I. (20) Let Y_1, \ldots, Y_n be independent samples from the distribution with pdf containing the unknown parameter θ:

$$f(y|\theta) = \begin{cases} \frac{1}{\theta} y^{1/\theta - 1} & \text{if } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Determine the maximum likelihood estimator for θ using the Y_i.

Solution: The log-likelihood function is:

$$\ln(L) = \ln \left(\frac{1}{\theta^n} (y_1 \cdots y_n)^{1/\theta - 1} \right)$$

$$= -n \ln(\theta) + \left(\frac{1}{\theta} - 1 \right) \sum \ln(y_i)$$

So

$$0 = \frac{d}{d\theta} \ln(L) = \frac{-n}{\theta} - \frac{1}{\theta^2} \sum \ln(y_i)$$

$$\Rightarrow \hat{\theta} = -\frac{\sum \ln(y_i)}{n}$$

(It can be checked that this is a maximum for the likelihood by the second derivative test.)

II. A machine shop manufactures toggle levers. Let d be the proportion of defectives in the shop’s output. A random sample of size $n = 150$ toggle levers produced 6 defectives.

A) (10) Find a 95% confidence interval for d using this information.

Solution: Since $n = 150$ we use the large sample formula, and $z_{0.05/2} = 1.96$. The confidence interval is

$$d = \frac{6}{150} \pm 1.96 \sqrt{\frac{(6/150)(144/150)}{150}}$$

$$= .04 \pm .03136$$

(Note that this interval contains only positive numbers.)

B) (10) Test the hypothesis $H_0 : d = .1$ versus $H_a : d \neq .1$ using this data. Take $\alpha = .02$ (probability of Type I error). Also give the p-value of your test.
Solution: Again, since \(n = 150 \), we use a \(z \)-test. The test statistic is

\[
z = \frac{.04 - .10}{\sqrt{\frac{(1)(.9)}{150}}} = -2.45
\]

The rejection region for the two-tailed test (\(H_a \) is \(d \neq .1 \)) is

\[
RR = \{ z : |z| > z_{.01} = 2.33 \}
\]

So we reject \(H_0 \) at the \(\alpha = .02 \) level. The \(p \)-value is \(p = 2(.0071) = .0142 \) from the standard normal table with \(z = 2.45 \).

C) (10) For the test in part B, what is \(\beta \) (probability of Type II error) if the true value of \(d \) is .03?

Solution: We find \(\beta \) as follows from \(TS = \frac{Y/n - .01}{\sqrt{\frac{(1)(.9)}{150}}} \) as above, using the fact that \(d \) is really .03 (so \(Y/n \) is approximately normal with mean .03 and variance \(\frac{(0.03)(0.97)}{150} \)):

\[
\beta = P(TS \notin RR \mid d = .03) = P(-2.33 < TS < 2.33 \mid d = .03) = P(.0429 < Y/n < .1571)
\]

\[
= P \left(\frac{.0429 - .03}{\sqrt{\frac{(0.03)(0.97)}{150}}} < z < \frac{.1571 - .03}{\sqrt{\frac{(0.03)(0.97)}{150}}} \right)
\]

\[
= P(.9281 < z < 9.144) = P(z > .9281) - P(z > 9.144) \approx .1762 - 0 = .1762
\]

III. Consider the following measurements of the heat-producing capacity of the oil produced by two fields (in billions of calories per ton):

Field 1: 8.26 8.13 8.35 8.07 8.34
Field 2: 7.95 7.89 7.90 8.14 7.92 7.84

A) (10) Estimate the variance \(\sigma^2 \) of the heat producing capacity of the oil from each field.

Solution: Use the usual unbiased estimator formula for the sample variance:

\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2
\]
This gives

\[s_1^2 \doteq .01575 \quad s_2^2 \doteq .01092 \]

B) (10) Test the null hypothesis \(H_0 : \sigma_1^2 = \sigma_2^2 \) against the alternative \(H_a : \sigma_1^2 \neq \sigma_2^2 \) at the \(\alpha = .05 \) level. State your conclusion clearly and succinctly.

Solution: To test equality of variances, we use an \(F \)-test. The test statistic is \(f = s_1^2 / s_2^2 \doteq 1.44 \). The rejection region for a test with \(\alpha = .05 \) is

\[\{ f < f_{.05}(4,5) \} \cup \{ f > f_{.05}(4,5) \} \]

From the \(F \)-table we have \(f_{.05}(4,5) = 7.39 \) and \(f_{.975}(4,5) = 1 / f_{.025}(5,4) = 1 / 9.36 = .1068 \). 1.44 is not in the rejection region, so there is not enough evidence here to indicate that the variances are different.

C) (15) Construct a two-sided 95% confidence interval for the difference of the population mean heat producing capacities \(\mu_1 - \mu_2 \).

Solution: (Under assumption variances equal) we use the pooled estimator

\[s_p^2 = \frac{(4)(.01575) + (5)(.01092)}{9} = .01307. \]

Then the confidence interval is

\[\bar{Y}_1 - \bar{Y}_2 \pm t_{.025}(9) \sqrt{s_p^2 (1/5 + 1/6)} = 8.23 - 7.94 \pm 2.262 \sqrt{(.01307)(1/5 + 1/6)} \\
= \ .29 \pm .1566 \]

IV. (15) Let \((x_i, y_i), i = 1, \ldots, n\) be a collection of data points. Using the matrix formulation, derive the normal equations for the least squares estimators for the coefficients \(\beta_0, \beta_1 \) in the model \(Y = \beta_0 + \beta_1 x + \epsilon \) fitting the data.

Solution: We have

\[X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \]

So the normal equations are

\[X^tX \beta = X^tY \]

\[\begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \beta = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \]

\[\begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \sum y_i \\ \sum x_i y_i \end{pmatrix} \]
Extra Credit (10) In the situation of question III part C above, suppose you had \(n = 50 = m \) measurements from each oil field instead of \(n_1 = 5 \) and \(n_2 = 6 \). What, if anything, would change in the method you would use? Explain.

Solution: With 50 measurements from each oil field, you could use the large sample formula. The \(t_{a/2} \) would be replaced by \(z_{a/2} \). Moreover, for the large sample test, it is not necessary to assume that the individual variances are equal, so you do not need to use the pooled estimator for the variance:

\[
\bar{Y}_1 - \bar{Y}_2 \pm z_{.025} \sqrt{\frac{s_1^2}{50} + \frac{s_2^2}{50}}
\]