1. Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be the linear transformation with matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 1 & 1 & 3 \end{bmatrix}$. Compute $\|T\|$, and find a vector in $v \in \mathbb{R}^2$ such that $\|T(v)\| = \|T\| \|v\|$.

2. Find linear transformations $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $S : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $\|S \circ T\| < \|S\| \|T\|$. Hint: Try projections.

3. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear transformation with matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 1 & 2 & 3 \end{bmatrix}$ and let B be the box $[1, 3] \times [2, 5] \times [-1, 1]$ in \mathbb{R}^3. What is the volume of $T(B)$?

4. Two norms $\| \cdot \|_1$ and $\| \cdot \|_2$ on a vector space V are called equivalent if there exist positive constants c and C such that $c \|v\|_1 \leq \|v\|_2 \leq C \|v\|_1$ for all $v \in V$.

(a) Let d_1 and d_2 be the metrics defined by two equivalent norms: $d_1(v, w) = |v - w|_1$ and $d_2(v, w) = |v - w|_2$. Show that a subset U of V is open with respect to d_1 if and only if it is open with respect to d_2. (Therefore equivalent norms on V define the same topologies on V.)

(b) Prove that any two norms on a finite-dimensional vector space are equivalent. (Hint: Use Theorem 2 in the book.)

(c) On the vector space of continuous functions $C([a, b])$ consider the norms

$$ |f|_{L^1} = \int_a^b |f(x)| \, dx \quad \text{and} \quad |f|_{\text{max}} = \max\{ |f(x)| : x \in [a, b] \} $$

i. Show that $|f|_{L^1} \leq (b - a) |f|_{\text{max}}$ for all $f \in C([a, b])$

ii. Show that there is no constant C such that $|f|_{\text{max}} \leq C |f|_{L^1}$ for all $f \in C([a, b])$. (Therefore the L^1 and max norms are not comparable.) Hint: Find a sequence of functions f_n such that $|f_n|_{L^1} \rightarrow 0$ but $|f_n|_{\text{max}} \not\rightarrow 0$.

5. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by $f(s, t) = (st, s^2 - t^2)$ and $g : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be defined by $g(x, y) = (x + y^2, y - x^2)$. Let $p = (2, 1)$, $q = f(p)$.

(a) Compute the matrices for $(Df)_p$ and $(Dg)_q$.

(b) Use the Chain Rule to calculate the matrix for $(D(g \circ f))_p$.

(c) Compute $h = g \circ f$ and use it to compute $(D(g \circ f))_p$ directly.

6. Suppose that U is a connected open subset of \mathbb{R}^n and that $f : U \rightarrow \mathbb{R}^m$ is differentiable and $(Df)_p = 0$ for all $p \in U$. Prove that f is constant.