1. The graph of \(f \) is shown below. Let \(F \) be an antiderivative of \(f \) with \(F(0) = 1 \). On the axes provides, sketch the graph of \(F \). Label the critical points and inflection points of \(F \).

2. Compute the following antiderivatives.

 (a) \(\int \frac{4}{\sqrt{x}} \, dx \)

 (b) \(\int 3 \cos(x) - 2 \sin(x) \, dx \)

 (c) \(\int \frac{x^4 - 3x + 2}{x^{1/2}} \, dx \)

 (d) \(\int (x - 2)(3x + 1) \, dx \)

3. Compute the following definite integrals.

 (a) \(\int_0^1 x^4 - 3x + 1 \, dx \)

 (b) \(\int_e^{e^2} \frac{1}{x} \, dx \)

 (c) \(\int_0^{\pi/3} \sin(x) \, dx \)

4. Suppose a population of squirrels in a certain area is growing at a rate of \(10e^t \) squirrels per month, and that initially there are 50 squirrels. Find the population \(P(t) \) of squirrels in month \(t \). What is the squirrel population after 1 month?

5. Find the exact area of the region between the curve \(y = x^2 + 1 \) and the line \(y = x + 3 \). Hint: First determine where the curves cross, and then think of the area as a difference of two areas.