1. We proved in class that
\[\int f + g = \int f + \int g \quad \text{and} \quad \int cf = c \int f \]
for nonnegative measurable functions \(f \) and \(g \) and nonnegative constants \(c \). Using the definition
\[\int f = \int f^+ - \int f^- \]
prove the two properties above hold for arbitrary measurable \(f \) and \(g \) and arbitrary constants \(c \).

2. Suppose that \(\int_A f = 0 \) for every measurable subset \(A \) of \(X \). Show that \(f = 0 \) almost everywhere on \(X \).

3. Let \(f \) be the function defined on \([0, 1]\) as follows. Define \(f(x) = 1 \) for \(x \in (1/3, 2/3) \), \(f(x) = 2 \) for \(x \in (1/9, 2/9) \cup (7/9, 8/9) \), and in general define \(f(x) = k \) on each interval \(\text{removed} \) in stage \(k \) in the definition of the Cantor set. Finally, define \(f(x) = 0 \) on the Cantor set. Show that \(f \) is not Riemann integrable, but that it is Lebesgue integrable. Compute its Lebesgue integral.