\[\int_0^1 x^2 \sqrt{4 - x^2} \, dx = \frac{\pi}{3} - \frac{\sqrt{3}}{4} \approx 0.6141848494 \]

1. Verify the exact value of the integral above, using a trig substitution.

Let \(x = 2 \sin \theta, \, dx = 2 \cos \theta \, d\theta \). Then \(\sqrt{4 - x^2} = 2 \cos \theta \), and the limits of integration become \(\theta = 0 \) to \(\theta = \pi/6 \):

\[\int_0^1 x^2 \sqrt{4 - x^2} \, dx = \int_0^{\pi/6} 4 \sin^2 \theta \cdot 2 \cos \theta \cdot 2 \cos \theta \, d\theta = 16 \int_0^{\pi/6} \sin^2 \theta \cos^2 \theta \, d\theta \]

Now use the identities \(\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta) \) and \(\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \) to write this as

\[4 \int_0^{\pi/6} (1 - \cos 2\theta)(1 + \cos 2\theta) \, d\theta = 4 \int_0^{\pi/6} 1 - \cos^2(2\theta) \, d\theta \]

Now use the identity \(\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) \) again to get

\[4 \int_0^{\pi/6} 1 - \frac{1}{2}(1 + \cos(4\theta)) \, d\theta = \int_0^{\pi/6} 2 - 2 \cos(4\theta) \, d\theta = 2 \theta - \frac{1}{2} \sin(4\theta) \bigg|_0^{\pi/6} = \frac{\pi}{3} - \frac{\sqrt{3}}{4} \]

2. Complete the table below for the function \(f(x) = x^2 \sqrt{4 - x^2} \) over \([0, 1]\).

<table>
<thead>
<tr>
<th>(n)</th>
<th>LEFT((n))</th>
<th>RIGHT((n))</th>
<th>MID((n))</th>
<th>TRAP((n))</th>
<th>SIMP((n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2420614592</td>
<td>1.1080868630</td>
<td>0.5834612525</td>
<td>0.6750741612</td>
<td>0.6139988887</td>
</tr>
<tr>
<td>4</td>
<td>0.4127613558</td>
<td>0.8457740578</td>
<td>0.6066256665</td>
<td>0.6292677068</td>
<td>0.6141729467</td>
</tr>
<tr>
<td>8</td>
<td>0.5096934611</td>
<td>0.7261998120</td>
<td>0.6123028325</td>
<td>0.6179466366</td>
<td>0.6141841005</td>
</tr>
<tr>
<td>16</td>
<td>0.5609981468</td>
<td>0.6692513225</td>
<td>0.6137148364</td>
<td>0.6151247346</td>
<td>0.6141848024</td>
</tr>
</tbody>
</table>

\[E(\(n \)) \approx \frac{\text{error}}{2^p} \]

3. For each method, when you double \(n \), the error should be (approximately) divided by \(2^p \) for some power \(p \). Find that power for each of the methods. Put your results in the table below.

<table>
<thead>
<tr>
<th>Method</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>MID</th>
<th>TRAP</th>
<th>SIMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
For each method the basic error estimate is therefore

\[E(n) \approx \frac{k}{n^p} \]

where \(p \) is the power in the table above.

4. In each method, determine the effect on the error of multiplying \(n \) by 10.

\[
\begin{array}{cccccc}
\text{Method} & \text{LEFT} & \text{RIGHT} & \text{MID} & \text{TRAP} & \text{SIMP} \\
\hline
\text{Error is divided by:} & 10 & 10 & 100 & 100 & 10000
\end{array}
\]

Next consider the definite integral

\[\int_0^1 e^{x^2} \, dx, \]

which cannot be evaluated analytically.

5. Plot the graph of \(g(x) = e^{x^2} \) over the interval \([0, 1]\). For each of the methods LEFT, RIGHT, MID and TRAP, determine whether it will yield an overestimate or an underestimate. Use the graph of \(g \) to explain why.

The function is increasing so

\[\text{LEFT}(n) \leq \int_0^1 e^{x^2} \, dx \leq \text{RIGHT}(n) \]

The function is concave down, so

\[\text{MID}(n) \leq \int_0^1 e^{x^2} \, dx \leq \text{TRAP}(n) \]

6. Compute LEFT(10) and RIGHT(10). What is the most \(E(10) \) could be for each method? Why?

\[\text{LEFT}(10) = 1.381260601 \text{ and } \text{RIGHT}(10) = 1.553088784. \] Since the actual value is between these, the error is at most \(\text{RIGHT}(10) - \text{LEFT}(10) = 0.171828183 \).

7. How large does \(n \) need to be in order for LEFT(\(n \)) and RIGHT(\(n \)) to approximate the integral to 9 decimal places? (For 9 decimal places accuracy, \(E(n) \) must be at most \(0.5 \times 10^{-9} \).) By the result of Question 4, each time \(n \) is multiplied by 10, the error is divided by 10. Since we need to divide \(E(10) \approx 0.171828183 \) by \(10^9 \) to obtain a number less than \(0.5 \times 10^{-9} \), we need to multiply \(n = 10 \) by \(10^9 \). So we need \(n \) to be around \(10^{10} \).

8. Compute MID(10) and TRAP(10). What is the most \(E(10) \) could be for each method? Why?

\[\text{MID}(10) = 1.460393091 \text{ and } \text{TRAP}(10) = 1.467174692. \] Since the actual value is between these, the error is at most \(\text{TRAP}(10) - \text{MID}(10) = 0.006781601 \).
9. How large does n need to be in order for $\text{MID}(n)$ and $\text{TRAP}(n)$ to approximate the integral to 9 decimal places?

By the result of Question 4, each time n is multiplied by 10, the error is divided by 100. Since we need to divide $E(10) \approx 0.006781601$ by 10^8 to obtain a number less than 0.5×10^{-9}, we need to multiply $n = 10$ by 10^4. So we need n to be around 100000.

10. (Do before or after lab.) Explain why $\text{SIMP}(n)$ is always between $\text{MID}(n)$ and $\text{TRAP}(n)$.

Hint: Either $\text{MID}(n) \leq \text{TRAP}(n)$ or $\text{TRAP}(n) \leq \text{MID}(n)$. Consider each case separately.

If $\text{MID}(n) \leq \text{TRAP}(n)$, then
\[
\frac{2 \cdot \text{MID}(n) + \text{TRAP}(n)}{3} \leq \frac{2 \cdot \text{TRAP}(n) + \text{TRAP}(n)}{3} = \text{TRAP}(n)
\]
and
\[
\frac{2 \cdot \text{MID}(n) + \text{TRAP}(n)}{3} \geq \frac{2 \cdot \text{MID}(n) + \text{MID}(n)}{3} = \text{MID}(n)
\]
so
\[
\text{MID}(n) \leq \text{SIMP}(n) \leq \text{TRAP}(n)
\]
On the other hand, if $\text{TRAP}(n) \leq \text{MID}(n)$, then
\[
\frac{2 \cdot \text{MID}(n) + \text{TRAP}(n)}{3} \leq \frac{2 \cdot \text{MID}(n) + \text{MID}(n)}{3} = \text{MID}(n)
\]
and
\[
\frac{2 \cdot \text{MID}(n) + \text{TRAP}(n)}{3} \geq \frac{2 \cdot \text{TRAP}(n) + \text{TRAP}(n)}{3} = \text{TRAP}(n)
\]
so
\[
\text{TRAP}(n) \leq \text{SIMP}(n) \leq \text{MID}(n)
\]

11. Compute $\text{SIMP}(10)$. What is the most $E(10)$ could be for this method? Use the results of questions 8 and 10.

$\text{SIMP}(10) = 1.462653625$. Since $\text{SIMP}(10)$ and the exact value are both between $\text{MID}(10)$ and $\text{TRAP}(10)$, the error is at most $\text{TRAP}(10) - \text{MID}(10) = 0.006781601$.

12. How large does n need to be in order for $\text{SIMP}(n)$ to approximate the integral to 9 decimal places? Write out the value of the integral to 9 decimal places.

By the result of Question 4, each time n is multiplied by 10, the error is divided by 10000. Since we need to divide $E(10) \approx 0.006781601$ by 10^8 to obtain a number less than 0.5×10^{-9}, we need to multiply $n = 10$ by 10^2. So we need n to be around 1000. Computing $\text{SIMP}(1000)$ gives the value 1.462651746.