College of the Holy Cross, Fall 2016
Math 242, Midterm 1 Practice Questions
Solutions

1. Use Axioms 1 though 9 to prove that if $x \cdot y = x \cdot z$ and $x \neq 0$ then $y = z$.

Solution. Suppose $x \cdot y = x \cdot z$. Since $x \neq 0$, Axiom 5(b) implies that there exists a real number x^{-1} such that $x \cdot x^{-1} = 1$. By Axiom 1, this implies $x^{-1} \cdot x = 1$, so we have

\[
\begin{align*}
y &= y \cdot 1 & \text{by Axiom 4(b)} \\
 &= 1 \cdot y & \text{by Axiom 1} \\
 &= (x^{-1} \cdot x) \cdot y & \text{since } x^{-1} \cdot x = 1 \\
 &= x^{-1} \cdot (x \cdot y) & \text{by Axiom 2} \\
 &= x^{-1} \cdot (x \cdot z) & \text{by hypothesis} \\
 &= (x^{-1} \cdot x) \cdot z & \text{by Axiom 2} \\
 &= 1 \cdot z & \text{since } x^{-1} \cdot x = 1 \\
 &= z \cdot 1 & \text{by Axiom 1} \\
 &= z & \text{by Axiom 4(b)}.
\end{align*}
\]

2. (a) Show that $\sqrt{3}$ is irrational.

Solution. Suppose $\sqrt{3}$ is rational. Then we could write $\sqrt{3} = \frac{m}{n}$, where m and n are integers that have no common factors. This implies $m^2 = 3n^2$, so m^2 is a multiple of 3. Now there are 3 possibilities for m: $m = 3k$, $m = 3k + 1$ or $m = 3k + 2$ for some integer k. If $m = 3k + 1$, then $m^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. But this contradicts the fact that m^2 is a multiple of 3. Likewise, if $m = 3k + 2$, then $m^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$, again contradicting the fact that m^2 is a multiple of 3. The only possibility therefore is that $m = 3k$ for some integer k. This then implies $9k^2 = 3n^2$, so $n^2 = 3k^2$. Hence n^2 is a multiple of 3, and by reasoning as before, it follows that n is a multiple of 3. But this means that both m and n share the common factor of 3, contrary to the assumption. This contradiction implies that $\sqrt{3}$ is irrational.

(b) Suppose $t > 0$ is irrational. Prove that \sqrt{t} is irrational.

Solution. Suppose instead that \sqrt{t} is rational. Then $\sqrt{t} = p/q$ where p and q are integers and $q \neq 0$. Then $t = p^2/q^2$ would also be rational, a contradiction.

3. Fix $r \neq 1$. Use the principle of induction to prove that the summation formula

$$
\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}
$$

holds for all $n \in \mathbb{N}$.
Solution. Denote this summation formula by \(S_n \). When \(n = 1 \), the statement reads \(1 + r = \frac{1-r^2}{1-r} \), which is true since \(1 - r^2 = (1 - r)(1 + r) \). Next suppose \(S_n \) is true for some \(n \geq 1 \). Then
\[
\sum_{k=0}^{n+1} r^k = \left(\sum_{k=0}^{n} r^k \right) + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + r^{n+1}
\]
since \(S_n \) is true
\[
= \frac{1 - r^{n+1} + r^{n+1}(1 - r)}{1 - r} = \frac{1 - r^{n+2}}{1 - r},
\]
so \(S_{n+1} \) is true. Thus \(S_n \) implies \(S_{n+1} \) and therefore by the principle of induction \(S_n \) is true for all \(n \geq 1 \).

4. Let \(A = \{3 - \frac{1}{n} : n \in \mathbb{N}\} \). Find lub \(A \), and prove your assertion.

Solution. lub \(A = 3 \). First, since \(3 - \frac{1}{n} < 3 \) for any \(n \), 3 is an upper bound for \(A \). Now consider any number \(M < 3 \). Since \(3 - M > 0 \), the Archimedian Property implies that there is some \(n \in \mathbb{N} \) such that \(1/n < 3 - M \). This implies \(3 - \frac{1}{n} > M \), so \(M \) is not an upper bound of \(A \). Therefore every upper bound \(M \) of \(A \) must satisfy \(M \geq 3 \). Hence 3 is the least upper bound of \(A \).

5. Let \(A = \{x \in \mathbb{R} \mid x^5 - 2x < 1000\} \).

(a) Prove that \(A \) is bounded above.

Solution. 10 is an upper bound for \(A \). To see this, suppose 10 is not an upper bound for \(A \). Then for some \(x \in A \) we have \(x > 10 \). But this would imply \(x^4 > 10^4 = 10000 \), so \(x^4 - 2 > 9998 \) and thus \(x^5 - 2x = x(x^4 - 2) > 10(9998) > 1000 \). This contradicts the fact that \(x^5 - 2x < 1000 \) for each \(x \in A \). Hence 10 is an upper bound for \(A \).

(b) Prove that \(A \) has a least upper bound.

Solution. By the previous problem \(A \) is bounded above by 10. Since \(0^5 - 2(0) = 0 < 1000 \), 0 \(\in A \), and thus \(A \) is nonempty. The Least Upper Bound Axiom then implies that \(A \) has a least upper bound.

6. Suppose \(A \) and \(B \) are nonempty subsets of \(\mathbb{R} \) that are bounded above and satisfy lub \(A \) < lub \(B \). Prove that there exists some \(y \in B \) such that \(x < y \) for every \(x \in A \).

Solution. Since lub \((A) < \) lub \((B) \), lub \((A) \) is not an upper bound for \(B \). Hence there exists some \(y \in B \) such that lub \((A) < y \). Since lub \((A) \) is an upper bound for \(A \), \(x \leq \) lub \((A) \) for all \(x \in A \). By transitivity it follows that \(x < y \) for all \(x \in A \).

7. (a) Complete the following definition. A sequence \(x_n \) to converges to a real number \(a \) if

Solution. For any \(\epsilon > 0 \) there exists some \(n_0 \in \mathbb{N} \) such that \(|x_n - a| < \epsilon \) for all \(n \geq n_0 \).
(b) Use the definition of convergence to prove that \(\lim_{n \to \infty} \frac{3n}{2n-1} = \frac{3}{2} \).

Solution. Let \(\epsilon > 0 \). Choose \(n_0 \in \mathbb{N} \) such that \(n_0 > \frac{3}{2\epsilon} \) (this is possible by the Archimedian property since \(\frac{3}{2\epsilon} > 0 \)). Then for any \(n \geq n_0 \), we have \(n > \frac{3}{2\epsilon} \), so \(\frac{3}{2n} < \epsilon \) and thus

\[
\left| \frac{3n}{2n-1} - \frac{3}{2} \right| = \frac{3}{2(2n-1)} \leq \frac{3}{2n} < \epsilon
\]

since \(2n-1 \geq n \) when \(n \geq 1 \)

for all \(n \geq n_0 \).

8. Suppose \(\lim a_n = 7 \). Show that there exists \(n_0 \in \mathbb{N} \) such that for all \(n \geq n_0 \) we have \(a_n > 6.99 \).

Solution. Let \(\epsilon = 0.01 \). Then since \(\lim a_n = 7 \), there exists some \(n_0 \) such that \(|a_n - 7| < 0.01 \) for all \(n \geq n_0 \). This implies \(-0.01 < a_n - 7 < 0.01\), or equivalently \(6.99 < a_n < 7.01 \). Hence \(a_n > 6.99 \) for all \(n \geq n_0 \).

9. True or False. If True, give a short proof. If False, give a counterexample.

(a) If the sequences \(\{x_n\} \) and \(\{y_n\} \) both diverge, then the sequence \(\{x_ny_n\} \) diverges.

Solution. False, \(x_n = y_n = (-1)^n \) both diverge, but \(x_ny_n = 1 \) converges.

(b) If \(r \neq 0 \) is rational, and \(t \) is irrational, then \(t/r \) is irrational.

Solution. True. Suppose \(t/r \) is rational. Then \(t/r = m/n \) for some integers \(m \) and \(n \) with \(n \neq 0 \). Solving for \(t \) then gives \(t = rm/n \). Since \(r \) is rational, \(r = p/q \) where \(p \) and \(q \) are integers and \(q \neq 0 \). Thus \(t = (mp)/(nq) \). Since \(mp \) and \(nq \) are integers and \(nq \neq 0 \) it follows that \(t \) is rational, a contradiction. Hence \(t/r \) is irrational.

10. Suppose \(x_n \) converges to 0. Prove that \(\sqrt[n]{x_n} \) converges to 0.

Solution. Let \(\epsilon > 0 \). Since \(x_n \to 0 \), there exists some \(n_0 \in \mathbb{N} \) such that \(|x_n| < \epsilon^3 \) for all \(n \geq n_0 \). Thus \(|\sqrt[n]{x_n}| < \epsilon \) for all \(n \geq n_0 \).

11. Suppose \(\lim x_n = 0 \) and \(y_n \) is bounded. Prove that \(\lim x_ny_n = 0 \).

Solution. Since \(y_n \) is bounded, there exists a real number \(M > 0 \) such that \(|y_n| \leq M \) for all \(n \). Let \(\epsilon > 0 \). Since \(x_n \to 0 \), there exists some \(n_0 \in \mathbb{N} \) such that \(|x_n - 0| < \frac{\epsilon}{M} \) for all \(n \geq n_0 \). Thus

\[
|x_ny_n - 0| = |x_n||y_n| \leq M|x_n| < M \cdot \epsilon M = \epsilon
\]

for all \(n \geq n_0 \). Hence \(\lim x_ny_n = 0 \).

12. Let \(x_n \) be a sequence with the property that \(x_n^2 - 5x_n \) converges to 14.
13. Consider the sequence defined recursively by \(x_1 = 1 \) and \(x_{n+1} = \frac{x_n^2 + 8}{6} \).

(a) Prove that the sequence \(x_n \) is increasing.

Solution. By induction. Let \(S_n \) denote the statement \(x_n \leq x_{n+1} \). Since \(x_1 = 1 < \frac{9}{6} = x_2 \), this proves \(S_1 \) is true. Now suppose \(x_k \leq x_{k+1} \) for some \(k \geq 1 \). Then since both \(x_k \) and \(x_{k+1} \) are positive, this implies \(x_k^2 \leq x_{k+1}^2 \). Adding 8 and dividing by 6 then gives \(\frac{x_k^2 + 8}{6} \leq \frac{x_{k+1}^2 + 8}{6} \), which implies \(x_{k+1} \leq x_{k+2} \). Thus \(S_k \implies S_{k+1} \) for all \(k \geq 1 \), so by the principle of induction, \(S_n \) is true for all \(n \in \mathbb{N} \). Hence \(x_n \) is increasing.

(b) Prove that \(x_n \leq 3 \) for all \(n \).

Solution. By induction again. Let \(S_n \) denote the statement \(x_n \leq 3 \). The base case \(S_1 \) is true since \(x_1 = 1 < 3 \). So suppose \(x_k \leq 3 \) for some \(k \geq 1 \). Then since \(x_k \) is positive, \(x_k^2 \leq 9 \). Adding 8 and dividing by 6 then gives \(\frac{x_k^2 + 8}{6} \leq \frac{17}{6} < 3 \). Thus \(x_{k+1} \leq 3 \). Hence \(S_k \implies S_{k+1} \) for all \(k \geq 1 \), so by the principle of induction \(S_n \) is true for all \(n \in \mathbb{N} \).

(c) Prove that the sequence \(x_n \) converges, and find its limit.

Solution. By parts (a) and (b), the sequence \(x_n \) is monotone and bounded (above by 3 and below by \(x_1 = 1 \) since \(x_n \) is increasing), so \(x_n \) converges by the Monotone Convergence Theorem. Let \(a = \lim x_n \). Then, using the algebraic limit theorem,

\[
a = \lim x_{n+1} = \lim \frac{x_n^2 + 8}{6} = \frac{a^2 + 8}{6},
\]

so \(a^2 + 8 = 6a \) which implies \(a = 2 \) or \(a = 4 \). But since \(x_n \leq 3 \) for all \(n \), we have \(a \leq 3 \). Thus \(a = 2 \).

14. Consider the sequence defined recursively by \(y_1 = 5 \) and \(y_{n+1} = \frac{y_n^2 + 8}{6} \).

(a) Use induction to prove that \(y_n \geq 5 \) for all \(n \).

Solution. When \(n = 1 \), we have \(y_1 = 5 \geq 5 \). Now suppose \(y_n \geq 5 \) for some \(n \geq 1 \). Then \(y_n^2 \geq 25 \), so \(y_n^2 + 8 \geq 33 \) and therefore \(y_{n+1} = \frac{y_n^2 + 8}{6} \geq \frac{33}{6} > 5 \), so \(y_{n+1} \geq 5 \).

(b) Prove by contradiction that \(y_n \) diverges.

Solution. Suppose \(y_n \) converges. Let \(a = \lim y_n \). Then by the Algebraic Limit Theorem, \(\lim y_{n+1} = \lim \frac{y_n^2 + 8}{6} = \frac{a^2 + 8}{6} \). But \(\lim y_{n+1} = \lim y_n = a \), so we have \(a = \frac{a^2 + 8}{6} \). The solutions of this equation are \(a = 2 \) and \(a = 4 \). But since \(y_n \geq 5 \) for all \(n \), \(a \) must be at least 5, a contradiction.
15. Determine whether or not each sequence converges, and find the limit of those that converge.

(a) $x_n = \frac{3}{5n^2 + 4}$ if n is even and $x_n = \frac{n}{1 - 5n}$ if n is odd.

Solution. Using the fact that $\lim \frac{1}{k} = \lim \frac{1}{k^2} = 0$ together with the algebraic limit theorem, we have

$$\lim x_{2k} = \lim \frac{3}{5(2k)^2 + 4} = \lim \frac{3}{20 + \frac{4}{k^2}} = \frac{0}{20} = 0$$

and

$$\lim x_{2k+1} = \lim \frac{2k + 1}{1 - 5(2k + 1)} = \lim \frac{2 + \frac{1}{k}}{-\frac{4}{k} - 10} = \frac{2}{-10} = -\frac{1}{5}.$$

Thus x_n has subsequences that converge to different limits, so x_n does not converge.

(b) $x_n = \frac{3n}{5n + 4}$ if n is even and $x_n = \frac{1 - 3n}{1 - 5n}$ if n is odd.

Solution. Using the fact that $\lim \frac{1}{k} = \lim \frac{1}{k^2} = 0$ together with the algebraic limit theorem, we have

$$\lim x_{2k} = \lim \frac{6k}{10k + 4} = \lim \frac{6}{10 + \frac{4}{k}} = \frac{6}{10} = \frac{3}{5}$$

and

$$\lim x_{2k+1} = \lim \frac{1 - 3(2k + 1)}{1 - 5(2k + 1)} = \lim \frac{-6 - \frac{2}{k}}{-\frac{5}{k} - 10} = \frac{-6}{-10} = \frac{3}{5}.$$

Therefore, by the theorem we proved in class, since both x_{2k} and x_{2k+1} converge to $\frac{3}{5}$, x_n converges to $\frac{3}{5}$.