
The ePiX Complex Numbers Package

Andrew D. Hwang
Department of Math and CS

College of the Holy Cross

Version 1.2, August, 2008

This manual describes an add-on package for ePiX that provides
complex arithmetic and a few complex variants of standard C’s math
functions.

1 Complex Numbers

A complex number may be viewed as a formal expression z = x + iy
with x and y real numbers (the real and imaginary parts of z, respec-
tively) and i a symbol satisfying i2 = −1. Rigorous constructions of
the complex numbers merely formalize these properties.

Complex Arithmetic

Two complex numbers are added in the obvious way, and multiplied by
distributing the product:

(u+ iv) + (x+ iy) = (u+ x) + i(v + y),

(u+ iv)(x+ iy) = (ux− vy) + i(uy + vx).

The (complex) conjugate of z = x + iy is z̄ = x− iy. The conjugation
map preserves arithmetic operations; the two numbers i and −i are in
no way algebraically distinguishable.

For every complex number z = x+iy, the product zz̄ = x2+y2 = |z|2
is real; thus

1

z
=

z̄

zz̄
=

z̄

|z|2
=

x− iy
x2 + y2

1

so long as z 6= 0. To divide a complex number by a non-zero complex
number, multiply the numerator by the reciprocal of the denominator.

A complex number has a polar form: z = r cos θ + ir sin θ. The
real numbers r and θ are the norm (or modulus) and argument of z,
respectively. By de Moivre’s theorem, the polar form of a complex
number may also be written z = reiθ. The argument θ of a non-zero
complex number is well-defined only up to an additive constant 2πki,
k an integer.

Polar form elucidates the geometry of multiplication. To multiply
z1 = r1e

iθ1 and z2 = r2e
iθ2 , multiply the norms and add the arguments:

z1z2 = (r1e
iθ1)(r2e

iθ2) = (r1r2)e
i(θ1+θ2).

The Exponential and Logarithm

If w = u+iv and z = x+iy, then expw = eueiv = eu cos v+ieu sin v = z
if and only if

x = eu cos v, y = eu sin v.

Aside from the ambiguity of the argument mentioned above, these equa-
tions may be solved for u and v in terms of x and y:

u = log |z| = 1
2

log(x2 + y2), v = atan2(y, x).

The C function atan2 is discontinuous along the negative real axis: Its
value jumps from −π just below the axis to π just above. The cut plane
is the complex plane with the origin and negative real axis removed.
Since atan2 is continuous on the cut plane, the function w = log z is
continuous on the cut plane, as well.

Mathematically, the equation w = log z has infinitely many values,
any two differing by an integer multiple of 2πi. A continuous choice
of w on the cut z plane is called a branch of log; the choice taking real
values along the positive real is the principle branch. The imaginary
part of the principle branch is the standard C function atan2.

The branches of log are joined like successive levels of a spiral park-
ing garage. Walking once in a circle around the origin in the z plane
advances w along a path whose endpoints differ by 2πi.

Roots

Let w = ρeiϕ and z = reiθ be non-zero complex numbers, and suppose
wn = z for some integer n. By observations above,

r = ρn and θ + 2πki = nϕ for some integer k.

2

In other words, ρ = n
√
r and ϕ = θ

n
+ 2π k

n
i for some integer k; there are

exactly n distinct values of w, corresponding to k = 0, . . . , n−1. These
numbers are the nth roots of z. Geometrically, the nth roots of z lie at
the vertices of a regular n-gon centered at the origin.

A continuous choice of w satisfying wn = z on the cut z plane is
a branch of the nth root function. Just as for the logarithm, there is
a unique branch of the nth root taking positive real values along the
positive real axis in the z plane, the principle branch. There are exactly
n branches of the nth root, indexed by k = 0, . . . , n − 1 and joined
cyclically. Walking once around the origin in the z plane advances
w = z1/n along an arc spanning one nth of a full turn.

Trig Functions

The basic circular and hyperbolic trig functions are most easily defined
in terms of the exponential function:

cosw =
eiw + e−iw

2
, coshw =

ew + e−w

2
,

sinw =
eiw − e−iw

2i
, sinhw =

ew − e−w

2
.

Clearly, cosh iw = cosw and sinh iw = i sinw. A bit of work shows the
familiar identities

cos(a+ b) = cos a cos b− sin a sin b

sin(a+ b) = cos a sin b+ sin a cos b

hold for all complex a and b. For example,

cos(x+ iy) = cos x cosh y − i sinx sinh y,

sin(x+ iy) = sin x cosh y + i cosx sinh y.

The other trig functions are defined in terms of cos and sin just as over
the reals: tan = sin / cos, sech = 1/ cosh, etc.

2 ePiX Functions

The functions in this section are used by including the header files
Complex.h and adapter.h in an ePiX source file. The latter contains
the “factory function” Pt, which accepts a Complex argument x+iy and

3

returns the P object (x, y, 0). Please consult the sample files distributed
with the complex number library for examples. The file must normally
be compiled with appropriate compiler flags, as in

epix -I. -L. -lepixnumber <file>.xp

from the directory containing the library file libepixnumber.a.

Complex Arithmetic

The ePiX complex number library supplies data structures and func-
tions implementing the mathematical concepts described above. The
constructor Complex(double, double); creates a complex number ob-
ject of specified real and imaginary parts; these default to zero. The
class also provides arithmetic operators (including increment operators,
+=, etc.) and functions to conjugate a number or return its components:

Complex z1(0,1), z2(1,2); // i and 1+2i

z2.conj(); // z2 = 1-2i

z1 *= z2; // z1 = -2+i

double x(z1.re()), y(z1.im());

Complex z3(z1/z2);

Non-member functions are provided for powers and roots, the exponen-
tial and logarithm, and basic trig functions. Generally, these functions
are named the same as their real counterparts with a “C” appended:
expC, powC, SinC, etc. The hyperbolic trig functions are sensitive to
angle units (unlike their real counterparts), so their names are also
capitalized: CoshC, CschC, etc.

The square root and the logarithm function accept an optional in-
teger argument specifying the branch. The nth root function accepts a
second mandatory argument, specifying the order:

logC(Complex arg, int branch = 0);

sqrtC(Complex arg, int branch = 0);

rootC(Complex arg, int order, int branch = 0);

For sqrtC, only the parity of the branch (even or odd) is significant.
For rootC, the order must be a non-zero integer, and branch may be
an arbitrary integer, though only the residue class modulo order is
significant.

4

	Complex Numbers
	ePiX Functions

