1. Simplify the following expressions:

 (a) \(\frac{(x^2y)^2}{x^{-2}y^3} \)

 (b) \(x(x^2 - 2x + 6) - (x^3 - 5x^2 - 3) \)

2. Factor:

 (a) \(9y^2 - 4x^2 \)

 (b) \(x^2 - 3x - 10 \)

3. Write down the quadratic formula and use it to solve the equation

\[x^2 - 3x + 1 = 0 \]

for \(x \).
4. Let \(f(x) = \frac{1}{x} \). Compute

\[
\frac{f(2 + h) - f(2)}{h}
\]

and simplify as much as possible.

5. Fill in the table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{\pi}{3})</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\cos x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tan x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Let \(f(x) = 2x + 1 \) and \(g(x) = \frac{1}{x} \).

 (a) Compute \(f(g(x)) \)

 (b) Compute \(g(f(x)) \)