Tchebyshev’s Inequality. Let \(f \) be nonnegative and measurable on some measurable set \(A \). Then
\[
m(\{x \in A : f(x) > \alpha\}) \leq \frac{1}{\alpha} \int_A f.
\]

Proof. Let \(B = \{x \in A : f(x) > \alpha\} \). Then \(\alpha \chi_B \leq f \) on \(A \), so
\[
\alpha m(B) = \int_A \alpha \chi_B \leq \int_A f \implies m(B) \leq \frac{1}{\alpha} \int_A f.
\]

Here are a couple of important consequences of Tchebyshev’s Inequality.

Corollary 1. Let \(f \) be nonnegative and measurable, and suppose that
\[
\int_A f = 0.
\]
Then \(f = 0 \) almost everywhere on \(A \).

Proof. Define \(A_k = \{x \in A : f(x) > \frac{1}{k}\} \). Then by Tchebyshev’s inequality,
\[
m(A_k) \leq k \int_A f = 0
\]
so each \(A_k \) is a zero set. Thus
\[
\{x \in A : f(x) > 0\} = \bigcup_{k=1}^{\infty} A_k
\]
is also zero set, so \(f = 0 \) almost everywhere.

Corollary 2. Suppose \(A \) is measurable, \(f \) is a measurable function on \(A \) and
\[
\int_B f = 0
\]
for every measurable subset \(B \) of \(A \). Then \(f = 0 \) almost everywhere on \(A \).

Proof. Homework.