Complex Analysis - Math 305
Presentation 11 - Morera’s Theorem
March 28, 2006

Morera’s Theorem is useful for proving functions are holomorphic without resorting to showing that \(f' \) exists or using the Cauchy-Riemann equations. We’ll prove it for a function on a disk, but it’s true for open sets in general.

Cauchy’s Theorem tells us that if \(f \) is holomorphic in an open set containing a simple closed curve \(C \) and the region bounded by \(C \), then \(\int_C f(z) \, dz = 0 \). Morera’s theorem is a converse of Cauchy’s Theorem. We will prove: if \(f \) continuous in a disk \(D = \{ z : |z - a| < r \} \) and

\[
\int_C f(z) \, dz = 0
\]

for every simple closed curve in \(D \), then \(f \) is holomorphic in \(D \).

Proof: Let \([a, z]\) denote the line segment joining \(a \) to \(z \in D \). Define

\[
F(z) = \int_{[a, z]} f(\zeta) \, d\zeta
\]

First we show that \(F'(z) \) exists for each \(z \in D \). Note

\[
F(z + h) = \int_{[a, z+h]} f(\zeta) \, d\zeta
\]

if \(h \) is small enough so that \(z + h \in D \). By the hypothesis on \(f \),

\[
\int_{[a, z]} f(\zeta) \, d\zeta + \int_{[z, z+h]} f(\zeta) \, d\zeta - \int_{[a, z+h]} f(\zeta) \, d\zeta = 0
\]

since the path from \(a \) to \(z \) to \(z + h \) and back to \(a \) forms a simple closed curve. Therefore,

\[
F(z) + \int_{[z, z+h]} f(\zeta) \, d\zeta = F(z + h)
\]

or

\[
F(z + h) - F(z) = \int_{[z, z+h]} f(\zeta) \, d\zeta
\]

Replace \(f(\zeta) \) by \(f(\zeta) - f(z) + f(z) \) in the integral to get

\[
F(z + h) - F(z) = \int_{[z, z+h]} f(\zeta) - f(z) \, d\zeta + \int_{[z, z+h]} f(z) \, d\zeta
\]

(1)

The second integral on the right of (1) is just \(f(z)h \), since \(f(z) \) is a constant. Since \(f \) is continuous, given \(\epsilon > 0 \), we can choose \(h \) so that

\[
|f(\zeta) - f(z)| \leq \epsilon
\]
for all \(\zeta \) on the line segment \([z, z + h]\). Therefore,

\[
|F(z + h) - F(z) - f(z)h| = |\int_{[z, z+h]} f(\zeta) - f(z) \, d\zeta| \leq \epsilon |h|
\]

using the fact that for any curve \(C \), and any function \(g \) with \(|g| < M\) on \(C \),

\[
\left| \int_C g(\zeta) \, d\zeta \right| \leq M \cdot \text{length of } C
\]

Dividing by \(|h|\) gives

\[
\left| \frac{F(z + h) - F(z)}{h} - f(z) \right| \leq \epsilon
\]

Since \(\epsilon \) was arbitrary, we conclude

\[
\lim_{h \to 0} \frac{F(z + h) - F(z)}{h} - f(z) = 0
\]

i.e., \(F'(z) \) exists and \(F'(z) = f(z) \).

Our goal was to show that \(f \) was holomorphic, i.e., that \(f'(z) \) exists for all \(z \in D \). We know that \(F'(z) \) exists; we also know that whenever \(F' \) exists, then all derivatives of \(F \) exist, by Cauchy’s formulas for derivatives. In particular, \(F'' \) exists, so \(f' \) exists. This completes the proof.