).
�
Exercise 13.7 Establish the identities:



13.4. GEOMETRIC DEFINITIONS 395

(a) tan(x+ y) =
tanx+ tan y

1− tanx tan y

(b) cot 2x = 1
2
(cotx− tanx)

For each, determine the set of x and y for which the identity holds.
�
Exercise 13.8 Using the results of this chapter, evaluate the following:

(a) sin π
4
, cos π

4
, sec π

4
, tan π

4
.

(b) sin π
6
, cos π

6
, sec π

6
, tan π

6
.

(c) sin π
3
, cos π

3
, sec π

3
, tan π

3
.

(d) sin π
8
, cos π

8

Your answers should involve only square roots and rational numbers.
�
Exercise 13.9 Let 0 < x < 1, and let θ = Sin−1x:

x

√
1− x2

1

θ

It follows immediately that cos θ =
√

1− x2,

sec θ =
1√

1− x2
, tan θ =

x√
1− x2

, cot θ =

√
1− x2

x
.

Similarly, find cosTan−1x, secTan−1x, and sinTan−1x. �
Exercise 13.10 Verify equation (13.13). �
Exercise 13.11 Verify equation (13.23). �
Exercise 13.12 As part of an industrial process, a thin circular plate
of metal is spun about its axis while partially submerged in a vat of
polymer. The horizontal view along the axis is shown:
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d

R

If the wheel has radius R, find the depth d that maximizes the amount
of polymer exposed to the air (shaded). �

The following multi-part exercise presents Ivan Niven’s proof that π2

is irrational. It follows that π itself is irrational.
Exercise 13.13 Define fn : [0, 1]→ R by

fn(x) =
xn(1− x)n

n!
.

Prove each of the following assertions.

(a) If 0 < x < 1, then 0 < fn(x) < 1
n!
.

(b) The derivatives f (k)
n (0) and f (k)

n (1) are integers for all k ∈ N.

Assume π2 = p/q in lowest terms, and let

Fn(x) = qn
n∑
k=0

(−1)kf (2k)
n (x)π2n−2k.

(c) Fn(0) and Fn(1) are integers.

(d) π2pnfn(x) sinπx =
d

dx
(F ′n(x) sinπx− πFn(x) cosπx).

(e) Fn(1) + Fn(0) = πpn
∫ 1

0

fn(x) sinπx dx.

(f) Take n� 1 to deduce that 0 < Fn(0) + Fn(1) < 1.

In short, if π2 is rational, then there is an integer between 0 and 1.
�



Chapter 14

Taylor Approximation

Armed with a collection of powerful mathematical tools (the mean
value theorem, the fundamental theorems of calculus, and power se-
ries) and a rich library of examples (algebraic, exponential, logarith-
mic, and trigonometric functions), we turn to systematic investigation
of calculational issues.

14.1 Numerical Approximation
You have probably learned from an early age that mathematics is “an
exact science” and that problems have one right answer. Ironically,
this impression is reinforced by electronic calculators, which evaluate
many common functions to 8 decimal places (or more) at the push of
a button. As mentioned in Chapter 2, no numerical answer returned
by a calculator can be irrational, so most calculator results are only
approximate. Sometimes lip service is paid to this fact by writing,
for example, e = 2.71828 . . . or e ' 2.71828, with little explanation
of what the ellipsis or the squiggly equal sign mean. Some questions
should come to mind immediately:

• How are constants like
√

2, e, and π defined if not as infinite
decimals?

• What does it mean when a calculator returns a numerical value
for a possibly irrational number?

• How does a calculator know the value to return? (Or “How did the
person who programmed the calculator know?”, to push things a
step further back.)

397
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You already know the answer to the first question (either that or it’s
time to re-read Chapters 5, 12, and 13!). The second question is an-
swered by the A-notation of Chapter 2, which we review briefly. The
third question occupies the remainder of the chapter.

When a calculator says e = 2.71828, it really means “The value of e
rounded to five decimal places is 2.71828,” which in turn means (by
convention) that 2.718275 ≤ e < 2.718285, or (essentially) that

(14.1) e = 2.71828 + A(0.5× 10−5).

A rounded-off answer represents a limitation of knowledge; it asserts
that the number in question lies within a certain interval of real num-
bers. Each additional decimal place corresponds to an interval that is
one-tenth as long, so more decimals mean more information:

e = 2.718 281 828 459 045 + A(0.5× 10−15).

Conversely, an approximation must be known about ten times more ac-
curately to garner a single additional decimal place. It is not difficult to
see why engineers and scientists are generally happy with 4 decimals of
accuracy, and why 9 or 10 decimals are roughly the limits of measure-
ment. For example, the distance to the moon is roughly 238,000 miles,
or about 1.508 × 1010 inches. Using mirrors left by the Apollo astro-
nauts to reflect lasers, scientists can measure the distance to the moon1

to an accuracy of about 6 inches, which is just 9 decimals. An accuracy
of 20 decimals would correspond to an experimental error on the order
of one atomic diameter, and an accuracy of 50 decimals in this context
is physically meaningless, because very small distances are not well-
modeled by real numbers, but instead are subject to the consequences
of quantum mechanics.

By contrast, a pure mathematician is unlikely to feel satisfied un-
less arbitrarily many decimals can be found; anything less is subject
to uncertainty. A spectacular example is the number discovered by
C. Hermite2 in 1859, whose numerical value is

x0 := eπ
√

163 = 262, 537, 412, 640, 768, 744 + A(10−12).

Is x0 exactly an integer? The numerical evidence is overwhelming:
The error term is ±0.000 000 000 000 . . ., so x0 is an integer to one

1Really, the distance from a laser in a telescope to a mirror on the moon!
2air MEET
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part in 1030, an accuracy absolutely unattainable in scientific measure-
ment. However, such “reasoning” is wishful thinking; indeed, such coin-
cidences must happen in many situations. The error term is not zero,
but A(0.75×10−12)! Mathematicians are sometimes regarded as pedan-
tic by experimental scientists (“They make you prove things that are
obvious.”), but mathematicians’ skepticism is not gratuitous.

Even scientists and applied mathematicians have a vested inter-
est in “mathematical precision”, because numerical errors tend to grow
rapidly in calculations, with a fixed number of decimals of accuracy
lost at each multiplication. Many a student, when asked to evaluate
e10 log 2, will first round off the logarithm, log 2 ' 0.693 (to 3 decimals),
then multiply by 10 and exponentiate, obtaining e10 log 2 ' 1022.494.
However, properties of exponentials and logarithms imply that the ex-
act value is 210 = 1024. This example shows the loss of accuracy in
a single step; even a simplified word problem may have three or four
steps of this type, and careless or premature use of numerical constants
can lead to a drastically wrong answer. Unfortunately, calculators have
fostered the bad habit of plugging in numbers at the start of a calcula-
tion. A theoretical scientist or mathematician must be a fluent symbolic
calculator, but even if you aspire to be successful as an experimental
scientist, you must cultivate the ability to calculate symbolically.

These considerations explain mathematicians’ insistence on proce-
dural definitions of constants like e and π (the definitions are precise
and can be turned into computational algorithms yielding arbitrary
accuracy), rather than on numerical “specifications” (such as “π '
3.141 592 653 589 793 . . .”) which are not mathematical definitions at all.

To mathematicians, “evaluating” a numerical quantity usually means
finding an expression that gives the exact value in terms of elementary
functions and well-known transcendental constants. For example, the
number π is defined to be 1/2 the period of cos, while

∞∑
k=1

1

k2
= 1 +

1

4
+

1

9
+

1

16
+ · · ·

is defined to be the limit of the sequence of partial sums. We are
unlikely to be able to evaluate a given infinite sum exactly, even if we
can prove the sum exists. Of course, the sum can be evaluated with
arbitrary numerical precision, which is partially satisfactory, but on
this basis no mathematician would say the sum has been “evaluated.”
A very different state of affairs results if, say, the sum is shown to



400 CHAPTER 14. TAYLOR APPROXIMATION

be equal to π2/6 (as it turns out to be in the above example), for in
this case the exact value of the sum is known in terms of π, and π is
as familiar and ubiquitous mathematically as an integer. Numerically
such information is helpful because a numerical approximation of π
allows the sum to be approximated without any hard work. Such gems
as result from exact evaluation of a series or integral often shed light
on a hidden phenomenon, and are therefore important beyond their
intrinsic beauty.

14.2 Function Approximation
The discussion above carries over to functions. In analogy to equa-
tion (14.1), we hope to find expressions such as

(14.2) ex =

( n∑
k=0

xk

k!

)
︸ ︷︷ ︸

estimate

+A

(
3|x|n+1

(n+ 1)!

)
︸ ︷︷ ︸

error

for |x| ≤ 1.

In this equation, ex is the number we wish to approximate. The first
term on the right is our estimate of ex, while the second term, the error
term, is an upper bound on the difference between ex and the estimate,
and measures the accuracy of the estimate. The crucial feature of equa-
tion (14.2) is that the estimate and error are polynomials in x, which
may be evaluated numerically using nothing but arithmetic operations.
Taking x = 1 and n = 6 gives

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+ A

(
3

7!

)
,

or e = 2.718 +A(0.0006). For greater accuracy, we would take a larger
choice of n. An equation like (14.2) encapsulates infinitely many nu-
merical conditions (one for each x), and is of obvious computational
interest.

The aim of this section is to establish estimates analogous to (14.2)
for functions that possess sufficiently many derivatives. The strategy
is to approximate a function f near a point x0 by choosing a Taylor
polynomial pn of degree at most n that “matches” f and its derivatives
up to order n at x0. When n = 1 this strategy yields the tangent line,
a linear function whose derivative is f ′(x0). Our aim is threefold:

• Give an effective computational procedure for finding pn.
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• Show that in an appropriate sense pn is the “best approximating
polynomial” of degree at most n.

• Find an effective computational bound on the error term.

Once these issues are resolved, the question, “How does a calculator
know what numerical value to return?” is very nearly answered: The
calculator is programmed with an algorithm for evaluating the Tay-
lor polynomials of common functions, and returns a value that differs
from the actual (mathematical) value by less than 0.5 × 10−8 (say).
Taylor polynomials reduce the calculation of ex or cosx to addition,
subtraction, multiplication, and division. The arithmetic operations
themselves are performed by the floating point unit (FPU), a circuit
that operates at a level only slightly higher than the level at which we
constructed the integers in Chapter 2.

Taylor Polynomials

Let f be a function that is defined on some open interval containing
x0 ∈ R, and assume that f is N times differentiable for some positive
integer N . We will construct a sequence {pn}Nn=0 of polynomials such
that

(i) For each n, the polynomial pn has degree at most n.

(ii) For 0 ≤ k ≤ n, the derivatives f (k)(x0) and p(k)
n (x0) agree.

The sequence is uniquely specified by these two properties (as we shall
see), and is called the sequence of Taylor polynomials of f at x0 up
to degree N . It turns out that the difference between pn and pn−1 is
a monomial of degree n, so pN immediately determines every Taylor
polynomial pk with k < N . In practice, this means that we needn’t
write down the entire sequence, but only the polynomial pN .
Remark 14.1 A Taylor polynomial pn depends upon the function f ,
the “center” point x0, and the degree n, but the function and center
point are omitted to simplify the notation when they are clear from
context. In applications, the center is usually 0, but it is theoretically
useful to allow x0 to be arbitrary. When necessary, the Taylor polyno-
mial centered at x0 is denoted pn,x0 . �

To find the coefficients of a Taylor polynomial, we expand in powers
of (x− x0) rather than in powers of x. Let f be n times differentiable
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on a neighborhood of x0, and write

pn(x) =
n∑
j=0

aj(x− x0)j

with {aj}nj=0 unknown; the expression on the right is the general poly-
nomial of degree at most n, as stipulated by condition (i). Next we
equate coefficients, as in (ii).

Lemma 14.2. With pn as above, p(k)
n (x0) = f (k)(x0) iff ak =

f (k)(x0)

k!
.

Proof. We compute p(k)
n (x0) in terms of the coefficients of pn by tallying

up the contributions from the summands,

(∗) dk

dxk

∣∣∣∣
x=x0

aj(x− x0)j.

If j < k, the derivative is identically zero (each differentiation lowers the
exponent by 1), while if j > k the kth derivative is divisible by (x−x0),
and therefore vanishes at x0. (See also Example 14.6.) The only non-
trivial contribution to (∗) comes from the term with j = k; it is left to
you to prove inductively that

(∗∗) dk

dxk

∣∣∣∣
x=x0

ak(x− x0)k = k! ak.

Thus p(k)
n (x0) = k! ak. The lemma follows immediately.

According to the lemma, Property (ii) is satisfied (the derivatives
of pn and f agree up to order n) iff

(14.3) pn(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k.

This is the simple formula we seek. As long as we can calculate deriva-
tives of f and evaluate them at x0, we have an explicit representation
of the Taylor polynomials.

The difference between consecutive Taylor polynomials is

pn(x)− pn−1(x) =
f (n)(x0)

n!
(x− x0)n,
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a monomial of degree n. This establishes the prior claim that each
Taylor polynomial pn “contains” all the polynomials pk with k < n. To
obtain pk from pn, simply drop all the terms of degree greater than k.
To obtain pn from pn−1, we need only add a monomial (possibly zero)
in degree n.
Remark 14.3 In Chapter 11, we saw that an arbitrary continuous
function is uniformly approximated by polynomials on every closed,
bounded interval. However, such an approximating sequence generally
does not have the property that pn and pn−1 differ by a monomial
at all. What we gain in generality is paid for with loss of simplicity:
Weierstrass polynomials require no differentiability assumptions, but
knowledge of pn does not tell us anything about pk with k < n. �

Example 14.4 (The exponential function) Because exp(k)(x) = exp x
for all positive integers k, exp(k)(0) = 1 for all k, so the Taylor polyno-
mials of exp at 0 are

pn(x) =
n∑
k=0

xk

k!
.

The Taylor polynomials are exactly the partial sums of the power series
of exp, given by Theorem 12.7. This is a general feature of real-analytic
functions, see Corollary 14.11. �

Example 14.5 (The circular trig functions) The elementary trig func-
tions sin and cos have Taylor polynomials that are easy to calculate from
the definition.3 As for exp, the Taylor polynomials are truncations of
the power series. For example, the degree 2n + 1 Taylor polynomial
of sin is

p2n+1(x) =
n∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

In this example, the Taylor polynomial of degree 2n+ 2 is equal to the
Taylor polynomial of degree 2n+1 because the even terms of the power
series are zero. �

Example 14.6 (Power functions) Fix a ∈ R and a positive integer N ,
and consider the polynomial f(x) = (x−a)N . Successive differentiation
gives

f ′(x) = N(x− a)N−1

f ′′(x) = N(N − 1)(x− a)N−2

3The other trig functions do not, as it turns out.
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and generally

f (k)(x) = N(N − 1) · · · (N − k + 1)(x− a)N−k

=
N !

(N − k)!
(x− a)N−k for k = 0, . . . , N.

Substituting into (14.3) gives the Taylor polynomial at x0 = 0:

pn(x) =
n∑
k=0

(
N

k

)
(−a)N−kxk, n = 0, . . . , N.

When n = N , the right-hand side is (x− a)N by the binomial theorem,
and this remains true for n ≥ N because the higher derivatives of f
vanish. It is no accident that the Nth-degree Taylor polynomial of the
Nth degree polynomial f turned out to be f itself, see Theorem 14.9
below. �

Example 14.7 (The binomial series) Let α be a real number that is
not a non-negative integer, and define f(x) = (1 + x)α for x > −1.
The function f is infinitely differentiable at 0, and as in the previous
example,

f (k)(x) = α(α− 1) · · · (α− k + 1)(1 + x)α−k for x > −1.

The nth degree Taylor polynomial of f at 0 is

(14.4) pn(x) =
n∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk;

the coefficient of xk is completely analogous to the combinatorial bi-
nomial coefficient,4 and is therefore read “α choose k” for general α.
Three cases deserve further mention:

• α = −1. In this case, f(x) = (1 + x)−1 = 1/(1 + x), and the
coefficient of xk is

(
(−1)(−2)(−3) · · · (−k)

)
/k! = (−1)k, so

pn(x) = 1− x+ x2 − x3 + · · ·+ (−x)n.

4That is, if α were a non-negative integer, then the coefficient of xk would be a
combinatorial binomial coefficient.
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• α = 1/2. In this case, f(x) =
√

1 + x, and the coefficient of xk is

(1/2)(−1/2)(−3/2)(−5/2) · · · ((3− 2k)/2
)

k!
= (−1)k−1 (2k − 3)!!

2k k!
,

so the Taylor polynomial is

pn(x) = 1 +
x

2
− x2

8
+
x3

16
− 5x4

128
+ · · · − (2n− 3)!!

2n n!
(−x)n.

• α = −1/2. Here, f(x) = (1 + x)−1/2 = 1/
√

1 + x, and the coeffi-
cient of xk is

(−1/2)(−3/2)(−5/2) · · · ((1− 2k)/2
)

k!
= (−1)k

(2k − 1)!!

2k k!
;

the Taylor polynomial is

pn(x) = 1− x

2
+

3x2

8
− 5x3

16
+

35x4

128
− · · ·+ (2n− 1)!!

(2n)!!
(−x)n.

When the exponent α is a non-negative integer (so the power function
is a polynomial of degree α), the Taylor polynomials “stabilize” in de-
gree α; otherwise, we get an infinite sequence of distinct polynomials.
�

In the previous examples, the Taylor polynomials were found di-
rectly from the definition. There are situations in which a direct ap-
proach is not feasible, and subterfuge is required. You should not get
the impression that a Taylor polynomial must be computed from the
definition; see Corollary 14.10.

Order of Contact

Let f and g be functions defined on some neighborhood of x0. Recall
that big-O and little-o notation give a measure of how close f and g are.
Let φ be a function defined on some neighborhood of x0, and let n be
a positive integer. We say φ = O(|x−x0|n) if there exists a constant C
and a δ > 0 such that

|φ(x)| ≤ C|x− x0|n for |x− x0| < δ.

We say φ = o(|x− x0|n) if

lim
x→x0

φ(x)

(x− x0)n
= 0.
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Clearly

φ = o(|x− x0|n) =⇒ φ = O(|x− x0|n) =⇒ φ = o(|x− x0|n−1).

Neither implication is reversible in general: |x|2 is O(|x|2) but not
o(|x|2), while |x|3/2 is o(|x|) but not O(|x|2).

Two n-times differentiable functions f and g are equal to order n
at x0 if f − g = o(|x− x0|n), namely if

lim
x→x0

f(x)− g(x)

(x− x0)n
= 0.

Sometimes one says the graphs of f and g have order-n contact at x0

in this situation. Order-0 contact means the graphs cross, while order-
1 contact means the graphs are tangent. Higher order of contact is
regarded as “higher-order tangency.”

We next quantify the claim that the degree n Taylor polynomial
of an n-times differentiable function f is the “best” approximation. In
words, the next two theorems assert that f and pn,x0 have order-n
contact at x0, and the Taylor polynomial is the only polynomial of
degree at most n that has this property.

Theorem 14.8. If f is C n near x0, then f − pn,x0 = o
(|x− x0|n

)
.

Proof. Because the kth derivatives of f and pn are continuous and agree
at x0 for k ≤ n, we may apply l’Hôpital’s rule n times:

lim
x→x0

f(x)− pn,x0(x)

(x− x0)n
= lim

x→x0

f (n)(x)− p(n)
n,x0(x)

n!
= 0,

which completes the proof.

Theorem 14.9. If p and q are polynomials of degree at most n, and if
p− q is o(x− x0)n for some x0, then p = q.

Proof. The hypothesis implies p−q is o(x−x0)k for k = 0, . . . , n. Write
(p− q)(x) = b0 + b1(x− x0) + · · ·+ bn(x− x0)n. Taking k = 0 implies
b0 = 0. Crossing off the first term and taking k = 1 implies b1 = 0.
Proceeding successively shows that bk = 0 for all k ≤ n, which means
p = q.

A formal proof by induction on n is straightforward, and should be pro-
vided if you are bothered by the informality of the argument. For the
record, here is the useful consequence, which may be termed “unique-
ness of Taylor polynomials.”
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Corollary 14.10. If f is n-times continuously differentiable at x0, and
if p is a polynomial having order n contact with f at x0, then p = pn,x0.

Corollary 14.11. If f is real-analytic, then the Taylor polynomial of
degree n is obtained by truncating the power series at degree n.

Proof. By Corollary 11.20,

f(x) =
∞∑
k=0

ak(x− x0)k =
n∑
k=0

ak(x− x0)k +
∞∑

k=n+1

ak(x− x0)k

=
n∑
k=0

ak(x− x0)k +O
(|x− x0|n+1

)
,

so Corollary 14.10 implies the finite sum is the Taylor polynomial.

In Chapter 3, we claimed there was an easy calculational procedure
for expanding a polynomial in powers of (x− a). As an application of
Corollary 14.10, we describe this procedure.
Example 14.12 Let p(x) =

∑n
k=0 akx

k =
∑n

k=0 bk(x− a)k. By Corol-
lary 14.10, the polynomial on the right is the degree n Taylor polyno-
mial of f at a, whose coefficients are given by bk = p(k)(a)/k!.

For example, suppose we want to write p(x) = (x + 1)4 in powers
of (x− 1). Taking a = 1, we calculate

f(x) = (x+ 1)4 f(1) = 24 = 16 b0 = f(1) = 16

f ′(x) = 4(x+ 1)3 f ′(1) = 4 · 23 = 32 b1 = f ′(1)/1! = 32

f ′′(x) = 12(x+ 1)2 f ′′(1) = 12 · 22 = 48 b2 = f ′′(1)/2! = 24

f ′′′(x) = 24(x+ 1) f ′′′(1) = 24 · 2 = 48 b3 = f ′′′(1)/3! = 8

f (4)(x) = 24 f (4)(1) = 24 b4 = f (4)(1)/4! = 1

We immediately read off

(x+ 1)4 = 16 + 32(x− 1) + 24(x− 1)2 + 8(x− 1)3 + (x− 1)4,

an identity that may be checked (laboriously) by expansion. �

Corollary 14.10 can be used to calculate Taylor polynomials indi-
rectly.
Example 14.13 Consider the problem of calculating the Taylor poly-
nomials of f = Tan−1 at x0 = 0. The direct approach is a dead end;
the first few derivatives are

f ′(x) =
1

x2 + 1
, f ′′(x) = − 2x

(x2 + 1)2
, f ′′′(x) =

6x2 − 2

(x2 + 1)3
, . . .
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and there is neither an easily discernible pattern nor a simplification
that allows the general derivative to be found. Instead, we reason as
follows. By the finite geometric sum formula, if n is a positive integer,
then

1

1 + t2
= 1− t2 + t4 − · · ·+ (−1)nt2n +

(−1)n+1t2n+1

1 + t2

=

( n∑
k=0

(−1)kt2k
)

+
(−1)n+1t2n+2

1 + t2
for all t ∈ R.

Integrating this from 0 to x gives

Tan−1x =

∫ x

0

1

1 + t2
dt =

( n∑
k=0

(−1)k
x2k+1

2k + 1

)
+

∫ x

0

(−1)n+1t2n+2

1 + t2
dt.

The term in parentheses is a polynomial of degree (2n + 1), and the
integral is the “error term” to be estimated. Now,∣∣∣∣∫ x

0

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣ ≤ ∫ |x|
0

∣∣∣∣ t2n+2

1 + t2

∣∣∣∣ dt ≤ ∫ |x|
0

∣∣t2n+2
∣∣ dt =

|x|2n+3

2n+ 3
,

which proves the error term is o(|x|2n+2). We have written Tan−1 as
the sum of a polynomial of degree (2n + 1) and an error term that is
o(|x|2n+1). By Corollary 14.10, the polynomial is the degree-(2n + 1)
Taylor polynomial of Tan−1 at 0. �

This example has a historical coda. Setting x = 1 in the preceding
discussion gives

π

4
= Tan−11 =

n∑
k=0

(−1)k
1

2k + 1
+ A

( 1

2n+ 3

)
As n increases, the absolute value of the error term decreases to 0, so

(14.5)
π

4
=
∞∑
k=0

(−1)k
1

2k + 1
= 1− 1

3
+

1

5
− 1

7
+ · · · .

Unfortunately, this remarkable equation does not furnish a good nu-
merical technique for calculating π; the error term is far too large.
To guarantee three decimal places, the error must be no larger than
0.5 × 10−3 = 1/2000. The series above does not achieve this accuracy
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until 999 terms have been summed.5 Worse, each additional decimal
place requires summing ten times as many terms. There are better
numerical techniques for calculating π even from this series, see Exer-
cise 14.13. The general idea is to use trigonometric identities to relate
known constants to the value of Tan−1 at a number of small absolute
value; the |x|2n+3 makes the error small for relatively small n.

The Remainder Term

The difference between a function f and one of its Taylor polynomials
is called a remainder term. Remember that the general problem of this
chapter is the numerical evaluation of non-rational functions, and the
strategy is to write f as a polynomial plus an error term that is easy to
estimate. “Taylor’s theorem” allows remainder terms to be estimated
systematically, provided enough information about f is known. There
are three standard expressions for a remainder, called the integral form,
the Lagrange form, and the Cauchy form. Each is useful in certain
applications; we will discuss only the integral and Lagrange forms, as
they are adequate for our purposes and easy to remember. We also do
not attempt to give the weakest differentiability hypotheses, since most
of the functions of interest to us are smooth.

Theorem 14.14. Suppose f is of class C n+1 on some neighborhood
Nδ(x0), and write Rn,x0(x) = f(x)− pn,x0(x) for |x− x0| < δ. Then

Rn,x0(x) =

∫ x

x0

f (n+1)(t)

n!
(x− t)n dt (Integral Form),

and there exists z with |z − x0| < δ such that

Rn,x0(x) =
f (n+1)(z)

(n+ 1)!
(x− x0)n+1 (Lagrange Form).

Qualitatively, if an (n + 1)-times differentiable function f is to be
approximated as accurately as possible near x0 by a polynomial of de-
gree at most n, then the best strategy is to use the Taylor polynomial
of degree n, and in this case

f(x) = pn,x0(x) +O
(|x− x0|n+1

)
.

Theorem 14.14 gives specific bounds on the constant in the O.
5We have proven only that 999 terms suffice to give 3 decimal places, but it is not

difficult to show that in this example the error term is no smaller than 1/(4n+ 6),
so at least 499 terms are needed.
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Proof. The second fundamental theorem says

P (0) : f(x) = f(x0) +

∫ x

x0

f ′(t) dt for |x− x0| < δ,

which is precisely the integral form of the remainder for n = 0. Assume
inductively that

P (n) : f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k︸ ︷︷ ︸

pn,x0 (x)

+

∫ x

x0

f (n+1)(t)

n!
(x− t)n dt︸ ︷︷ ︸

Rn,x0 (x)

Integrate the remainder term by parts, using

u(t) = f (n+1)(t) v(t) = − 1

(n+ 1)!
(x− t)n+1

u′(t) = f (n+2)(t) v′(t) =
1

n!
(x− t)n dt

Since
∫
uv′ = uv − ∫ v′u, the integral becomes

Rn,x0(x) =

∫ x

x0

f (n+1)(t)

n!
(x− t)n dt

= −f
(n+1)(t)

(n+ 1)!
(x− t)n+1

∣∣∣∣t=x
t=x0

+

∫ x

x0

f (n+2)(t)

(n+ 1)!
(x− t)n+1 dt

=
f (n+1)(x0)

(n+ 1)!
(x− x0)n+1 +

∫ x

x0

f (n+2)(t)

(n+ 1)!
(x− t)n+1 dt.

Adding to P (n) gives P (n+ 1). By induction, the integral form of the
remainder is established:

Rn,x0(x) =

∫ x

x0

f (n+1)(t)

n!
(x− t)n dt for all n ≥ 0.

To obtain the Lagrange form of the remainder, let M and m denote
the maximum and minimum of f (n+1) between x0 and x. Monotonicity
of the integral implies

m

(n+ 1)!
(x− x0)n+1 ≤ Rn,x0(x) ≤ M

(n+ 1)!
(x− x0)n+1.
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Consequently, there exists c with m ≤ c ≤M and

Rn,x0(x) =
c

(n+ 1)!
(x− x0)n+1.

By the intermediate value theorem, there exists z between x0 and x
such that c = f (n+1)(z).

For the basic elementary functions (exp, sin, and cos), Taylor’s the-
orem gives effective bounds on the error term, which in turns says
quantitatively how good a specific polynomial approximation is.
Example 14.15 Let f = exp be the natural exponential function.
Since f ′ = f , induction on k shows that |f (k)(x)| = |ex| ≤ e for all
k ∈ N and |x| ≤ 1. Example 14.4 and the Lagrange form of the
remainder imply that for all n ∈ N and |x| ≤ 1,

ex =
n∑
k=0

xk

k!
+ A

(
e |x|n+1

(n+ 1)!

)
.

We know from Exercise 7.17 of Chapter 7 that e < 3. The previous
equation immediately implies equation (14.2). See Figure 14.1 for a
geometric interpretation of these error bounds. Note that the error of
the estimate (the height of the shaded region) increases dramatically
away from x = 0.

When |x| ≤ 1, the exponential series converges rapidly; for example,
1/10! < 2.76×10−7, so using terms up to degree 9 to estimate e1/2 gives
an error smaller than

3 · (1/2)10

10!
< 8.1× 10−10.

Squaring the result gives e = (e1/2)2 to an accuracy better than 5×10−9,
or 8 decimals. �

Example 14.16 For the sine function, there are no terms of even
degree, and all derivatives are bounded by 1 in absolute value, so

|R2n+1(x)| = |R2n+2(x)| =
∣∣∣∣∫ x

0

sin(2n+3)(t)

(2n+ 2)!
(x− t)2n+2 dt

∣∣∣∣
≤
∣∣∣∣∫ x

0

(x− t)2n+2

(2n+ 2)!
dt

∣∣∣∣ ≤ |x|2n+3

(2n+ 3)!
.
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−1 0 1

1

2

3

exp
pn

pn + Rn

pn − Rn

Figure 14.1: Taylor approximation of exp on [−1, 1].

Thus

(14.6) sinx =

( n∑
k=0

(−1)k
x2k+1

(2k + 1)!

)
+ A

( |x|2n+3

(2n+ 3)!

)
.

Suppose we wish to compute sinx for x real. Because sin is 2π-periodic,
it is enough to have an accurate table for |x| ≤ π, and since sin(π−x) =
sinx for all x it is actually sufficient to have an accurate table for
0 < x ≤ π/2 and to compute π accurately. Recall that π/2 < 1.6 by a
result of Chapter 13. The error bound in Table 14.1, (1.6)2n+3/(2n+3)!,
is guaranteed by Taylor’s theorem.

As a practical matter, to calculate sinx to 5 decimal places for
arbitrary |x| ≤ π/2, it is enough to use the degree 9 Taylor poly-
nomial, while the polynomial of degree 13 gives almost 9 decimals.
To compute sinx for x outside this interval, first add or subtract an
appropriate multiple of 2π to get a number in [−π, π], then use the
relation sin(−x) = − sinx to get a number in [0, π], and finally use
sin(π−x) = sin x to get a number in [0, π/2]. These manipulations de-
pend on having an accurate value for π itself (say 20 decimals), which
is easily hard-coded into a calculator chip or computer program. It
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Degree (2n+ 2) p2n+2,0(x) Error Bound

2 x 0.683

4 x− x3

3!
0.0874

6 x− x3

3!
+
x5

5!
0.00533

8 x− x3

3!
+
x5

5!
− x7

7!
0.00019

10 x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
0.00000441

Table 14.1: Approximating sinx with Taylor polynomials.

should also be noted that for x close to 0, considerably fewer terms are
needed to get similar accuracy. For example,

sin(0.1) = (0.1)− (0.001)

6
+ error, |error| ≤ (0.1)5

5!
< 10−7;

the third-degree Taylor polynomial furnishes 6 decimals of sin(0.1). �

Example 14.17 Let f : [−1, 1)→ R be defined by f(x) = log(1−x).
The Taylor polynomials may be found either directly (Exercise 14.5),
or by the same trick that was used for Tan−1:

f ′(x) = − 1

1− x = −
( n∑
k=0

xk
)
− xn+1

1− x,

while f(0) = 0, so

f(x) =

∫ x

0

f ′(t) dt = −
( n∑
k=0

xk+1

k + 1

)
−
∫ x

0

tn+1

1− t dt.

The error term is increasingly badly-behaved as x → 1 (as should be
expected, since f is unbounded near 1), but there is a simple estimate∣∣∣∣∫ x

0

tn+1

1− t dt
∣∣∣∣ ≤ ( 1

1− a
) |x|n+2

n+ 2
for x ≤ a < 1.
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To compute log 2, for example, we might first set a = 1/2, then compute
log 1/2 = − log 2 by evaluating the series at x = 1/2; this utilizes the
factor of (1/2)n+1 in the error bound. The “obvious” approach, setting
x = −1, gives the error bound 1/(n + 1), which decreases very slowly,
similarly to the bound in (14.5). However, setting x = −1 gives another
famous evaluation, the sum of the alternating harmonic series:

log 2 =
∞∑
k=0

(−1)k

k + 1
= 1− 1

2
+

1

3
− 1

4
+ · · ·

Note carefully that while

log(1− x) = −
∞∑
k=0

xk+1

k + 1
for −1 < x < 1,

it does not immediately follow that equality holds at x = −1, even
though the function on the left is continuous and the series on the right
is convergent at x = −1: The convergence on the right is not uniform
near x = −1. �

The Binomial Series

Let α be a real number that is not a positive integer. As calculated in
equation (14.4), the function f(x) = (1 + x)α has Taylor polynomials

pn(x) = 1 +
n∑
k=1

α(α− 1) · · · (α− k + 1)

k!
xk.

The ratio test implies that the resulting series

g(x) = 1 +
∞∑
k=1

α(α− 1) · · · (α− k + 1)

k!
xk =: 1 +

∞∑
k=1

ak x
k

has radius

lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣ = lim
k→∞

∣∣∣∣ k + 1

α− k
∣∣∣∣ = 1,

so the domain of g contains the open interval (−1, 1). Aside from
technical details similar to what we have done for exp and the circular
trig functions, this proves Newton’s binomial theorem:
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Theorem 14.18. If α is not a non-negative integer, then

(1 + x)α = 1 +
∞∑
k=1

α(α− 1) · · · (α− k + 1)

k!
xk for |x| < 1.

The remaining steps are sketched in Exercise 14.14.

Exercises

Exercise 14.1 Let a ∈ R. Compute the Taylor polynomial of exp,
using a as the center of expansion. Conclude that ex = eaex−a. �
Exercise 14.2 Use Taylor’s theorem to estimate the error in approxi-
mating cosx by the value of its degree 2n Taylor polynomial. How many
terms are needed to estimate cos 1 to 4 decimal places? �
Exercise 14.3 Find the Taylor polynomials of cosh. You should be
able to guess what they are before calculating anything. �
Exercise 14.4 Find the fourth and fifth degree Taylor polynomials
of tan directly from the definition. �
Exercise 14.5 Let f(x) = log(1 − x) for |x| < 1. Find the degree n
Taylor polynomial of f from the definition. �
Exercise 14.6 Let f(x) = log(1 + x2) for |x| < 1. Find the general
Taylor polynomial of f . You are cautioned that the direct method is
not the easiest approach. �
Exercise 14.7 Compare the Taylor polynomials pn found in Exer-
cise 14.5 with the polynomials qn found in Exercise 14.6: qn(x) =
pn(−x2). State and prove a theorem relating the Taylor polynomials of
f and g(x) = f(cx2), with c ∈ R. �
Exercise 14.8 Find the Taylor series of the following functions:

(a) f1(x) = e−x
2

(b) f2(x) = sin(x2) (c) f3(x) = cos(x2).

Suggestion: Use the previous exercise. �
Exercise 14.9 Use series products to verify that

1

1− x2
=

1

1 + x
· 1

1− x
for |x| < 1. �
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Exercise 14.10 Find the Taylor series of

tanhx =

∫ x

0

1

1− t2 dt.

For which x does the series converge? �
Exercise 14.11 Let

f(x) =

∫ x

0

e−t
2

dt.

(a) Find the Taylor series of f . For which x does the series converge?

(b) Using only the arithmetic functions on a calculator, evaluate f(1)
to 4 decimals.
Hint: How many terms of the series are needed?

(c) Prove that lim(f,+∞) exists. This question is unrelated to the
material on Taylor series. Explain carefully why series are no help
in computing an improper integral.

A function closely related to f arises in probability. �
Exercise 14.12 Use Taylor’s theorem to bound the nth remainder
term for exp. When x = 1, is this estimate better or worse than the
estimate obtained with series in Chapter 12? �
Exercise 14.13 Use tan π

6
= 1√

3
to prove that

π
√

3

6
=
∞∑
k=0

(−1)k

(2k + 1)3k

How many terms are needed to guarantee 3 decimals of accuracy? �
Exercise 14.14 This exercise outlines the proof of Theorem 14.18.
Suppose α is not a non-negative integer, and set f(x) = (1 + x)α and

g(x) = 1 +
∞∑
k=1

α(α− 1) · · · (α− k + 1)

k!
xk for |x| < 1.

(a) Use series manipulations to prove that (1 + x)g′(x) = αg(x)
on (−1, 1).

(b) Use part (a) to prove that g/f is constant on (−1, 1).
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It may help to review the uniqueness proof for exp in Chapter 12. �
Exercise 14.15 Prove that the property of being “equal to order r
at x0” is an equivalence relation on the space of smooth functions de-
fined on some neighborhood of x0. An equivalence class is called an
“r-jet” at x0. �

Translation Exercises

How well have you assimilated the language of mathematics? For ex-
ample, when you hear, “The total contribution of the terms fn becomes
negligible over the whole interval”, you should think:

Let I ⊂ R be an interval, and let (fn) be a sequence of
functions on I. For every ε > 0, there exists a positive

integer N such that
∞∑

n=N+1

|fn(x)| < ε for all x in I.

Here is your chance to match wits with Goethe:
Exercise 14.16 Translate each of the following informal phrases or
sentences into a precise, quantified statement.

• If (an) and (bn) are sequences of positive terms, and if an/bn
approaches 1/2 as n → ∞, then 0 < an < bn for n sufficiently
large.

• The function value f(x) is close to f(x0) whenever x is close to x0.

• The function f(x) = x−(1+1/x) is asymptotic to 1/x as x→∞.

• For x ' 0, 1− cosx is much smaller than x.

• Adding up sufficiently many terms an, the partial sums may be
brought as close to the sum as desired.

• Letting the widths of the inscribed rectangles approach zero, the
area under the graph of f : [a, b] → R may be approximated
arbitrarily closely.

• The terms an may be arranged arbitrarily without changing the
sum of the series.

• The terms an eventually decrease to zero.

If appropriate, identify the property or theorem. �
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Chapter 15

Elementary Functions

Recall that a function f is real-analytic at x0 if there exists a power
series with positive radius of convergence that is equal to f on some
neighborhood of x0. For every a in the interval of convergence, the
power series can be expended at a, and the radius of convergence of the
new series is positive. Therefore, a function that is analytic at a point
is analytic in an open interval.

Our library of analytic functions includes

• Algebraic functions (functions defined implicitly by a polynomial
in two variables), such as f(x) = 3

√
1 + x2/

√
3− x, which satisfies

F (x, y) = (1 + x2)2 − (3− x)3y6 = 0.

One-variable polynomials and rational functions fall into this cat-
egory.

• Exponential and logarithmic functions, and hyperbolic trig func-
tions.

• Circular trig functions.

A function that can be obtained from these families by finitely many
arithmetic operations and function compositions is said to be elemen-
tary. “Typical” elementary functions include f1(x) = log

(
x+
√
x2 − 1

)
,

f2(x) = xx = ex log x, f3(x) = ee
sin[1+

√
log(4+x2)]

.

419
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15.1 A Short Course in Complex Analysis
The circular trig functions bear a strong formal similarity to the hy-
perbolic trig functions, which are clearly related to the exponential
function. To explain the magic underlying this similarity, it is neces-
sary to work over the complex numbers, specifically to consider complex
power series and complex differentiation. To cover this material in full
detail is beyond the scope of this book, but the simpler aspects are al-
most completely analogous to definitions and theorems we have already
introduced.

Complex Arithmetic

Let a and b be real numbers. The norm of α := a+ bi ∈ C is

|α| := √αᾱ =
√
a2 + b2,

namely the distance from 0 to α. The norm function on C has prop-
erties very similar to the absolute value function on R; aside from the
obvious fact that the complex norm extends the real absolute value,
the norm is multiplicative and satisfies triangle inequalities:

Theorem 15.1. Let α and β be complex numbers. Then |αβ| = |α| |β|,
and

(15.1)
∣∣∣|α| − |β|∣∣∣ ≤ |α + β| ≤ |α|+ |β|.

These inequalities are the reverse triangle and triangle inequalities.

Proof. Write α = a + bi and β = x + yi, with a, b, x, and y real. By
definition,

αβ = (a+ bi)(x+ yi) = (ax− by) + (ay + bx)i,

so a direct calculation gives

|αβ|2 = (ax− by)2 + (ay + bx)2

= (ax)2 − 2(axby) + (by)2 + (ay)2 + 2(aybx) + (bx)2

= (a2 + b2)(x2 + y2) = |α|2 |β|2.
The triangle inequality may also be established with a brute-force cal-
culation, but it is more pleasant to use complex formalism. For all
α ∈ C, |α + ᾱ| = |2 Re α| ≤ 2|α|. In particular,

|αβ̄ + βᾱ| = |αβ̄ + αβ̄| ≤ 2|αβ̄| = 2|α| |β̄| = 2|α| |β|
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for all α, β ∈ C. Thus

|α + β|2 = (α + β)(α + β) = |α|2 + αβ̄ + βᾱ + |β|2
≤ |α|2 + 2|α| |β|+ |β|2 = (|α|+ |β|)2.

Taking square roots proves the triangle inequality for complex numbers.
The reverse triangle inequality is established by the same trick as was
used to prove the real version, Theorem 2.25.

Armed with these basic tools, we could, in principle, return to Chap-
ters 4, 8 and 11, and check that the definitions and properties of se-
quences, limits, continuity, differentiability, power series, and radius
of convergence can be made in exactly the same manner for complex-
valued functions of a complex variable, provided we interpret absolute
values as norm of complex numbers. The domain of convergence of a
power series centered at a ∈ C is a bona fide disk in the complex plane,
explaining the term “radius” of convergence.

Integration is conspicuously absent from the above list of items that
generalize immediately. The basic reason is that integration relies heav-
ily on order properties of R; partitions of intervals are defined using
the ordering, and upper and lower sums have no meaning for complex-
valued functions, since sup and inf are concepts requiring ordering.
There is a different kind of integration—“contour integration”—that
does play a central role in complex analysis, but its definition and sig-
nificance are beyond the scope of this book.

Exp and the Trig Functions

For the remainder of this section, we restrict attention to complex power
series with infinite radius of convergence. A function f : C→ C asso-
ciated to such a power series is said to be entire; the examples we have
seen so far are polynomials, exp and the hyperbolic trig functions sinh
and cosh, the circular trig functions sin and cos, and functions built
from these by adding, multiplying, and composing functions finitely
many times. The complex power series of the “basic” elementary func-
tions are identical to the real power series found earlier; the only differ-
ence is that the “variable” is allowed to be complex (and is traditionally
denoted z instead of x).
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Compare the power series of cos and cosh:

cos z =
∞∑
k=0

(−1)k
z2k

(2k)!
= 1− z2

2!
+
z4

4!
− z6

6!
+ · · ·

cosh z =
∞∑
k=0

z2k

(2k)!
= 1 +

z2

2!
+
z4

4!
+
z6

6!
+ · · ·

Both series have radius +∞, just as in the real case, so each represents
an entire function. A moment’s thought reveals that cos z = cosh(iz),
since (iz)2k = (−1)kz2k. The simple expedient of multiplying the vari-
able by i converts cosh to cos! Analogously,

sin z =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

sinh z =
∞∑
k=0

z2k+1

(2k + 1)!
= z +

z3

3!
+
z5

5!
+
z7

7!
+ · · ·

The relation between them is i sin z = sinh(iz) by similar reasoning.
Recall the the circular and hyperbolic trig functions were character-

ized as solutions of certain initial value problems. The reason for the
similarity of the differential equations that characterize these functions
should not be difficult to see. Suppose we consider the function f(z) =
sinh(kz) for some k ∈ C. Differentiating gives f ′(z) = k cosh(kz), so
f ′(0) = k, and then f ′′(z) = k2 sinh(kz); in summary,

f ′′ − k2f = 0, f(0) = 0, f ′(0) = k.

Now, suppose we take k = i; the preceding equation becomes f ′′+f = 0,
f(0) = 0, f ′(0) = i. But the characterization of sin and cos as solutions
of the equation f ′′ + f = 0 (Corollary 13.3, whose proof generalizes
immediately to the complex domain) shows that f(z) = i sin z, and
again we find that i sin z = sinh(iz). Analogous remarks are true for
cos and cosh.

If we assemble the conclusions of the preceding paragraphs, we ob-
tain an identity usually called (when z is real) de Moivre’s theorem:

Theorem 15.2. eiz = cos z + i sin z for all z ∈ C.

The special case z = π (usually written eiπ +1 = 0) is called Euler’s
formula. It is too much to say this equation has mystical significance,
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but it strikingly relates “five of the most important constants in math-
ematics.”

The proof of Theorem 15.2 is one line:

eiz = cosh(iz) + sinh(iz) = cos z + i sin z.

The same conclusion results by direct inspection of the respective power
series. This formula, from the point of view of real variables, is noth-
ing short of incredible. What does geometric growth have to do with
measuring circles? The answer is hidden in the nature of complex mul-
tiplication, as will gradually become apparent. To give one link, observe
that if x and y are real, then

eixeiy = (cosx+ i sinx)(cos y + i sin y)

= (cosx cos y − sinx sin y) + i(sinx cos y + sin y cosx)

= cos(x+ y) + i sin(x+ y) by equation (13.9)

= ei(x+y).

The addition formulas for sin and cos are nothing but the addition rule
for exponentials, extended to the complex numbers! A closely related
formula is worth emphasizing.

Corollary 15.3. If x and y are real, then ex+iy = ex cos y + iex sin y.

The Geometry of Complex Multiplication

The set of unit complex numbers, S1 := {z ∈ C | zz̄ = 1}, is geometri-
cally a circle of radius 1 centered at 0.

Proposition 15.4. Every unit complex number is of the form eit for a
unique t ∈ (−π, π].

Proof. The function γ : R → C defined by γ(t) = eit is 2π-periodic,
and has no smaller positive period. Since |eit| =

√
cos2 t+ sin2 t = 1,

the restriction of γ is an injective mapping (−π, π]→ S1.
To prove that γ|(−π,π] is surjective, recall that cos maps [0, π] bijec-

tively to [−1, 1]. If α = a + bi ∈ S1 with b ≥ 0, then there is a unique
t ∈ [0, π] with a = cos t. For this t,

b =
√

1− a2 =
√

1− cos2 t = sin t,
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so α = eit. If instead b < 0, then ᾱ = eit for a unique t ∈ (0, π), so

α = eit = cos t− i sin t = cos(−t) + i sin(−t) = e−it.

That is, α = eit for a unique t ∈ (−π, 0). Note that by periodicity,
γ maps every half-open interval of length 2π bijectively to the circle.

Every non-zero complex number z is a product of a positive real
number and a complex number of unit norm: z = |z| · (z/|z|). By
Proposition 15.4, we may write

(15.2) z = eρ · eit = eρ+it for unique ρ ∈ R and t ∈ (−π, π].

This representation is called the polar form of z; the number t is called
the argument of z, denoted arg z, and is interpreted as the angle be-
tween the positive real axis and the ray from 0 to z.

t
|z| = eρ

0

z = eρ+it

Figure 15.1: The polar form of a non-zero complex number.

Equation (15.2) immediately yields the geometric description of
complex multiplication in Figure 2.12 (page 81): If zj = eρj+itj for
j = 1, 2, then

z1z2 = (eρ1 · eit1)(eρ2 · eit2) = eρ1eρ2 · ei(t1+t2).

In words, we multiply two complex numbers by multiplying their norms
and adding their arguments. If α = eρ+it, then the mapping z 7→ αz
rotates the plane through t radians and scales by a factor of eρ. In
particular, multiplication by i = eiπ/2 rotates the plane a quarter turn
counterclockwise.

De Moivre’s formula has a beautiful geometric interpretation in
terms of complex multiplication. Recall that

ex = lim
n→∞

(
1 +

x

n

)n
for x ∈ R.
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Suppose we try to interpret this for x = iθ pure imaginary. The complex
number 1 + (iθ/n) defines a right triangle, on the left in Figure 15.2,
whose angle at the origin is very nearly θ/n. (The case θ = π is shown.)
Raising this number to the nth power corresponds geometrically to
iteratively scaling and rotating this triangle, as in the right half of
Figure 15.2. The opposite vertex of the last triangle is very nearly on
the ray making an angle of θ with the positive horizontal axis. As
n → ∞ it is geometrically apparent that the terminal point of the
sequence approaches cos θ + i sin θ, which is therefore equal to eiθ.

α = 1 + iπ
n α

αn

α = 1 + iπ
n α

αn

α = 1 + iπ
n ααn

Figure 15.2: The geometric interpretation of de Moivre’s formula.

To make this geometric argument precise, write α = 1 + (iθ/n) =
|α| · eit and note that

|α| =
√

1 + (θ/n)2 = 1+O(1/n2), t = Tan−1(θ/n) = (θ/n)+O(1/n3).

The estimates are immediate from the appropriate Taylor polynomials.
Taking the nth power, we find that

|αn| = (1 +O(1/n2)
)n
, arg(αn) = nt = θ +O(1/n2).

As n→ +∞, we have |αn| → 1 and arg(αn)→ θ, so αn → eiθ.
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The Complex Logarithm

Recall that C× denotes the set of non-zero complex numbers, which
is an Abelian group under complex multiplication. Every w in C× is
uniquely written as ez = eρ+it for ρ real and t ∈ (−π, π]. The principle
branch of the logarithm is the mapping Log : C× → C defined by

(15.3) Logw = z = ρ+ it, −π < t ≤ π.

The image of Log is a horizontal strip of height 2π, the fundamental
strip, see Figure 15.3. Points on the negative real axis in C× correspond
to points with t = π in the figure.

If w ∈ C×, then exp(Logw) = w. By contrast, if z ∈ C, then in
general Log(exp z) = z is false; the left-hand side has imaginary part
in (−π, π] for all z, so if z does not lie in the fundamental strip, the two
sides cannot be equal. Instead, for each z there is a unique integer k
such that z − 2πik has imaginary part in (−π, π], and Log(exp z) =
z − 2πik for this k.

π

−π

3π

−3π

z + 2πi

z

z − 2πi

z − 4πi

Figure 15.3: The complex logarithm as a mapping.

The complex exponential function is periodic: ez+2πi = ez for all z
in C. Thus exp cannot have an inverse function; the best we can hope
for is to restrict exp to a set on which it is bijective. The fundamental
strip is just such a set. As indicated in Figure 15.3, there are infinitely
many “period strips”, each corresponding to a branch of logarithm. The
points shown all map to the same w under exp, and a branch of Log
selects one such point as a function of w.

There is a more subtle issue with invertibility of exp. Consider
the sequence (zn) defined by zn = (−π + 1

n
)i. Each term lies in the
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fundamental strip, but the limit, −πi, does not. If we apply exp to this
sequence and then Log, we find that

Log(exp zn) = zn, but Log
(
exp(−πi)) = πi;

the principle branch of the logarithm is discontinuous. It is easy to see
geometrically that the trouble occurs precisely along the negative real
axis in the w plane, which is the image of the line Im z = π, the top edge
of the fundamental strip. As the point w moves “continuously” across
the negative real axis, the point z = Logw moves “discontinuously”
between the top and bottom edges of the fundamental strip.

This discussion is a little informal, since we have not precisely de-
fined the concept of “continuity” for functions of a complex variable.
However, it should be plausible that there does not exist a continuous
branch of logarithm on C×. This basic fact is at the origin of varied and
subtle phenomena throughout mathematics and physics. Exercise 15.1
gives a whimsical (if mathematically apt) example.

Complex Polynomials

In Chapter 5 we saw that every positive real number has a unique
nth root for each positive integer n, and that every polynomial of odd
degree has a real root. In this section, we will see how beautifully simple
the analogous questions become over the field of complex numbers.

Roots of Complex Numbers

Let w be complex, and let n be a positive integer. An nth root of w is a
complex number z satisfying zn = w. There are at most n solutions z of
the polynomial equation zn−w = 0, so if we are able to find n distinct
nth roots, we have a complete list.

If zn − w = 0 is written out using the real and imaginary parts
of z and w, the result is too complicated to yield any obvious insight.
However, writing z = |z|eit and w = |w|eiθ immediately yields n distinct
roots when w 6= 0. Two numbers in polar form are equal iff they have
the same norm and their arguments differ by an integer multiple of 2πi.
Consequently, zn = w iff

|z| = |w|1/n, t = 1
n
(θ + 2πik), k = 0, . . . , n− 1.

The first is an equation of positive real numbers that we know has a
unique solution. The second is an explicit way of listing solutions of
nt− θ = 2πik such that the numbers eit are distinct.



428 CHAPTER 15. ELEMENTARY FUNCTIONS

Even the case w = 1 is interesting. The numbers e2πik/n, 0 ≤ k < n,
are called nth roots of unity, since (e2πik/n)n = e2πik = 1. It is not
uncommon to write ζn := e2πi/n, so that the nth roots of unity are
powers of ζn. Each root of unity is a unit complex number (i.e., has
norm 1), and the angle between consecutive roots is 1/nth of a turn.
These points therefore lie at the vertices of a regular n-gon inscribed in
the unit circle:

ζn

ζn−1
n = ζ̄n

ζn
n = 1

Figure 15.4: The nth roots of unity.

For a general non-zero w, if z is a particular nth root, then the other
roots are zζkn for 0 ≤ k < n; in particular, the nth roots of w also lie
at the vertices of a regular n-gon, inscribed in a circle of radius |w|1/n.
The n roots of 0 are all 0, but in a meaningful sense there are still n of
them!

The Fundamental Theorem of Algebra

The polynomial p(z) = zn−w factors completely over C: If z1, . . . , zn
are the nth roots of w, then

zn − w =
n∏
k=1

(z − zk).

This property is a special case of the fundamental theorem of algebra:

Theorem 15.5. Let p : C→ C be a non-constant polynomial function
with complex coefficients. Then there exists a z0 ∈ C with p(z0) = 0.
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Informally, every complex polynomial has a root. Recall that by
Corollary 3.7, a root of a polynomial corresponds to a linear factor:
p(z0) = 0 iff (z − z0) divides p. Repeated application of Theorem 15.5
implies that every non-constant polynomial factors completely into lin-
ear factors.

Unfortunately, a complete proof requires a technique we have not
fully developed, but the sketch presented here should give an idea of
what is involved.

Proof. Assuming as usual that the top coefficient an is non-zero, write

p(z) =
n∑
k=0

akz
k = anz

n
(
1 +O(1/z)

)
.

Taking absolute values, |p(z)| = |an| · |z|n
(
1+O(1/|z|)) near |z| = +∞:

A polynomial goes to +∞ in absolute value as |z| → +∞.
Consider a0 = p(0); by the previous paragraph, there exists a real

number R > 0 such that |p(z)| > |a0| for |z| > R. Since |p| : C→ R is
continuous, the restriction to the disk DR := {z ∈ C : |z| ≤ R} has an
absolute minimum at some z0 ∈ DR by a generalization of the extreme
value theorem.1 The point z0 is an absolute minimum for |p| on all
of C, since by choice of R we have |p(z)| > |p(0)| ≥ |p(z0)| for |z| > R.
If we can prove that |p(z0)| = 0, we are done.

Expand p in powers of (z − z0) = reit. Letting b` be the coefficient
of the lowest-degree non-constant term, we have

p(z) =
n∑
k=0

bk(z − z0)k = b0 + b`(z − z0)`
(
1 +O(z − z0)

)
.

Now, if b0 6= 0, then

|p(z0 + reit)| = |b0| ·
∣∣∣1 +

b`
b0

r`ei`t
(
1 +O(r)

)∣∣∣.
Choose r � 1 such that r`

(
1 + O(r)

)
> 0, then choose t so that

(b`/b0)ei`t is real and negative. (Writing b`/b0 in polar form shows this
is possible.) The previous equation implies |p(z0+reit)| < |b0| = |p(z0)|,
contrary to the fact that z0 was an absolute minimum of |p|. It must
be that p(z0) = 0.

1This is the only step we fail to justify substantially. The crucial properties of
the disk are that is is a bounded subset of the plane that contains all its limit points.
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The fundamental theorem of algebra has interesting consequences
for polynomials with real coefficients.

Corollary 15.6. Let p : C→ C be a polynomial with real coefficients.
Then z0 ∈ C is a root iff z̄0 is. Further, p factors over the reals into
linear and irreducible quadratic terms.

Proof. Recall that a complex number α is real iff ᾱ = α and that
conjugation commutes with addition and multiplication in the sense
of (2.16). Let p(z) =

∑
k akz

k with ak real for all k. Then

p(z̄) =
∑
k

akz̄
k =

∑
k

akzk =
∑
k

akzk = p(z).

In particular, p(z0) = 0, then p(z̄0) = p(z0) = 0. Since conjugating
twice is the identity map, the first claim is proven.

For the second, use the fundamental theorem to factor p into linear
terms (with complex coefficients), then group the terms corresponding
to conjugate roots. For all α ∈ C,

(z − α)(z − ᾱ) = z2 − 2 Reα + |α|2

has real coefficients, so p is written as a product of real and irreducible
quadratic factors with real coefficients.

Example 15.7 Let p(z) = z4 + 1. The roots of p are the fourth roots
of −1, which are 8th roots of 1 that are not square or fourth roots of 1:

eπi/4 =
√

2
2

(1 + i)e3πi/4 =
√

2
2

(−1 + i)

e5πi/4 =
√

2
2

(−1− i) e7πi/4 =
√

2
2

(1− i)

Multiplying the corresponding terms in conjugate pairs gives

z4 + 1 = (z2 +
√

2z + 1)(z2 −
√

2z + 1).
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In hindsight, we might have written z4 + 1 = (z4 + 2z2 + 1)− 2z2 and
used the difference of squares formula to obtain the same result. Note
carefully that this polynomial has no real roots, but still factors over
the reals. �

15.2 Elementary Antidifferentiation

One of the traditional topics of calculus is the exact evaluation of def-
inite integrals in symbolic terms. This section presents several tech-
niques for calculating elementary antiderivatives, and states (without
proof) some criteria under which an elementary function fails to have
an elementary antiderivative.

Symbolic calculation of antiderivatives is fundamentally different
from symbolic calculation of derivatives. The product, quotient, chain,
and implicit differentiation rules imply that the derivative of an ele-
mentary function is also elementary, and together provide an effective
symbolic calculational tool for differentiating. By contrast, there does
not exist an algorithm for symbolically antidifferentiating; there are no
general formulas analogous to the product, quotient, and chain rules
for antiderivatives. Of course, if f is continuous, then

F (x) =

∫ x

a

f(t) dt

is an antiderivative of f , so every elementary function is, in a sense,
trivially antidifferentiable. However, it is a fact of life that an elemen-
tary function generally does not have an elementary antiderivative, see
Theorem 15.10 below, for example.

As computer algebra systems become universal and inexpensive,
manual ability with integration techniques will probably disappear grad-
ually, just as modern students have no need for the ability to extract
square roots or do long division on paper, thanks to electronic calcu-
lators. However, the philosophy of this book is to provide a look at
the internal workings of calculus, so at least you should be aware of
how computer integration packages work. It is a fringe benefit that
some formulas can be used to evaluate to curious improper integrals or
infinite sums.
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Notation

We shall write

F (x) =

∫ x

f or F (x) =

∫ x

f(t) dt

to indicate that F is the general antiderivative of f . This notation
merges well with the notation for “definite” integrals; the constant of
integration is absorbed in the missing lower limit, and all occurrences
of x in a single equation mean the same thing. As usual, the dummy
variable t may be replaced by any non-occurring symbol. One must
exercise caution; the expression

∫ x
f denotes not one function, but

an infinite family of functions, any two of which differ by an additive
constant. The particular antiderivative that vanishes at a is

F (x) =

∫ x

a

f(t) dt.

This observation is quite useful in practice.

Substitution

The method of substitution arises from the chain rule. Guided by The-
orem 10.5, we attempt to find a “change of variable” that simplifies the
integrand to the point where it can be antidifferentiated by inspection.
Using our notation for antiderivatives, the conclusion of Theorem 10.5
is written

(15.4)
∫ x

f
(
U(t)

)
U ′(t) dt =

∫ U(x)

f(u) du,

in which we have used the substitution u = U(t). Without dummy
variables, the preceding equation becomes∫ x

f(U)U ′ =
∫ U(x)

f.

In Leibniz notation, the dummy variables convert satisfyingly because
of the custom of writing u = u(t). Formally, we have du = du

dt
dt =

u′(t) dt, and equation (15.4) arises by (more-or-less literal) symbolic
substitution.

Several examples follow; throughout, n is a non-negative integer
and k 6= 0, α 6= −1 are real. The integrals are assumed to be taken
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over intervals on which the integrand is defined. For brevity, we give
the substitution and its differential, followed by the formula to which
it applies. Each “answer” contains an explicit additive constant.

• u = kt, du = k dt.∫ x

ekt dt =
1

k

∫ kx

eu du =
1

k
ekx + C

The same trick handles
∫ x

f(kt) dt if f is antidifferentiable.

• u = 1 + et, du = et dt.∫ x

et
√

1 + et dt =

∫ 1+ex

u1/2 du =
u3/2

3/2

∣∣∣∣∣
1+ex

=
2

3
(1 + ex)3/2 + C

• u = k + t2, du = 2t dt.

∫ x

(k+t2)αt dt =

∫ k+x2

uα
du

2
=

1

2

uα+1

α + 1

∣∣∣∣∣
k+x2

=
(k + x2)α+1

2(α + 1)
+C

• u = cos t, du = − sin t dt.∫ x

cosn t sin t dt = −
∫ cosx

un du = − un+1

n+ 1

∣∣∣∣∣
cosx

= −cosn+1 x

n+ 1
+C

• u = cos t, du = − sin t dt.∫ x sin t

cos t
dt = −

∫ cosx du

u
= − log |u|

∣∣∣cosx

= − log | cosx|+ C

or
∫ x

tan t dt = log | secx|+ C.

• The relationship between the complex exponential and the trig
functions can be used to evaluate a couple of integrals that oth-
erwise require integration by parts. Let a and b be real, and
consider∫ x

eat cos bt dt+ i

∫ x

eat sin bt dt =

∫ x

e(a+bi)t dt.
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The antiderivative formula for exp holds even for complex expo-
nents, so the integral on the right is

1

a+ bi
e(a+bi)x =

a− bi
a2 + b2

eax(cos bx+ i sin bx).

Equating real and imaginary parts, we obtain the two useful for-
mulas ∫ x

eat cos bt dt =
eax

a2 + b2
(a cos bx+ b sin bx) + C

∫ x

eat sin bt dt =
eax

a2 + b2
(a sin bx− b cos bx) + C

These functions arise in the study of damped harmonic oscillators.

The method of substitution is something of an art, and only works
on a limited set of integrands; there is a big difference between the
similar-looking integrals

(∗)
∫ x

e−t
2

dt and

∫ x

te−t
2

dt.

The general course of action is to let u be whatever is inside a radi-
cal or transcendental function, particularly if du is visibly present in
the remainder of the integrand. Sometimes an “obvious” substitution
leads to an integral requiring a further substitution; in such a case, the
same transformation can always be accomplished by a single (judicious)
substitution, namely the composition of the separate substitutions.

For both integrals in (∗), the choice u = −t2 is the natural one, but
only in the second case is the substitution immediately helpful. As it
turns out, the first integral does not have an elementary antiderivative;
informally, “e−t2 cannot be integrated in closed form.”

Trigonometric Integrals

Each of the trig functions has an elementary antiderivative. Clearly∫ x

sin θ dθ = − cosx+ C,

∫ x

cos θ dθ = sinx+ C,
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while we found the antiderivative of tan above; cot is entirely similar.
The secant function is, by comparison, difficult. For now, we merely
state the formula, which may be checked by hand:∫ x

sec θ dθ = log
∣∣ secx+ tanx

∣∣+ C.

The derivative formulas for tan and sec give useful integrals:∫ x

sec2 θ dθ = tanx+ C,

∫ x

sec θ tan θ dθ = secx+ C.

Finally, the double angle formulas

cos2 θ = 1
2
(1 + cos 2θ), sin2 θ = 1

2
(1− cos 2θ)

can be antidifferentiated, yielding∫ x

cos2 θ dθ = 1
4
(2x+ sin 2θ) +C,

∫ x
sin2 θ dθ = 1

4
(2x− sin 2θ) +C.

Integration by Parts

Integration by parts is the analogue of the product rule for differen-
tiation. In Leibniz notation, if u and v are differentiable functions,
then

d(uv) = u dv + v du, or u dv = d(uv)− v du.
If the derivatives are continuous, that is, if u and v are C 1 functions
on [a, b], then the previous equation may be integrated, yielding the
integration by parts formula:

(15.5)
∫ b

a

uv′ = (uv)
∣∣∣b
a
−
∫ b

a

vu′.

In order to apply integration by parts, the integrand in question must
be written as a product of two functions, u and v′, such that u′ is
easy to calculate, v is easy to find, and vu′ can be antidifferentiated
more easily that uv′. These are stringent requirements, but there are
classes of functions for which integration by parts works well. There is
an additional art in choosing u and v′. As above, example is the best
illustrator.
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• u = t and dv = sin t dt, so du = dt and v = − cos t.∫ x

t sin t dt = −t cos t
∣∣∣x +

∫ x

cos t dt = sinx− x cosx+ C.

Analogous choices of u and v′ handle the integrands t cos t dt and
tet dt. If higher powers of t are involved, integration by parts
yields a recursion formula. Taking u to be a power of t and dv to
be a trig function,∫ x

tn sin t dt = −tn cos t
∣∣∣x + n

∫ x

tn−1 cos t dt

=
(−tn cos t+ ntn−1 sin t

)∣∣∣x − n(n− 1)

∫ x

tn−2 sin t dt

=
(−xn cosx+ nxn−1 sinx

)− n(n− 1)

∫ x

tn−2 sin t dt

This formula can be applied recursively without further work.

• u = log t, dv = tn dt.∫ x

tn log t dt =
1

n+ 1
tn+1 log t

∣∣∣x − 1

n+ 1

∫ x

tn dt

=
xn+1

(n+ 1)2

(
(n+ 1) log x− 1

)
Integration by parts can be used to express an integral in terms of

itself in a non-trivial way. The next two examples and Exercise 15.4
are typical.

• u = sinn−1 t, dv = sin t dt,∫ x

sinn t dt = − cosx sinn−1 x+ (n− 1)

∫ x

sinn−2 t cos2 t dt

= − cosx sinn−1 x+ (n− 1)

∫ x

sinn−2 t dt

− (n− 1)

∫ x

sinn t dt.

The unknown integral appears on both sides, and we may isolate
it algebraically:

(15.6)
∫ x

sinn t dt = − 1

n
cosx sinn−1 x+

n− 1

n

∫ x

sinn−2 t dt.

This formula reduces the integral of sinn t to the integral of sinn−2 t.
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• u = tan t, v′ = sec t tan t dt.∫ x

sec t tan2 t dt = sec t tan t
∣∣∣x − ∫ x

sec3 t dt

= sec t tan t
∣∣∣x − ∫ x

sec t(1 + tan2 t) dt

= secx tanx− log
∣∣ secx+ tanx

∣∣− ∫ x

sec t tan2 t dt.

Solving for the unknown integral,∫ x

sec t tan2 t dt =
1

2

(
secx tanx− log

∣∣ secx+ tanx
∣∣)+ C.

Trigonometric Substitution

The identity cos2 θ+sin2 θ = 1 and its variant 1+tan2 θ = sec2 θ can be
used to antidifferentiate many functions containing square roots. Let
a > 0.

Integrand Contains Substitution Identity Utilized
√
a2 − x2 x = a sin θ 1− sin2 θ = cos2 θ
√
a2 + x2 x = a tan θ 1 + tan2 θ = sec2 θ
√
x2 − a2 x = a sec θ sec2 θ − 1 = tan2 θ

It is equally possible to use the identities cosh2 t − sinh2 t = 1 and
1 − tanh2 t = sech2 t for these integrands if there is some reason to
express the result in exponential form rather than trigonometric form.

Perusal of Chapter 13 will reveal that the following formulas are
essentially definitions:∫ x dt√

a2 − t2 = Sin−1x

a
+ C

∫ x dt

a2 + t2
=

1

a
Tan−1x

a
+ C

∫ x dt

t
√
t2 − a2

=
1

a
Sec−1x

a
+ C

Other integrals are transformed into a form we have found already.
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• t = a sin θ, dt = a cos θ dθ.∫ x(√
a2 − t2)n dt = an−1

∫ Sin−1(x/a)

cosn+1 θ dθ.

This is handled with a reduction formula.

• t = a tan θ, dt = a sec2 θ dθ.∫ x√
a2 + t2 dt = a2

∫ Sec−1(x/a)

sec3 θ dθ

= a2

∫ Sec−1(x/a)

sec θ(1 + tan2 θ) dθ

=
a2

2

(
sec θ tan θ + log

∣∣ sec θ + tan θ
∣∣)∣∣∣∣Sec−1(x/a)

=
a

2

(
x
√
x2 − a2 + a log

∣∣x+
√
x2 − a2

∣∣)+ C.

The details are left to you, Exercise 15.5.

When converting back to the original variable after a trig substitution,
the “right triangle trick” of Exercise 13.9 is helpful.

Partial Fractions

Every rational function with real coefficients can be written as a sum of
terms of a certain standard form. This standard form, called a partial
fractions decomposition, will be introduced in stages. Concretely, we
wish to systematize identities such as

1

1− x2
=

1

2

(
1

1− x +
1

1 + x

)
,

x

1− x2
=

1

2

(
1

1− x −
1

1 + x

)
,

or
2 + 2x+ 4x2 + x3 + x4

(1 + x2)2(1 + x)
=

x

(1 + x2)2
+

1

1 + x2
+

1

1 + x
.

Each term of a partial fractions decomposition is either a polyno-
mial, or else a rational function whose denominator is a power of either
a linear or an irreducible quadratic polynomial and whose numerator
is a polynomial of degree less than the degree of the factor in the de-
nominator. Symbolically, a partial fractions summand is of the form

b

(x− c)k , or
ax+ b

(x2 + cx+ d)k
, a, b, c, d real, c2 − 4d < 0.
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Corollary 15.6 is instrumental in proving existence of a partial fractions
decomposition: Every polynomial with real coefficients can be factored
into a product of powers of irreducible linear and quadratic polynomials
with real coefficients. By absorbing constants in the numerator, we may
assume the irreducible factors of the denominator are monic.

Imagine the problem of trying to write the specific rational function
f(x) = x/(1− x2) in partial fractions form. We will walk through the
process, then re-examine the construction in general terms. The first
step is to factor the denominator:

f(x) =
x

(1− x)(1 + x)
.

Next pick one of the irreducible factors of the denominator, say 1− x,
and look for a constant b such that(

x

(1− x)(1 + x)
− b

1− x
)

=
−b+ (1− b)x
(1− x)(1 + x)

has a finite limit at x = 1. Since the denominator vanishes at 1, the
numerator must also vanish at x = 1 if the quotient is to have a limit.
Thus 1− 2b = 0, or b = 1/2. Upon substituting this value of b into the
right-hand side and simplifying, we find that our fraction has become
simpler: The “new” denominator is a product of irreducible factors
found in the original denominator, but the exponent of the factor we
chose, 1− x in this case, has been reduced by at least one. Repeat the
process; eventually the denominator becomes 1, since each step reduces
the total degree of the denominator. In the present example, we are
finished after one step.

It should be plausible that such an argument works in general, and a
formal proof by induction on the degree of the denominator is straight-
forward. Intuitively, peeling off a partial fractions summand amounts
to subtracting off “the highest order infinity” corresponding to a fac-
tor of the denominator, leaving an infinity of lower order. In lieu of
a precise theorem (which is lengthy to state), here is a representative
example: The partial fractions decomposition theorem guarantees that
for each polynomial p of degree at most 6 (smaller than the degree of
the denominator below), there exist constants ai and bi such that

p(x)

(x2 + x+ 2)2(x− 3)3
=

a1x+ b1

(x2 + x+ 2)2
+

a2x+ b2

(x2 + x+ 2)

+
b3

(x− 3)3
+

b4

(x− 3)2
+

b5

(x− 3)
.
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The relevance to elementary integration is this: If we can show
that every partial fractions summand has an elementary antiderivative,
then we will have shown that every rational function has an elementary
antiderivative.

A term of the form b/(x− c)k has antiderivative

b

(1− k)(x− c)k−1
or b log(x− c),

according to whether k 6= 1 or k = 1. If we are willing to work with
rational functions having complex coefficients, we are done, since over C
every rational function is reduced to a sum of such terms. However, it
is desirable to find real antiderivatives of real functions, so we are forced
to consider terms of the form (ax+ b)/(x2 + cx+ d)k with c2− 4d < 0.

The first simplification is to complete the square in the denominator.
Setting u = x+ c/2, we see that x2 + cx+ d = u2 +α2 for some real α.
We are therefore reduced to antidifferentiating

au+ b

(u2 + α2)k
, or

u

(u2 + α2)k
, and

1

(u2 + α2)k
.

Note that the constants a and b are being used “generically”; they do
not necessarily stand for the same numbers from line to line.

A term of the form u/(u2 + α2)k is handled by the substitution
v = u2 + α2, dv = 2u du. A term of the form 1/(u2 + α2)k is handled
with the trig substitution u = α tan θ, which leads to∫ x du

(u2 + α2)k
=

∫ Tan−1(u/α) α sec2 θ dθ

α2k sec2k θ
= α1−2k

∫ Tan−1(u/α)

cos2k−2 θ dθ.

This integral is handled by repeated integration by parts. At last we
have tracked down all contingencies. To summarize:

Theorem 15.8. If f : (a, b) → R is a rational function, then there
exists an elementary function F : (a, b)→ R such that F ′ = f .

Note that F itself may not be rational. A further trigonometric
substitution is used to deduce the following, which roughly asserts that
“every rational function of sin and cos has an elementary antiderivative.”

Corollary 15.9. If R is a rational function of two variables, then∫ x

R(cos s, sin s) ds

is elementary.
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Proof. (Sketch) Under the substitution t = tan s
2
, we have

ds =
2 dt

t2 + 1
, cos s =

t2 − 1

t2 + 1
, sin s =

2t

t2 + 1
,

so the integrand R(cos s, sin s) ds becomes a rational function of t. One
is led to this remarkable substitution by stereographic projection:

ss/2

(cos s, sin s)

t = tan s
2

The details are left to you, Exercise 15.6.

Existence and Non-existence Theorems

As repeatedly emphasized already, antidifferentiation is an art rather
than a well-defined procedure. It is relatively difficult, even for some-
one with considerable experience, to tell at a glance whether or not a
specific elementary function can be symbolically antidifferentiated. As
you may have noticed, this section contains ad hoc techniques, dirty
tricks, and hindsight reasoning. For example, several trigonometric in-
tegrals were evaluated by examining a table of derivatives and working
backward. Other integrals are handled by trial-and-error, with various
substitutions and integrations by parts. This state of affairs repre-
sents the nature of the subject. Computers are well-suited to this kind
of “search” calculation, which at least partly explains their increasing
popularity as tools for integration.
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To complete the discussion, we state without proof two theorems re-
garding (non-)existence of elementary antiderivatives. The proofs rely
on the concept of a “differential field”, a field F equipped with a mapping
d : F → F that satisfies the formal product rule: d(ab) = a db + b da.
An example is the field of rational functions in one variable, with d the
ordinary derivative. The general idea is to study when df = g has a
solution for given g, though the details are a little involved, and re-
quire more “abstract algebra” than we have developed. We have chosen
the versions below because the statements are easy to understand, and
because they lead to well-known examples.

Theorem 15.10. Let f1 and f2 be rational functions of one variable.
If the function

g(x) = f1(x)ef2(x),

has an elementary antiderivative G, then G(x) = F (x)ef2(x) for some
rational function F .

Theorem 15.10 implies that the following are not elementary:∫ x

e−t
2

dt,

∫ x sin t

t
dt,

∫ x dt

log t
.

The first integral is closely related to the “error function”, which arises
in probability. We investigate this integral in more detail below. To
see that the latter two are not elementary, we consider the function
g(t) = et/t, for which f2(t) = t. By Theorem 15.10,

G(x) =

∫ x et

t
dt is elementary iff F (x) =

1

ex

∫ x et

t
dt is rational.

However, a series calculation shows that F (x) = log x + O(1) near
x = 0, so F is not rational. It follows that∫ x sin t

t
dt =

1

2i

∫ x eit − e−it
t

dt

is not elementary. The substitution t = log u shows that
∫ x

du/ log u is
not elementary, either.

Our final result about elementary antiderivatives is due to Cheby-
shev:
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Theorem 15.11. Let a, b, p, q, and r be real numbers. The antideriva-
tive ∫ x

tp(a+ btr)q dt

is elementary iff at least one of p+1
r
, q, or p+1

r
+ q is an integer.

For instance, ∫ x√
1 + t4 dt and

∫ x

t2
√

1 + t4 dt

are not elementary, while
∫ x

t
√

1 + t4 dt and
∫ x

t3
√

1 + t4 dt are.

Definite Integrals

This section presents a miscellany of definite integrals and applications
to evaluation of sums. In many cases, calculations are only sketched,
and the details are left as exercises.

Proposition 15.12. If n is a positive integer, then

∫ π/2

0

sinn t dt =


(n−1)
n

(n−3)
(n−2)

· · · 2
3

if n is odd

(n−1)
n

(n−3)
(n−2)

· · · 1
2
π
4

if n is even

In other words,∫ π/2

0

sin2k+1 t dt =
(2kk!)2

(2k + 1)!
,

∫ π/2

0

sin2k t dt =
(2k)!

(2kk!)2

π

4
.

The substitution u = (π/2) − t converts this integral into the integral
(over the same interval) of a power of cosine.

Proof. The base cases are∫ π/2

0

sin t dt = − cos t
∣∣∣π/2
t=0

= 1∫ π/2

0

sin2 t dt =
1

2

∫ π/2

0

(1− cos 2t) dt =
1

2

(
t− 1

2
sin 2t

)∣∣∣∣π/2
t=0

=
π

4
.

The proposition follows from (15.6) and induction on n.
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The Gamma Function

Exercise 12.14 introduced the integral

(15.7) Γ(x) =

∫ ∞
0

tx−1e−t dt, 0 < x <∞,

which satisfies Γ(n+ 1) = n! by induction on n. The integral is defined
for non-integer x, and is an extension of the factorial function to the
positive reals. This section develops a few properties of the Γ function,
following Rudin.

The first issue is to establish convergence of the improper integral
for the stated x. We split the integral into

∫ 1

0
+
∫∞

1
and consider the

pieces separately.
For every real α, lim

t→+∞
tαe−t/2 = 0 by Exercise 9.21. Thus, for all

x > 0,

0 ≤ tx−1e−t ≤ (tx−1e−t/2)︸ ︷︷ ︸
→0 as t→∞

·e−t/2 ≤ e−t/2 for t� 1.

Consequently,
∫∞

1
tx−1e−t dt converges for all x > 0. Now, if 0 < x < 1,

then 0 ≤ tx−1e−t ≤ tx−1, so∫ 1

0

tx−1e−t dt <
∫ 1

0

1

t1−x
dt,

converges. If x ≤ 0, these integrals diverge, so the expression (15.7) is
undefined.

The main result of this section is a characterization, due to Bohr
and Mollerup, of Γ in simple abstract terms.

Theorem 15.13. The function Γ satisfies the following properties:

(a) Γ(x+ 1) = xΓ(x) for all x > 0.

(b) Γ(n+ 1) = n! for all integers n > 0.

(c) log Γ is convex.

Conversely, if f : (0,+∞) → R satisfies these properties, then
f = Γ.
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Proof. To establish (a), integrate by parts, using u = tx and dv = e−t dt:

Γ(x+ 1) =

∫ ∞
0

txe−t dt = −txe−t
∣∣∣t=∞
t=0

+

∫ ∞
0

xtx−1e−t dt

= x

∫ ∞
0

tx−1e−t dt = xΓ(x).

For (b), we compute that

Γ(1) = lim
b→∞

∫ b

0

e−t dt = lim
b→∞
−e−t

∣∣∣t=b
t=0

= lim
b→∞

(1− e−b) = 1.

Induction on n guarantees Γ(n + 1) = n! for n > 0. To prove (c),
observe that if 1

p
+ 1

q
= 1, then the integrand of Γ

(
x
p

+ y
q

)
is

t
x
p

+ y
q
−1e−t = t

x
p

+ y
q
− 1

p
− 1

q e−t(
1
p

+ 1
q

) =
(
tx−1e−t

)1/p(
ty−1e−t

)1/q
.

Since tx−1e−t > 0 for t > 0, Hölder’s inequality (Exercise 9.19) implies

Γ
(
x
p

+ y
q

) ≤(∫ ∞
0

tx−1e−t dt
)1/p(∫ ∞

0

ty−1e−t dt
)1/q

= Γ(x)1/pΓ(y)1/q.

Taking logarithms,

log Γ
(
x
p

+ y
q

) ≤ 1
p

log Γ(x) + 1
q

log Γ(y),

which is the desired convexity statement.
Conversely, suppose f : (0,+∞)→ R satisfies (a), (b), and (c), and

set ϕ = log f . Property (a) says ϕ(x+ 1) = ϕ(x) + log x for x > 0, and
induction on n gives

(15.8) ϕ(x+ n+ 1) = ϕ(x) + log
(
(n+ x)(n− 1 + x) · · · (1 + x)x

)
.

Property (b) says ϕ(n+1) = log(n!) for every positive integer n and (c)
says ϕ is convex.

Fix n, let 0 < x < 1, and consider the difference quotients of ϕ on
the intervals [n, n+ 1], [n+ 1, n+ 1 + x], and [n+ 1, n+ 2]. Convexity
of ϕ implies these difference quotients are listed in non-decreasing order.
Property (a) implies that the difference quotient of ϕ on [y, y+1] is log y,
so

(15.9) log n ≤ ϕ(n+ 1 + x)− ϕ(n+ 1)

x
≤ log n+ 1.
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Multiplying by x and substituting (15.8),

x log n ≤ ϕ(x) + log
(
(n+ x)(n− 1 + x) · · ·x)− log(n!) ≤ x log(n+ 1),

or

(15.10) 0 ≤ ϕ(x)− log
n!nx

x(x+ 1) · · · (x+ n− 1)(x+ n)
≤ x log

(
1+

1

n

)
As n→ +∞, the upper bound goes to 0, so the squeeze theorem gives

(15.11) ϕ(x) = lim
n→∞

log
n!nx

x(x+ 1) · · · (x+ n− 1)(x+ n)

for 0 < x < 1. Property (a) implies ϕ satisfies (15.11) for all x > 0.
Equation (15.11) says there is a unique function f satisfying prop-

erties (a)–(c), and that log f is the limit on the right; since Γ satisfies
(a)–(c), the limit on the right must be equal to log Γ(x).

An unexpected benefit of the argument is the equation

Γ(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n− 1)(x+ n)
for x > 0,

analogous to the characterization of exp as the limit of geometric growth:

ex = lim
n→∞

(
1 +

x

n

)n
.

As in the case of exp, judicious application of this characterization of Γ
leads to interesting identities. For example, define

(15.12) β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt for x, y > 0.

Theorem 15.14. β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
for all x, y > 0.

Proof. Direct calculation gives β(1, y) = 1/y for y > 0. Further,
log β( ·, y) is convex in the sense that if 1

p
+ 1

q
= 1, then

β
(x
p

+
z

q
, y
) ≤ β(x, y)1/pβ(z, y)1/q for all x, y, z > 0.

The proof is entirely similar to log convexity of Γ. Finally,

β(x+ 1, y) =

∫ 1

0

tx(1− t)y−1 dt =

∫ 1

0

( t

1− t
)x

(1− t)x+y−1 dt.
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Integrating by parts, using u =
(
t/(1− t))x and v′ = (1− t)x+y−1, gives

β(x+1, y) = − 1

x+ y

( t

1− t
)x

(1−t)x+y
∣∣∣t=1

t=0
+

x

x+ y

∫ 1

0

tx−1(1−t)y−1 dt.

Since the “boundary term” is zero, β(x + 1, y) = x
x+y

β(x, y). Putting
these pieces together, the function

f(x) :=
Γ(x+ y)

Γ(y)
β(x, y)

satisfies properties (a)–(c) of Theorem 15.13, so f = Γ.

Corollary 15.15. 2

∫ π/2

0

(sin θ)2x−1(cos θ)2y−1 dθ =
Γ(x)Γ(y)

Γ(x+ y)
.

This follows from the substitution t = sin2 θ. An interesting definite
integral results from x = y = 1/2:

π = 2

∫ π/2

0

dθ =
Γ(1

2
)2

Γ(1)
,

or √
π = Γ(1

2
) =

∫∞
0
t−1/2e−t dt.

The substitution u =
√
t, du = dt/2

√
t yields

(15.13)
∫ ∞

0

e−u
2

du =

√
π

2
, or

∫ +∞

−∞
e−u

2

du =
√
π.

Taking x = 1/2 or y = 1/2 expresses the integrals of powers of sin
and cos in terms of Γ, cf. Proposition 15.12.

The Error Function

Let µ ∈ R, σ > 0. The function

ρ(x) =
1√
2πσ

e−(x−µ)2/2σ

arises naturally in probability as the famous Gaussian density or “bell
curve”. The variable x represents the result of a measurement of some
sort, and the probability that the measurement lies between a and b is

P (a ≤ x ≤ b) =
1√
2πσ

∫ b

a

e−(x−µ)2/2σ dx
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The expected value and variance are defined to be

E =
1√
2πσ

∫ b

a

xe−(x−µ)2/2σ dx, V =
1√
2πσ

∫ b

a

(x− µ)2e−(x−µ)2/2σ dx.

In terms of probability, repeated measurements of x are expected to
cluster around E, and the average distance from a measurement to E
is the standard deviation

√
V . The Gaussian above is normalized so

that E = µ and V = σ2, see Exercise 15.21.
Up to a linear change of variable, we may as well assume µ = 0 and

σ = 1. The error function erf : R → R is defined by the improper
integral

(15.14) erf(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt,

see Figure 15.5. Equation (15.13) implies that erf(x)→ 1 as x→ +∞.
The probability that x is between a and b is erf(b)− erf(a). Statistics

y = 1√
2π

e−x2/2

Figure 15.5: The Gaussian error function.

and probability textbooks often contain tables of erf. As noted above,
erf is not an elementary function.

The Riemann Zeta Function

Consider the sum

(15.15) ζ(z) =
∞∑
n=1

1

nz
.

If we write z = x + iy with x and y real, then the general summand
has absolute value

|n−z| = |e−z logn| = |e−x logne−iy logn| = |e−x logn| = n−x.

By comparison with the “p-series”, the series (15.15) converges iff x =
Re z > 1, the convergence is absolute for all such z, and for every ε > 0,
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the convergence is uniform (in z) on the set Re z > 1 + ε. Though the
series above does not converge when Re z ≤ 1, there is an extension to
the “punctured” plane C \ {1} that is analytic in the sense that near
each point z0 6= 1, there is a complex power series with positive radius
whose sum is ζ. This analytic extension is the Riemann zeta function.

The Riemann zeta function, which is not elementary, is deeply per-
vasive throughout mathematics and physics. It is known (and not dif-
ficult to show) that the zeta function vanishes at the negative even
integers, and that all other zeros lie in the “critical strip” 0 < Re z < 1.
One of the outstanding open problems of mathematics is the Riemann
hypothesis :

Every zero of the Riemann zeta function that lies in the
critical strip lies on the line Re z = 1/2.

Anyone who makes substantial progress on this question will earn last-
ing fame; a complete resolution will garner mathematical immortality.
As of May, 2000, a resolution of the Riemann hypothesis carries a prize
of $1 million from the Clay Mathematics Institute.

Our extremely modest aim is to evaluate ζ(2). We separate the
calculation into steps according to technique.

Lemma 15.16.
∫ 1

0

arcsin t√
1− t2 dt =

π2

8

Proof. Use the substitution u = arcsin t, taking appropriate care with
the limit at t = 1.

Lemma 15.17.
∫ 1

0

t2k+1

√
1− t2 dt =

(2kk!)2

(2k + 1)!

Proof. Use the substitution t = sin θ and Proposition 15.12.

Lemma 15.18. arcsinx =
∞∑
k=0

(2k)!

(2kk!)2

x2k+1

2k + 1

Proof. According to Newton’s binomial theorem (Theorem 14.18),

1√
1− x2

= 1 +
∞∑
k=1

(2k)!

(2kk!)2
x2k for |x| < 1.

Integrate term by term, being careful with issues of non-uniform con-
vergence near x = 1.
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Lemma 15.19.
∫ 1

0

arcsin t√
1− t2 dt =

∞∑
k=0

1

(2k + 1)2

Proof. Use Lemma 15.16 to expand the integrand:

arcsin t√
1− t2 =

∞∑
k=0

(2k)!

(2k + 1)(2kk!)2

t2k+1

√
1− t2 ,

then integrate term-by-term. Lemma 15.17 allows you to evaluate the
resulting integrals, and a lot of cancellation occurs.

Lemma 15.20.
∞∑
n=1

1

n2
= ζ(2) =

π2

6

Proof. Separate the series into even and odd terms. (Why is this per-
missible?) You know the sum of the odd terms, and the sum of the
even terms can be expressed using ζ(2) itself.

There are systematic ways of evaluating the series ζ(2k) for k a
positive integer, though better technology is required, such as complex
contour integration or Fourier series. It turns out that ζ(2k) is an
explicit rational multiple of π2k. Interestingly, the values ζ(2k + 1) are
not known. In 1978, A. Apèry proved that ζ(3) is irrational.

Exercises

Exercise 15.1 The surface of the earth is divided into time zones that
span roughly 15◦ of longitude, making a total time change of 24 hours
as one circumnavigates the globe.2 For this question, assume that ev-
eryone on earth keeps solar time: “Noon” is the time that the sun passes
due south of you, assuming you’re in the northern hemisphere. Assume
that your longitude is 0◦, and that it is noon for you. (Because this is
mathematics, we’re just re-defining “longitude”; you needn’t travel to
Greenwich!)

(a) Find a formula for the time at a point on the surface of the earth
as a function of longitude. Be sure to adjust your time an angle
units consistently.

2In reality, time zones obey political boundaries almost as much as geographic
ones.
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(b) Is the time of day a continuous function of position? If not, where
is the discontinuity, and what happens to your measure of time if
you cross the discontinuity?

(c) How is your time formula like the principle branch of the logarithm?
According to your formula, what time is it at the north pole?

(d) Suppose there were a “solar time function” with no discontinuity.
What would happen if you circumnavigated the globe?

In reality, the discontinuity is a fixed line in the Pacific Ocean rather
than the “midnight point”, which moves as the earth rotates. �
Exercise 15.2 Evaluate the following:∫ x dt

1− t2
∫ x t dt

1− t2
∫ x dt

t− t2
∫ x dt

t− t3
∫ x 1 + t2

t− t3 dt

Hint: Some of the partial fractions have been done for you. �
Exercise 15.3 Using the example in the text as a model, find recursion
formulas for ∫ x

tn cos t dt

∫ x

tnet dt

Use a recursion formula to evaluate
∫ x

t4 sin t dt �

Exercise 15.4 Find a recursion formula for
∫ x

cosn t dt �

Exercise 15.5 Fill in the details of the evaluation of
∫ x

sec3 θ dθ.
�
Exercise 15.6 Fill in the missing details if the proof of Corollary 15.9;
specifically, verify that under the substitution t = tan s

2
, the circular

trig functions become rational functions of t. See Exercise 3.7 for details
about stereographic projection. �
Exercise 15.7 Use the following outline to antidifferentiate sec: Mul-
tiply the numerator and denominator by cos, and use cos2 = 1−sin2. A
substitution turns this into a rational function, whose partial fractions
decomposition you know. �
Exercise 15.8 Use a theorem from the text to prove that

∫ x

sin t2 dt

and
∫ x

cos t2 dt are not elementary. �
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Exercise 15.9 Evaluate
∫ ∞

0

e−t sinxt dt for x real. �

Exercise 15.10 Evaluate
∫ 1

0

x2 + 1

x4 + 1
dx.

Hints: Divide the numerator and denominator by x2, then use the
(improper) substitution u = x−1/x. �

Exercise 15.11 In this exercise you will evaluate
∫ π/2

0

log sinx dx

(a) Prove that the improper integral converges.
Suggestion: Look for suitable bounds on sin near 0.

(b) Show that
∫ π/2

0

log sinx dx =

∫ π/2

0

log cosx dx

(c) Use a substitution and the double angle formula for sin to evaluate
the original integral.

If you can, find a way to evaluate the integral of log cos by a similar
trick, without using part (b). �

Exercise 15.12 Prove that Γ(n+ 1
2
) =

(2n− 1)!!

2n
√
π. �

Exercise 15.13 Use formulas from the text to write the integrals∫ π/2

0

sinn θ dθ,

∫ π/2

0

cosn θ dθ,

in terms of the Γ function. �
Exercise 15.14 Evaluate∫ 1

−1

(1− t)n(1 + t)m dt, m, n ∈ N,

in terms of factorials.

Suggestion: First evaluate
∫ 1

0

tn(1−t)m dt using the Γ function. �
Exercise 15.15 Prove that

Γ(x) =
2x−1

√
π

Γ(1
2
)Γ(x+1

2
)

for all x > 0. �
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Exercise 15.16 Fill in the details of Lemma 15.16. �
Exercise 15.17 Fill in the details of Lemma 15.17. �
Exercise 15.18 Fill in the details of Lemma 15.18. �
Exercise 15.19 Fill in the details of Lemma 15.19. �
Exercise 15.20 Fill in the details of Lemma 15.20. �
Exercise 15.21 Let µ ∈ R and σ > 0.

(a) Prove that
1√
2πσ

∫ ∞
−∞

xe−(x−µ)2/2σ dx = µ.

Suggestion: Let z = x− µ.

(b) Prove that

1√
2πσ

∫ ∞
−∞

(x− µ)2e−(x−µ)2/2σ dx = σ.

Suggestion: Use the substitution of part (a), then integrate by
parts, using u = z.

In each part, you may use the fact that lim(erf,+∞) = 1. �

Exercise 15.22 This exercise presents a rough approximation to n!
for large n. The starting point is the observation that log is concave, so
the graph lies below every tangent line and above every secant line. We
will use these lines to get upper and lower bounds on the area under
the graph of log between 1 and n.

(a) (Lower bound) Subdivide [1, n] into n− 1 intervals of unit length.
Find the total area of the trapezoids:

1 nk k + 1

y = log x
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(b) (Upper bound) Consider the line tangent to the graph of log at
the integer k. The area of the trapezoid lying below this line and
between the vertical lines x = k ± 1

2
is an upper bound for the

integral of log from k to k + 1:

1 nk k + 1

y = log x

Show that the trapezoid centered at k, 1 < k < n, has area log k.
When k = 1 or k = n, special considerations must be made.
Find the total area of the trapezoids and triangle.

(c) Use the bounds found in parts (a) and (b) to prove that

e7/8n
n
√
n

en
< n! < e

nn
√
n

en
.

In other words, e7/8 <
n!

(n/e)n
√
n
< e for n ≥ 1. �

Exercise 15.23 Let n ≥ 3 be an integer, and set ζn = e2πi/n; recall
that the set of powers of ζn constitutes the vertices of a regular n-gon
inscribed in the unit circle. Consider the set of chords joining 1 = ζnn
to the other n− 1 vertices.

ζn

ζn−1
n

ζn
n = 1
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Prove that the product of the lengths of these chords is n, the number
of sides! (Only a few special cases can be computed by hand.) �
Exercise 15.24 (The momentum transform) Let ϕ : (−1, 1)→ R be
continuous and positive.

(a) Prove that the equation

x =

∫ u(x)

0

dt

ϕ(t)

defines an increasing, C 1 function u, and that u′ = ϕ ◦ u. What
are the domain and image of u?

(b) Prove that the equation

f(x) =

∫ u(x)

0

t dt

ϕ(t)

defines a C 2 function f , and show that f ′ = u.

(c) Suppose ϕ(t) = 1− t2. Find u and f as explicit functions of x.

(d) Suppose ϕ(t) = 1 + t2. Find u and f as explicit functions of x.

Hint: You will need techniques from throughout the book, but there is
a reason this question was saved for the final chapter. �



456 CHAPTER 15. ELEMENTARY FUNCTIONS



Postscript

In the landmark essay The Cathedral and the Bazaar, Open Source
Software advocate Eric S. Raymond wrote, “Every good work of soft-
ware starts by scratching a developer’s personal itch.” Whatever this
book’s quality as an instructional tool, it scratches an itch, namely
the author’s desire to present interesting, living, rigorous mathematics
to students whose background is the 1990s high school mathematics
curriculum. Many things have changed since the author was a high
school student; today there is a greater emphasis on conceptual under-
standing without technical details, discovery through experimentation,
numerical approximation, and applications.

While these are laudable goals, there is a danger in presenting math-
ematics as an experimental science, and in relying on intuitive principles
and plausibility arguments instead of precise definitions and logical, de-
ductive proof. In the realm of a calculus course the risks may not be so
apparent, because problems have often been carefully chosen and stated
to be amenable to the conceptual methods being taught. However, real
life is never as clean and simple as a textbook, and pure intuition with-
out technical knowledge easily goes astray. This book tries to bridge
the worlds of technique and understanding, presenting mathematics as
a language of precision that is guided by intuitive principles, and that
leads to beautiful, unexpected destinations.

This book started as a set of course notes from Analysis I (MAT
157Y) taught in the year 1997–8 at the University of Toronto. While
the course was not an unimprovable success by all measures, it was
among the most satisfying extended teaching experiences I have had.
A senior colleague at the “UofT” once said that mathematicians should
advertise themselves to students as weight trainers of the mind.1 In
this metaphor, Analysis I was greatly successful. The problem sets
were extremely challenging, but at least one student always made some

1“We are pumping brains!”
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progress on a question. Students were spurred to investigate issues
beyond what the homework asked, and were thereby led to deeper un-
derstanding and intellectual independence. A substantial fraction of
the class went on to graduate programs in mathematics and physics at
top research schools. My first debt of gratitude is to the students of
Analysis I, particularly Jameel Al-Aidroos, Sunny Arkani-Hamed, Ari
Brodsky, Chris Coward, Chris George, Fred Kuehn, Brian Lee, Cuong
Nguyen, Caroline Pantofaru, Dave Serpa, and Dan Snaith.

MAT 157Y would also have been far less successful without the
Herculean efforts of the teaching assistants, Gary Baumgartner and
Blair Madore, who tirelessly fired the students’ curiosity, creatively
constructed examples and metaphors, and tempered my flights of ab-
straction both in the tutorials and when creating tests and exams. A
couple of Gary’s incisive supremum questions appear as exercises.

The nucleus of Chapter 1 was a handout by Steve Hook, on writing
proofs, that he distributed to his real analysis course at UC Berkeley
during the summer of 1986.

Andres del Junco at the University of Toronto kindly provided his
course materials for Analysis I. Their influence is present at several
places in the text, either as examples or as inspiration for exercises.

The proof of the Weierstrass approximation theorem comes from a
one-hour undergraduate lecture given by Serge Lang at UC Berkeley in
the late 1980s.

In a letter to the Notices of the American Mathematical Society,
Donald Knuth suggested writing a calculus book based on O-notation.
When I came across his letter—years after it was written, and after
a non-negligible fraction of this book had been written—the prospect
of “porting” the book from ε-δ language to O-notation seemed both
doable and pedagogically well-advised. The “calculi of sloppiness” are
both concrete enough to be psychologically satisfying to students and
powerful enough to express truly subtle ideas. Whether or not this
book can be considered a successful implementation of Knuth’s vision
remains to be seen.

I am grateful to several people who posted to the Usenet group
sci.math, but especially to Matthew Wiener, whose exposition on in-
tegration in elementary terms was the impetus to include some general
theorems in Chapter 15 rather than just scattered folklore results. John
Baez’s web page Weekly finds in mathematical physics was also a source
of inspiration. His account of the Weierstrass ℘ function, in analogy
with the definition of circular trig functions using integrals of algebraic



POSTSCRIPT 459

functions, was very tempting to include in Chapter 15, and was only
omitted with regret.

Over the years I have collected interesting exercises, factoids, and
other mathematical tidbits, often recorded on miscellaneous scraps of
paper or in fallible memory, and I do not always know the origins of
these items. I offer my sincerest apologies to anyone whose work is
uncited.

This book was produced with Free software on a GNU/Linux sys-
tem. The concept of “Free” software is important to academics, and is
worth explaining briefly. A computer program is a set of instructions for
performing some task, and (practically speaking) can be easily copied.
Software is written as source code in a human-readable programming
language, and is turned into machine-readable executables or binary
files with a special program called a compiler. It is helpful to think
of a recipe (instructions for creating a dish), which can be copied and
shared without losing the original. In the early days of computing (be-
fore about 1980), software was written and shared like recipes. In the
1980s, an industry rose up around the concept of software as a commod-
ity, like ingredients for a recipe. In this new model, sharing is forbidden,
and the ingredients (source code) are secret. Unfortunately, because it
is technically possible to copy software, it is necessary to treat all soft-
ware users as potential thieves. The Free software movement aims to
create a community in the spirit of software sharing, where everyone
is at liberty to view and modify the source code of programs to suit
their particular needs. The GNU project, started in 1984 by Richard
M. Stallman, set itself the goal of creating an entire computer operat-
ing system from scratch and placing it under a license that would allow
anyone to read, modify, and distribute the source code, subject only to
the restriction that these terms of openness may not be revoked. To-
day, the GNU/Linux operating system is used worldwide by millions of
people. “Linux” is Linus Torvalds’ Unix-like kernel, the program that
allocates hardware resources to all other running programs. Free soft-
ware is arguably the only acceptable software in an academic setting;
as a scientist or mathematician, you cannot fully trust the results of
a computation unless you know exactly what the computer is doing.
Free software is amenable to user inspection. While you may never
read the source code for the C compiler or the Linux kernel, it is crucial
that many knowledgeable people have audited the code, and that you
(the individual user) retain the right to audit the code if you choose.
In the most pragmatic sense, this right is no different from accurate



460 APPENDIX

ingredient labelling on food. This book was produced with emacs, the
GNU text editor, and teTEX, an implementation of Donald Knuth’s
Free TEX typesetting engine. The figures were created with ePiX, a
Free utility for creation of mathematically accurate figures.

A few textbooks have had an obvious influence on this book. Most
notable is Calculus (3rd edition) by Michael Spivak [8], the text for
MAT 157Y. Despite the excellence of that text, and its suitability for a
course like MAT 157Y, I felt the wish for a slightly different emphasis,
arrangement, coverage, and style. Walter Rudin’s classic Principles
of Mathematical Analysis [6] was also very influential, both because I
was first exposed to real analysis by this gem, and because Rudin has
impeccable taste for choosing examples and exercises that highlight
subtle technicalities that are invisible from a casual first inspection.
The older calculus texts by Apostol [2], and Courant and John [3] were
a source of inspiration, but (sadly) like Spivak’s Calculus are seldom
regarded as suitable for modern students. Calculus: A Liberal Art by
William Priestley [5], is a delightful first course in calculus, but is aimed
at Liberal Arts students who do not intend to pursue further studies in
mathematics. Finally, the “Harvard” text, by Deborah Hughes-Hallet,
Andrew Gleason, et. al., had a distinctive influence on the style of this
book. This possibly surprising admission deserves lengthier comment.

In my experience, technical details are analogous to a skeleton, and
conceptual intuition is analogous to muscles and skin. Without muscles,
a skeleton is stiff and inert. Without a skeleton, muscles cannot move in
a directed way. Together, acting in synergy, they grant us strength and
graceful movement. In the middle of the 20th Century, the pendulum of
mathematics education had swung toward extreme formalism (the New
Math). Starting in the late 1980s, mathematics educators began to em-
brace a kind of non-technical conceptual understanding as a remedy to
the “mindless formalism” that was failing to reach most students. This
trend is in full force at present, and is widely apparent in the content
and style of calculus texts of the early 21st Century. While “relevance”
and “inclusiveness” are desirable goals for mathematical pedagogy, the
effort is doomed to lose its intellectual substance if the rigorous foun-
dations of mathematics are forgotten entirely. The debacle of algebraic
geometry in the early 20th Century comes to mind: Theorems were
proven by intuitive arguments, and were often incorrect. The literature
of enumerative geometry was damaged, and development of the field
delayed for decades until a proper foundation was built.

No one will be well-served if generations of students, many of them
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future teachers, grow up without exposure to the technical details of
real analysis. This book is a modest attempt to imbue the muscles
of conceptual understanding of calculus with a skeleton of logical and
technical formalism, that is, to embrace the educational trend of con-
ceptual understanding without losing sight of the intellectual bedrock
of mathematics. The foundations of calculus and its exposition were
laid centuries ago, and it would be ludicrous to claim any credit of orig-
inality in material or presentation. Nonetheless, I believe this book fills
a niche. While not every student is expected to read the book sequen-
tially cover to cover, it is important to have the details in one place.
Calculus is not a subject that can be learned in one pass. Indeed, this
book nearly assumes readers have already had a year of calculus, as had
the students of MAT 157Y. I hope this book will grow with its readers,
remaining both readable and informative over multiple traversals, and
that it provides a useful bridge between current calculus texts and more
advanced real analysis texts.

Andrew D. Hwang
May 18, 2003
Sterling, MA
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axioms for, 51–52
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Complex conjugate, 80
Complex numbers, 79–81
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arithmetic operations, 80
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Complex arithmetic operations,
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Conservation of energy, 379
Constant term, 109
Continued fractions, 72, 92–95
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of definite integral, 245–249
and sequences, 174–176
uniform, 204

Continuous function
integrability of, 244–245
nowhere differentiable, 337–

339
Contradiction, 20–21
Contrapositive, 17–18, 20
Converse, 19
Convex

function, 296–301
and secant lines, 297

discontinuities of, 308–309
number of zeros, 309
and sign of second deriva-
tive, 298

set, 296, 308
Convolution product, 350

commutativity of, 351
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and cosh, 422
definition, 374
geometric definition, 391
periodicity of, 379–381
properties of, 377–381
special values of, 395

cosh
definition, 384
derivative of, 385

cot, 383
double angle formula, 395

Counterexample, 21
Critical point, 274
csc, 382

Darboux’ theorem, 290
de Moivre’s formula, 422, 424–

425
Decimal notation, 33, 72, 89–92
Degree

of polynomial, 109
Denominator function, 121

continuity of, 172
limit behavior, 159–161

Derivative, 264
computational techniques, 300
of definite integral, 270
as linear mapping, 267
of monotone function, 293–

295
and optimization, 274, 276–
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patching, 292–293
of polynomial, 267
of power function, 270, 364
sign of, 273

Dirac δ-function, 351
Discontinuity, 173

jump, 173
removable, 173

Disjoint sets, 8
Domain, 97

natural, 106
Double angle formula

for sin and cos, 377
Double factorial, 86

e
definition, 362
irrationality, 372
numerical estimate, 366, 371–

372
Elementary function, 419

antiderivative of, 431
Empty set, 7
Entire function, 421
Equivalence relation, 47–49
erf, 447
Euclidean geometry

completeness in, 71, 211
Even function, 133–135, 141–142
exp

characterization by ODE, 289
as limit of geometric growth,

366
multiplicative property, 289
and real exponentiation, 290,

362–365
representation as power se-

ries, 366
Taylor approximation of, 400,

411

Extension, 105
continuous, 220

Extreme value theorem, 209

Factorial, 86
asymptotic approximation, 453–

454
Field

axioms, 56
finite, 57, 81

Flex, 299
Function

compactly supported, 350
Functions

bijective, 102–103
equality of, 107–108
even part of, 134–135
graph of, 98–100
image, 100
and range, 101

injective, 101
invertible, 123
odd part of, 134–135
preimage of, 104
restriction of, 105
surjective, 100–101

Fundamental theorem
of algebra, 428–431
of calculus, 311–313

γ (Euler’s constant), 257
Γ function, 369, 444–447

characterization of, 444
as limit, 446
special values of, 447, 452–

453
Geometric series, 88–89

derivative of, 356
finite, 57–58, 281
infinite, 183
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and integral of power func-
tion, 238

limit of, 304
trick, 347

Goethe, 1, 16, 38, 78, 230, 352,
392, 417

Golden ratio, 200
Graphing techniques, 299

Hermite’s constant, 398
Hölder’s inequality, 309–310, 445
l’Hôpital’s rule, 303–305, 310

mother of all problems, 371
Horizontal line test, 102
Hyperbolic trig functions, 384–

386
inverse, 389–390

Identity theorem
for differentiable functions,

287–288
for polynomials, 109
for power series, 346

Iff, 20
Imaginary number, 33–34, 79
Imaginary unit, 80
Implication, 10
Implicit function, 116
Implies, 18
Improper integral, 250–252

of power function, 259, 322
and summability, 251

Independent variable, 106–107
in integral, 235

Indicator function, 118
Inequalities

properties of, 60–63
Infimum, 69
Injection, 101
Integers, 48–52

arithmetic operations, 49–51
arithmetic properties, 51–52
limit points of, 153

Integrable function, 234
and step functions, 254
product of, 255
sandwiched by continuous func-

tions, 254
Integral

and antiderivative, 314–315
cocycle property, 242
of even function, 255
as function of upper limit,

245–249
as linear functional, 240
monotonicity of, 241
by parts, 435–437
of power function, 238–239
translation invariance, 243
trigonometric, 434

Integral test, 251
Intermediate value

property, 213
of derivative, 290–291

theorem, 213–218
Intersection, 8

Infinite, 8
Interval, 74–77

bounded, 74
of convergence, 340, 343
open, 74
of real numbers, 74

Inverse function, 123–126, 140
branch of, 124
continuity of, 219
finding, 125

Inverse trig functions, 386–388
Irreducible polynomial, 115
Isolated point, 153
Isomorphism, 3–4, 35, 129–130



INDEX 469

15 game, 82
of ordered fields, 130

Iteration, 122–123

Joke
3 as variable, 106
black sheep, 12
negative numbers, 51
red herring, 15

Limit
arithmetic operations and, 156–

158
definition of, 196
of a function, 154–161
game, 161–163
indeterminate, 171
evaluation of, 302–305

and inequality, 158
infinite, 168–171
at infinity, 165–168
locality principle, 158
of a monotone function, 164–

165
non-existence of, 157
notation for, 156
one-sided, 163–164
of rational functions, 167
of a recursive sequence, 179–

181
of a sequence, 166, 176
squeeze theorem, 159
uniqueness of, 155

Limit point, 153–154
Linear mapping, 131–133, 240,

311
Lipschitz continuity, 220

of definite integral, 249
Locally bounded function, 145
log

fundamental strip, 426
principle branch of, 426–427
Taylor approximation of, 413–

414
Logarithm function, 125, 360

characterization of, 367
complex, 426–427
properties of, 362–365

Lower sum, 232
and refinement, 233
supremum of, 234

Mapping, 99
Mathematical induction, 39–46
Mathematical precision

importance of, 399
Maximum

of a set, 64
of two functions, 198
of two numbers, 62

Mean value theorem, 285–287
Cauchy, 303
for integrals, 258

Midpoint sum, 244
Minimum

of a set, 64
of two functions, 198
of two numbers, 62

Momentum transform, 455
Monic polynomial, 109
Monotone function, 103–104

and derivative, 291
and differentiability, 288
and integrability, 254
and uniform continuity, 218
derivative of, 293–295

Natural exponential function, 288–
290, 295

growth rate, 310
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Natural logarithm function, 256–
257, 360–361

graph of, 362
no horizontal asymptote, 361

Natural numbers, 34–46
addition of, 38–39, 44–45
axioms, 35
construction of, 36–37
Hindu-Arabic numerals, 90

Negative number, 59
Neighborhood, 77–78

infinitesimal, 78
Newton quotient, 263, 338
Non-standard analysis, 78–79
Norm, 81, 420

O notation, 146–149
and integration, 247–249
and power series, 346–348

o notation, 149–152
and derivatives, 265–273

Odd function, 133–135, 141–142
ODE, 288

general first-order, 348
Order relation, 60
Ordered field, 59–70

axioms for, 59–60
isomorphism of, 130

Partial fractions decomposition,
438–441

Pascal’s triangle, 87
Periodic function, 135–136, 142
π

and circumference of circle,
393

definition, 379
irrationality of, 396
numerical bounds, 379
series for, 408, 416

Picard iterates, 348
Piecewise polynomial function,

113
Polynomial, 108–109

approximation, 353, 400–409
expanding in powers of (x−

a), 110, 407
factorization, 115–116, 140,

430
as formal power series, 114
interpolation, 111–113
irreducible, 115
monic, 109
root of, 116, 216–217, 428

Polynomial function, 109–116
limit at infinity, 197
and uniform continuity, 218

Positive number, 59–60
Positive part

of function, 136
of sequence, 186

Power series, 325
convergence of, 339–344
formal, 113–115, 339

Power sum, 83
Preimage, 104
Prime number, 4
Probability, 447–448
Pseudo-sine function, 293, 306,

322

Quantifiers, 30

Radius of convergence, 341
Range, 98
Ratio test, 189, 341–342
Rational function, 116

elementary antiderivative, 440
natural domain of, 116
reduced, 116
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Rational numbers, 53–56
countability of, 127
decimal representation of, 91
dense in reals, 70
division by zero, 53
gaps in, 211–212
limit points of, 154
lowest terms, 53

Real numbers, 67–73
Archimedean property of, 69
axioms for, 71–72
construction of
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Dedekind cuts, 67

decimal part, 89
exponentiation of, 290, 362
extended, 77, 165
integer part, 89
radicals of, 215–216
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Real-analytic function, 342–348,
419

definition, 344
Real-valued function, 98
Recursion, 34, 37–38
Red Herring, 15
Reduction formula, 436
Relation, 46–48

equality, 47
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Restriction, 105
Reverse triangle inequality, 62–

63
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Riemann
sums, 243

Riemann hypothesis, 449
Riemann ζ function, 448–450

special values of, 449–450
Root test, 190
Roots of unity, 427–428
Russell’s paradox, 6

sec, 382
derivative of, 394

Sequence
absolutely summable, 186–

192
of functions, 326–334
limit of, 174
numerical, 119–120
sumable, 182
tail of, 182, 185

Series, 181–195
absolutely convergent, 186–

192
alternating, 192
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convergence of, 184
convergence tests, 184–195
convergent, 182
partial sums of, 181
rearrangement, 186–187, 193–

195
telescoping, 201

Set, 4, 6–9
complement, 8
difference, 8
equality, 7
nature of, 4
Notation, 7
universal, 6

Set theory
axioms of, 6–12

Signum function, 134
and uniform continuity, 218
definite integral of, 249
increasing at zero, 274
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no limit at zero, 159
Simpson, Homer, 72
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definition, 374
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geometric definition, 391
properties of, 377–381
and sinh, 422
special values of, 395
Taylor approximation of, 411–

413
uniqueness of, 374–375

Singleton, 7
sinh

definition, 384
derivative of, 385

Smooth function, 279
Square root

continuity of, 200
existence of, 180–181
numerical approximation, 199√

2
definition of, 73
irrationality of, 16–17, 54
sequence converging to, 120

Squaring the circle, 14–15, 21
approximate, 392

Squeeze theorem, 159
Statement, 10
Step function, 118–119, 137

integral of, 253
Stereographic projection, 138–139,

451
Subset, 6
Summation notation, 40, 82
Supremum, 64–68, 84

rational supremum, 66
Surjection, 100
Survival lesson, 13–14

tan, 382
addition formula, 394
derivative of, 382
geometric definition, 391
graph, 383
special values of, 395

Tangent line
as limit of secant lines, 264
as limit on zooming, 275, 337

tanh
definition, 385

Taylor polynomials, 401–409
of arctan, 407–409
characterization of, 401
coefficients of, 402
of exp, 403
and order of contact, 405–

407
of sin, 403
uniqueness of, 406–407
and Weierstrass approxima-

tion, 403
Taylor’s theorem, 409–411
Telescoping sum, 201, 313
Tower of Hanoi, 42–44
Translation exercise, 417
Triangle inequality, 62–63

complex, 81, 420–421
for integral, 242

Trichotomy, 59
Truth value, 10

Uniform
continuity, 204–209
and continuous extension,
220

and integrability, 244
convergence, 329–334
on compacta, 330
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of convolution with δ-function,
352–353

criterion, 331
geometric interpretation, 330

limit
continuity of, 332
and differentiability, 333
integrability of, 332

summability, 334–337
Union, 8

infinite, 8
Upper sum, 232

and refinement, 233
infimum of, 234

Usury, 85

Vacuous, 11
Valid, 10–12
Vector, 119
Vector space, 131
Venn diagram, 7, 8
Vertical line test, 102

Weierstrass
approximation theorem, 353–

355
nowhere differentiable func-

tion, 337

Zeno of Elea, 27, 264
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