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Abstract

We study ground state traveling wave solutions of a fourth order wave equation.
We find conditions on the speed of the waves which imply stability and instability of
the solitary waves. The analysis depends on the variational characterization of the
ground states rather than information about the linearized operator.

1 Introduction

This paper is an analysis of the stability of traveling wave solutions of the equation

utt + ∆2u + u = f(u) (1.1)

where f(u) = |u|p−1u for some p > 1. If n ≥ 5 then we also require p < 2∗ − 1 where

2∗ =
2n

n− 4
(1.2)

is the critical exponent in the Sobolev embedding H2(Rn) ↪→ Lp(Rn). We show that there ex-
ist solitary wave solutions of (1.1) and prove criteria for their stability and instability. Our re-
sults parallel those for the analogous second order Klein-Gordon equations (see [8],[25],[27]).
We show that the solitary wave of speed c is stable when the action function d1(c), defined
by (3.14), is convex and is unstable when d1(c) is concave.

The interesting feature of the problem is that the solitary wave satisfies a fourth order
elliptic equation. The stability of solitary waves of second order equations has been studied
in many papers, including [25], [26],[27] for the Klein-Gordon equations and [4],[32],[33] for
the Schrodinger equation. Also, higher order equations such as the KdV equation ([3], [28])
and generalized Boussinesq equations ([19],[23]) have been examined. In each case, however,
the solitary wave satisfies a second order ODE. Using a nodal analysis of the ground state it
is possible in some cases to obtain information about the spectrum of the linearized operator.
However, the solitary waves of (1.1) satisfy a genuine fourth order PDE (2.1), for which there
is no maximum principle available. Thus the ground states may not necessarily be positive,
and in fact may be oscillatory. So we cannot easily obtain this spectral information, and
therefore some of the standard techniques for analyzing stability are no longer applicable.
Instead we rely entirely on the variational characterization of the solitary wave.
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In one dimension an equation similar to (1.1), with a different nonlinear term, has been
studied as a model for the suspension bridge [20]. Numerical evidence in the case of an
exponential nonlinearity suggests that traveling waves are unstable for small c and exhibit
soliton-like behavior for c near the critical value

√
2 [21].

In Section 2 we prove the existence of a solitary wave. Solutions are obtained by using
the method of concentrated compactness developed by Lions [17] to solve a constrained
minimization problem. We use the scaling property of the pure power nonlinearity to verify
the subadditivity conditions (2.9) and to scale away the Lagrange multiplier. In second order
and pure fourth order problems we can verify these conditions and eliminate any multipliers
by dilating in the independent variable [1]. The presence of both fourth and second order
terms in (2.1), however, prohibits such an approach, and therefore we restrict our attention
to homogeneous nonlinearities. We also note that the scale invariance allows us to solve the
minimization without any restrictions on the dimension n.

The results in this section apply to a more general class of homogeneous nonlinear terms of
variational type. For instance, consider F ∈ C1(Rn+1) such that ∇F (λy, λz) = λp+1F (y, z)
for all (y, z) ∈ Rn+1, λ > 0. If F (u,∇u) ∈ L1(Rn) for every u ∈ H2(Rn) and there exists
some u ∈ H2(Rn) such that

∫
Rn F (u,∇u)dx > 0 then nonlinearities of the form

f(u,∇u) = ∇yF (u,∇u)− divx(∇zF (u,∇u)). (1.3)

may be treated as well. In particular, the nonlinearities f(u) = ±|u|p and −3u2 + (ux)
2 −

2(uux)x are of this form. The latter arises in the study of fifth order KdV equations [5], and
will be the subject of another paper [16].

In Section 3 we show that the evolution equation admits solutions in the space X =
H2(Rn)× L2(Rn) which exist locally in time for given initial data in X, provided p < 2∗/2.

We discuss in Section 4 the properties of d1(c) we shall need for the stability analysis.
Once again we use the scaling property of our nonlinearity to write d1(c) in terms of the
minimum values of the functionals used to obtain the solitary wave. We also establish bounds
on d1 which imply concavity for small c and convexity for c near

√
2.

In Section 5 we show (Theorem 5.4) that the set of ground states is stable whenever
d1(c) is strictly convex. The proof consists of a compacness argument based on the ideas of
Shatah [25] and Cazenave and Lions [4]. We use the variational properties of the ground
states, along with a convexity lemma of Shatah (Lemma 5.1), to establish the key inequality
(5.5).

In Section 6 we use a Lyapunov functional construction due to Grillakis, Shatah and
Strauss [8] to show (Theorem 6.2) that a given ground state is orbitally unstable when
d′′1(c) < 0. We need to make the additional assumption that the there is a C1 map c 7→ ϕc,
where ϕc is a ground state with speed c, in order to apply the implicit function theorem.

Finally, in Section 7 we consider standing wave solutions of (1.1). The results of Sections 5
and 6 extend quite easily to this case, and the scaling properties of the solitary wave equation
(7.2) make it possible to determine explicitly the intervals of stability and instability.
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2 Existence of Minimizers

In this section we prove the existence of traveling wave solutions. In the process an essential
result concerning the compactness of minimizing sequences is established. Let u(x, t) =
ϕ(x + ct) for c ∈ Rn be a solution of (1.1). Then ϕ must solve

∆2ϕ +
n∑

i,j=1

cicjϕxixj
+ ϕ = |ϕ|p−1ϕ (2.1)

For |c|2 < 2 we can obtain solutions of (2.1) by considering the following constrained mini-
mization problem. Let

Ic(ψ) =
1

2

∫

Rn

|∆ψ|2 − |c · ∇ψ|2 + |ψ|2dx

K(ψ) =
1

p + 1

∫

Rn

|ψ|p+1dx

(2.2)

and define
mλ(c) = inf{Ic(ψ) : ψ ∈ H2(Rn), K(ψ) = λ} (2.3)

for 0 < λ ≤ 1. We say a sequence {ψk}∞k=1 in H2(Rn) is a minimizing sequence if

lim
k→∞

Ic(ψk) = m1(c) and lim
k→∞

K(ψk) = 1

Our main result in this section is the following.

Theorem 2.1 For any n suppose 1 < p < 2∗− 1 and |c|2 < 2. Let {ψk}∞k=1 be a minimizing
sequence. Then there exists a subsequence {ψkj

}, yj ∈ Rn and ψ ∈ H2(Rn) such that
ψkj

(· − yj) → ψ in H2(Rn). The function ψ is a minimizer of Ic subject to the constraint
K(ψ) = 1 and is therefore a weak solution of the Euler-Lagrange equation

∆2ψ +
n∑

i,j=1

cicjψxixj
+ ψ = µ|ψ|p−1ψ.

Hence ϕ = µ
1

p−1 ψ is the desired solution of (2.1). Solutions obtained in this manner will be
referred to as ground states. If we multiply (2.1) by ϕ and integrate we see that

2Ic(ϕc) = (p + 1)K(ϕc) (2.4)

for any ground state vpc. Since ϕc is obtained by minimizing Ic(ψ) subject to the constraint
K(ψ) = 1 and rescaling, it follows from the relation

m1(c) = inf
06=ψ∈H2(Rn)

Ic(ψ)

K(ψ)
2

p+1

(2.5)
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that

Ic(ϕc) = cp

(
m1(c)

) p+1
p−1 cp =

(
2

p + 1

) 2
p−1

(2.6)

Thus we may define the set of all ground states with speed c by

Gc =
{
ψ ∈ H2(Rn) : (p + 1)K(ψ) = 2Ic(ψ) = 2cp(m1(c))

p+1
p−1

}
(2.7)

We establish Theorem 2.1 by applying the method of concentrated compactness. By
scaling it is easily seen that

mλ(c) = λ
2

p+1 m1(c) (2.8)

and therefore the strict subadditivity condition

mλ(c) + m1−λ(c) > m1(c) λ ∈ (0, 1) (2.9)

holds. Let {ψk}∞k=1 be a minimizing sequence and define a sequence in L1(Rn) by

ρk = |∆ψk|2 + |ψk|2.
Since

Ic(ψ) ≥ (1− |c|2/2)

∫

Rn

|∆ψ|2 + |ψ|2dx = (1− |c|2/2)‖ψ‖2
H2(Rn), (2.10)

for any ψ ∈ H2(Rn), Ic is coercive for |c|2 < 2, and therefore {ψk}∞k=1 is bounded in H2(Rn).
So, upon passing to a subsequence if necessary, we may assume that

lim
k→∞

∫

Rn

ρk(x)dx = L > m1(c)

and after normalizing appropriately we may suppose
∫

Rn

ρk(x)dx = L

for all k. By the concentration-compactness lemma of Lions [17], there is a subsequence
(renamed to ρk) satisfying one of the following three conditions:

1. Tightness. There exist yk ∈ Rn such that for any ε > 0 there exists R(ε) so that for all k
∫

B(yk,R(ε))

ρk dx ≥
∫

Rn

ρk dx− ε (2.11)

2. Vanishing. For every R > 0,

lim
k→∞

sup
y∈Rn

∫

B(y,R)

ρk dx = 0 (2.12)

3. Dichotomy. There exists α ∈ (0, L) such that for any ε > 0 there exist R,Rk →∞, yk ∈ Rn

and k0 so that ∣∣∣∣
∫

B(yk,R)

ρkdx− α

∣∣∣∣ < ε and

∣∣∣∣
∫

R<|x−yk|<Rk

ρkdx

∣∣∣∣ < ε (2.13)

for k ≥ k0.
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Lemma 2.2 The sequence {ρk}∞k=1 is tight modulo the sequence of translations {yk}∞k=1 in
Rn.

Proof. The proof follows from arguments given in [17],[18] which we present here.
First suppose vanishing occurs. By the Sobolev inequality we have

∫

B(y,R0)

|ψk|p+1dx ≤ C(R0)

(∫

B(y,R0)

|∆ψk|2 + |ψk|2dx

) p+1
2

(2.14)

for all k and any y ∈ Rn, since p + 1 < 2∗ and {ψk}∞k=1 is bounded in H2(Rn). By (2.12) we
can choose k(ε) so that k > k(ε) implies

sup
y∈Rn

∫

B(y,R0)

ρkdx < ε

so that by (2.14) we then have

∫

B(y,R0)

|ψk|p+1dx ≤ Cε
p−1
2

(∫

B(y,R0)

|∆ψk|2 + |ψk|2dx

)
(2.15)

for k > k(ε) and any y ∈ Rn. Using an elementary construction we may cover Rn with balls
of radius 1 in such a way that each point of Rn is contained in at most 2n + 1 balls. Then,
we sum (2.15) over these balls to get

‖ψk‖p+1
Lp+1(Rn) ≤ (2n + 1)Cε

p−1
2 ‖ψk‖2

H2(Rn) ≤ Cε
p−1
2

This implies that lim
k→∞

K(ψk) = 0 and therefore the constraint is lost. Hence vanishing cannot
occur.

Next suppose dichotomy occurs and choose ξ1, ξ2 ∈ C∞(R) so that 0 ≤ ξ1, ξ2 ≤ 1 and

ξ1(x) = 1 for |x| ≤ 1 ξ2(x) = 1 for |x| ≥ 1

ξ1(x) = 0 for |x| ≥ 2 ξ2(x) = 0 for |x| ≤ 1

2

Then define

ψk,1(x) = ξ1

( |x− yk|
R

)
ψk(x)

and

ψk,2(x) = ξ2

( |x− yk|
Rk

)
ψk(x). (2.16)

It is then easy to verify that

Ic(ψk) = Ic(ψk,1) + Ic(ψk,2) + O(ε)

K(ψk) = K(ψk,1) + K(ψk,2) + O(ε)
(2.17)
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for k ≥ k0. By passing to a further subsequence we can define

λ1(ε) = lim
k→∞

K(ψk,1)

λ2(ε) = lim
k→∞

K(ψk,2).
(2.18)

We clearly have λ1(ε), λ2(ε) ∈ [0, 1] and

|λ1(ε) + λ2(ε)− 1| = O(ε)

and we can therefore choose a sequence εj → 0 such that

λ1 = lim
j→∞

λ1(ε)

exists. Then
λ2 = lim

j→∞
λ2(ε) = 1− λ1

and there are two possibilities.
If λ1 ∈ (0, 1) it follows from (2.17) and (2.8) that

Ic(ψk) ≥ IK(ψk,1) + IK(ψk,2) + O(εj)

= [K(ψk,1)
2

p+1 + K(ψk,2)
2

p+1 ]m1(c) + O(εj)

Since {ψk}∞k=1 is a minimizing sequence we may send k to infinity and use (2.18) to obtain

m1(c) ≥ [λ1(εj)
2

p+1 + λ2(εj)
2

p+1 ]m1(c) + O(εj)

Letting j →∞ we arrive at the contradiction

m1(c) ≥ [(λ1)
2

p+1 + (λ2)
2

p+1 ]m1(c) > m1(c).

If λ1 = 0 (and similarly if λ1 = 1) we use (2.13), the coercivity of Ic and the fact that
ψk,1 is supported in B(yk, 2R) to conclude that

I(ψk,1) ≥ (1− |c|2/2)‖ψk,1‖2
H2(Rn) = (1− |c|2/2)‖ψk,1‖H2

0 (B(yk,2R)) by (2.10)

≥ (1− |c|2/2)

∫

B(yk,2R)

|∆ψk,1|2 + |ψk,1|2dx

= (1− |c|2/2)(α−+O(εj)) by (2.13).

Thus, using (2.17) and (2.8) again,

Ic(ψk) ≥ (1− |c|2/2)(α + O(εj)) + IK(ψk,2) + O(εj)

= (1− |c|2/2)α + K(ψk,2)
2

p+1 m1(c) + O(εj)

and sending k to infinity gives

m1(c) ≥ (1− |c|2/2)α + λ2(εj)
2

p+1 m1(c) + O(εj).
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We let j →∞ to get the contradiction

m1(c) ≥ 2

3
(1− |c|2/2)α + m1(c) > m1(c).

Hence dichotomy does not occur and the lemma is proved. ¥

Proof of Theorem 2.1. By Lemma 2.2 there exist yk ∈ Rn such that ρk(· + yk) is tight.
Since K(ψk) → 1 this implies that |ψk(·+yk)|p+1 is also tight. Now, since {ψk}∞k=1 is bounded
in H2(Rn), there is a subsequence {ψkj

}∞j=1 and ψ ∈ H2(Rn) such that

ψkj
(·+ ykj

) ⇀ ψ ∈ H2(Rn)

ψkj
(·+ ykj

) → ψ ∈ L2
loc(Rn).

Since {ψk} is bounded in L2∗(Rn) and p+1 < 2∗ it follows by interpolation that ψkj
(·+yj) →

ψ in Lp+1
loc (Rn). We now claim that ψkj

(· + yj) → ψ strongly in Lp+1(Rn). Indeed, let ε > 0
and choose R0 such that ∫

|x|≥R0

|ψ(x)|p+1dx < ε.

By (2.11) there exists R(ε) > R0 and j1(ε) so that j ≥ j(ε) implies
∫

|x|≥R(ε)

|ψkj
(x + yj)|p+1dx < ε.

By the convergence in Lp+1
loc (Rn) we can find j2(ε) > j1(ε) so that for j > j2(ε) we have

‖ψkj
(·+ yj)− ψ‖p+1

Lp+1(B(0,R(ε))) < ε

Thus ∫

Rn

|ψkj
(x + yj)− ψ(x)|p+1dx ≤ ε + 2p+1ε

and the claim is proved. Hence K(ψ) = 1. Since the weak convergence in H2(Rn) implies
I(ψ) ≤ m1(c) we therefore have I(ψ) = m1(c). The lemma then follows since ‖∆ψkj

‖L2(Rn) →
‖∆ψ‖L2(Rn) and ∆ψkj

⇀ ∆ψ in L2(Rn). ¥

Lemma 2.3 For any n suppose 1 < p < 2∗ − 1 and let ϕ ∈ H2(Rn) be a weak solution of
(5.1). Then ϕ ∈ H5(Rn).

Proof. For 1 ≤ n ≤ 4 the Sobolev inequality implies that ϕ ∈ L∞(Rn). Hence |ϕ|p−1ϕ ∈
H1(Rn). Since

(∆2 + (c · ∇)2 + Id)ϕ = |ϕ|p−1ϕ. (2.19)

it follows that ϕ ∈ H5(Rn).
For n = 5 fix 1 < p < 2∗ − 1 = 9 and proceed as follows. Suppose ϕ ∈ Hsk(R5). If

sk ≥ 5/2 then ϕ ∈ L∞(R5) and therefore ϕ ∈ H5(R5) as above. Otherwise the Sobolev
inequality implies that

|ϕ|p−1ϕ ∈ Lqk(R5) qk =
10

p(5− 2sk)
.
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If sk ≥ 5/2− 5/(2p) then qk ≥ 2 and |ϕ|p−1ϕ ∈ L2(R5). Thus (2.19) shows that ϕ ∈ H4(R5).
Otherwise if sk > 5/2− 5/p then qk > 1 and

|ϕ|p−1ϕ ∈ Hrk(R5) rk = psk +
5− 5p

2

and therefore (2.19) implies

ϕ ∈ Hsk+1(R5) sk+1 = g(sk) = psk +
13− 5p

2
.

Since 1 < p < 9 we have sk+1 > sk > 5/2 − 5/p. Thus the iteration proceeds until
sk ≥ 5/2− 5/(2p). The fixed point of g(s) is

s̃ =
5p− 13

2(p− 1)
< 2 since 1 < p < 9

Thus if we take s0 = 2 (i.e. ϕ ∈ H2(R5) as assumed) then sk → +∞ as k →∞. So there is
some k = k(p) so that

4 > sk ≥ 5/2− 5/(2p) > sk−1

Hence |ϕ|p−1ϕ ∈ L2(R5) and (2.19) implies that ϕ ∈ H4(R5). This shows that ϕ ∈ L∞(R5),
so that |ϕ|p−1ϕ ∈ H1(R5) and (2.19) implies ϕ ∈ H5(R5).

For n ≥ 6 we use the following bootstrap procedure. Suppose that ϕ ∈ Hsk(Rn). If
sk ≥ n/2 then ϕ ∈ L∞(Rn) and we conclude as above that ϕ ∈ H5(Rn). Using the Sobolev
inequality again shows that

ϕ ∈ Lpk(Rn) pk =
2n

n− 2sk

ϕxi
∈ Lqk(Rn) qk =

2n

n− 2(sk − 1)
.

It then follows that

|ϕ|p−1ϕxi
∈ Lr(Rn)

2

p
≤ r ≤ rk =

2n

p(n− 2sk) + 2
,

where rk = +∞ if the denominator is negative. If rk ≥ 2 then |ϕ|p−1ϕxi
∈ L2(Rn) since

2/p < 2. We then conclude using (2.19) that ϕ ∈ H5(Rn). If 1 < rk < 2 then

|ϕ|p−1ϕxi
∈ H tk(Rn) tk =

n

2
− n

rk

= psk − 1− n

2
(p− 1)

and therefore
(∆2 + (c · ∇)2 + Id)ϕxi

= p|ϕ|p−1ϕxi

implies

ϕ ∈ Hsk+1(Rn), sk+1 = g(sk) = psk + 4− n

2
(p− 1). (2.20)
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Notice that if sk ≥ 2 then sk+1 > sk since p < 2∗ − 1. This implies that rk+1 > rk > 0 and
therefore the process may be iterated. The process stops only when rk ≥ 2 or sk ≥ 5, either
of which results in ϕ ∈ H5(Rn). The function g(s) in (2.20) has only one fixed point,

s̃ =
n

2
− 4

p− 1

and s̃ < 2 since p < 2∗ − 1. Also g′(s̃) = p > 1. Thus if we choose s0 = 2 (i.e. ϕ ∈ H2(Rn))
then the sequence sk approaches infinity as k → ∞. Hence the process stops after finitely
many iterations, yielding ϕ ∈ H5(Rn), as long as r0 > 1. To verify this hypothesis we note
that for n ≥ 6

r0 =
2n

p(n− 4) + 2
> 1 for p < 2∗ − 1

This proves the lemma. ¥

The restriction on p for n ≥ 5 permits the variational characterization of solutions of
(2.1). It also allows us to solve the solitary wave equation for small c. We next show that
the restriction p < 2∗ − 1 is a necessary condition, in the sense that for p > 2∗ − 1 there is
some interval of speeds near zero for which the solitary wave equation does not have solutions
in H2(Rn). This is a consequence of the following Pohozaev type identity.

Lemma 2.4 Let ϕ be a solution of (5.1) lying in H2(Rn) ∩ Lp+1(Rn). Then

αn

∫

Rn

|∆ϕ|2dx− βn

∫

Rn

|c · ∇ϕ|2dx + γn

∫

Rn

|ϕ|2dx = 0

where

αn = n(p− 1)− 4(p + 1)

βn = n(p− 1)− 2(p + 1)

γn = n(p− 1)

(2.21)

Proof. Since ϕ solves (5.1) it satisfies

I ′c(ϕ) = K ′(ϕ).

So if we define
ψa(x) = ϕ(ax)

we have

d

da

(
Ic(ψa)−K(ψa)

)∣∣∣∣
a=1

=

〈
I ′c(ϕ)−K ′(ϕ), a

n∑
i−1

ϕxi

〉

= 0

(2.22)

So since

Ic(ψa)−K(ψa) =
1

2
a4−nA− 1

2
a2−nB +

1

2
a−nC − 1

p + 1
a−nD
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where

A =

∫

Rn

|∆ϕ|2dx B =

∫

Rn

|c · ∇ϕ|2dx (2.23)

C =

∫

Rn

|ϕ|2dx D =

∫

Rn

|ϕ|p+1dx (2.24)

it follows that
4− n

2
A− 2− n

2
B − n

2
C +

n

p + 1
D = 0.

Since 2Ic(ϕ) = (p + 1)K(ϕ) we also have

A−B + C −D = 0

and the lemma follows by eliminating D.

Lemma 2.5 Let n ≥ 5 and suppose p > 2∗ − 1. Then there is some cn(p) > 0 so that for
c ∈ [0, cn(p)) there is no solution of (5.1) in H2(Rn) ∩ Lp+1(Rn). Furthermore cn(p) → √

2
as p →∞.

Proof. For p > 2∗ − 1 the numbers αn, βn and γn defined in Lemma 2.4 are all positive.
Using the notation in the proof of Lemma 2.4 we have

B ≤ |c|2
2

(
1

δn

A + δnC

)

where we choose δn to satisfy

δ2
n =

n(p− 1)

n(p− 1)− 4(p + 1)
.

If we also choose εn such that

ε2
n = n(p− 1)[n(p− 1)− 4(p + 1)]

then
1

δn

=
αn

εn

δn =
γn

εn

and therefore

βnB ≤ |c|2βn

2εn

(αnA + γnC)

This contradicts Lemma 2.4 if

|c|2 <
2εn

βn

=
2
√

n(p− 1)[n(p− 1)− 4(p + 1)]

n(p− 1)− 2(p + 1)

The lemma then follows by defining c2
n = 2εn/βn. ¥
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3 Local Existence

We can write the evolution equation (1.1) as a system of two equations

ut = v

vt = −∆2u− u + |u|p−1u
(3.1)

If we denote w = (u, v) then the functionals

E(w) =

∫

Rn

1

2
|∆u|2 +

1

2
|v|2 +

1

2
|u|2 − 1

p + 1
|u|p+1dx

Q(w) =

∫

Rn

v∇udx

(3.2)

are formally invariants of (3.1). The evolution equation may be written in terms of E as

dw

dt
= JE ′(w) (3.3)

where J : X∗ → X has domain D(J) = L2(Rn)×H2(Rn) and is given by

J =

(
0 1
−1 0

)

By a solution of (1.1) on the interval [0, t0) we mean a function w ∈ C([0, t0); X) such that

d

dt

〈
v, w(t)

〉
=

〈
E ′(w(t)),−Jv

〉
(3.4)

holds in the sense of distributions on [0, t0) for all v ∈ D(J), where
〈·, ·〉 denotes the pairing

of X∗ with X. We shall assume the following throughout.

Assumption 3.1 Given initial data v ∈ X, there exists t0 > 0 which depends only on ‖v‖X

and a unique solution w of (1.1) such that w(0) = v, E(w(t)) = E(v) and Q(w(t)) = Q(v)
for all t ∈ [0, t0).

The following result shows that the assumption holds in dimension n < 5 with no restrictions
on p and in dimension n ≥ 5 if p < 2∗/2.

Theorem 3.2 For any n suppose 1 < p < 2∗/2. Then for every w0 ∈ X, there exists
t0 > 0 such that the equation (3.5) has a unique integral solution w(t) ∈ C([0, t0); X) with
w(0) = w0 and if t0 < ∞,

lim
t→t−0

‖w(t)‖X = ∞.
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Proof. The system (3.1) may be written in the form

wt = Bw + P (w) (3.5)

where

B =

(
0 I

−∆2 − I 0

)
P (w) = (0, |u|p−1u)

The theorem follows from a theorem of Segal [24] once we show that B is the infinitesimal
generator of a C0-semigroup of bounded linear operators on X and that f is locally Lipschitz
on X [22]. This is the content of the following lemmas. ¥

Lemma 3.3 The operator B is the infinitesimal generator of a C0-semigroup of unitary
operators on X.

Proof. Define an inner product on X by

(
(u1, v1), (u2, v2)

)
=

∫

Rn

(∆u1∆u2 + u1u2 + v1v2)dx.

Then for w ∈ D(B) = H4(Rn)×H2(Rn),

(
Bw,w

)
=

(
(v,−∆2u− u), (u, v)

)

=

∫

Rn

(∆v∆u + vu− v∆2u− vu)dx = 0

and therefore B is skew adjoint. The lemma now follows from Stone’s theorem. ¥

Lemma 3.4 For any n let 1 < p < 2∗/2. Then the map P : X → X given by P (w) =
(0, |u|p−1u) is locally Lipschitz.

Proof. Let w1, w2 ∈ X and compute

‖f(w1)− f(w2)‖2
X =

∫

Rn

∣∣|u1|p−1u1 − |u2|p−1u2

∣∣2dx

=

∫

Rn

∣∣p(λ(x)u1 + (1− λ(x))u2)
p−1(u1 − u2)

∣∣2dx

≤ p2

∫

Rn

||u1|+ |u2||2(p−1) |u1 − u2|2dx

≤ p2‖|u1|+ |u2|‖2(p−1)

L2p(Rn)‖u1 − u2‖2
L2p(Rn)

≤ C(‖w1‖X + ‖w2‖X)2(p−1)‖w1 − w2‖2
X

and therefore f is locally Lipschitz. ¥

Next let ϕc be a ground state with velocity c and denote by Φc the pair (ϕc, c · ∇ϕc).
Then Φc satisfies

E ′(Φc)− c ·Q′(Φc) = 0. (3.6)

12



We define, for |c|2 < 2,
d(c) = E(Φc)− c ·Q(Φc). (3.7)

The stability or instability of the ground state Φc will be determined by whether or not d
is convex in c. In the next section we examine in detail the properties of d(c). We conclude
this section with the following definition.

Definition 3.5 A set S ⊂ X is stable with respect to (1.1) if, given ε > 0 there exists δ > 0
so that for any g ∈ X with

inf
v∈S

‖v − g‖X < δ,

the solution w(t) of (1.1) with initial data w(0) = g can be extended to a solution in
C([0,∞); X) and

sup
0≤t<∞

inf
v∈S

‖w(t)− v‖X < ε.

Otherwise we say S is unstable.

4 Properties of ddd(((ccc)))

We first show that d(c) is well defined. The relationship between the invariants E and Q of
(1.1) and the functionals I and K used to find traveling waves is given by

E(w)− c ·Q(w) = Ic(u)−K(u) +
1

2

∫

Rn

|v − c · ∇u|2dx (4.1)

It is this identity, along with the variational characterization of the ground states in terms
of Ic and K, which will allow us to obtain stability (and instability) of the ground states
without any detailed knowledge of the spectrum of the linearized operator.

Together with (2.4) and (3.7), (4.1) implies that

d(c) = Ic(ϕc)−K(ϕc) =
p− 1

2
K(ϕc) =

p− 1

p + 1
Ic(ϕc) (4.2)

for any ground state ϕc. Therefore d(c) is well defined and by (2.6) we have

d(c) =
cp(p− 1)

p + 1

(
m1(c)

) p+1
p−1 . (4.3)

By the invariance of the Laplacian under orthogonal transformations, it is easily shown that
if |c1| = |c2| then

m1(c1) = m1(c2)

and therefore d(c) is radial. So

m1(c) = m∗(|c|) d(c) = d∗(|c|) (4.4)
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where m∗(s) and d∗(s) are defined for s ∈ [0,
√

2). By (4.3) we also have

d∗(s) =
cp(p− 1)

p + 1

(
m∗(s)

) p+1
p−1

. (4.5)

We next investigate the smoothness of d∗(c). In what follows ν = c/|c| will be a unit vector in
Rn which represents the direction of the solitary wave and s = |c| the speed of propagation.
We will denote

Qν(w) = ν ·Q(w)

Lemma 4.1 The function d∗(s) is continuous, non-negative and strictly decreasing on the
interval [0,

√
2).

Proof. Suppose 0 ≤ s0 < s <
√

2. It is clear that m∗(s0) > m∗(s) > 0. Let c0 = s0ν, c = sν
and let u be a minimizer with velocity c. Then

m∗(s0) ≤ Ic0(u)

K(u)
2

p+1

=
Ic(u)

K(u)
2

p+1

+
s2 − s2

0

K(u)
2

p+1

∫

Rn

|ν · ∇u|2dx

= m∗(s) +
s2 − s2

0

K(u)
2

p+1

∫

Rn

|ν · ∇u|2dx.

(4.6)

So

|m∗(s)−m∗(s0)| ≤ 3(s− s0)

K(u)
2

p+1

∫

Rn

|ν · ∇u|2dx ≤ 3(s− s0)Ic(u)

(2− s2)K(u)
2

p+1

= 3(s− s0)
m∗(s)

(2− s2)
≤ 3(s− s0)

m∗(0)

(2− s2)

(4.7)

and thus m∗(s) is locally Lipschitz on [0,
√

2). The Lemma thus follows from (4.5). ¥

Motivated by the bounds obtained in Lemma 4.1 we define for c = sν,

α(s) = inf

{∫

Rn

|ν · ∇ψ|2dx : ψ ∈ G̃c

}

β(s) = sup

{∫

Rn

|ν · ∇ψ|2dx : ψ ∈ G̃c

}
.

(4.8)

Lemma 4.2 The left and right hand derivatives of d∗ exist everywhere on [0,
√

2) and

d′∗(s
−) = −sα(s)

d′∗(s
+) = −sβ(s).

In particular, d∗ is differentiable at |c| with derivative

d′∗(|c|) = −Qν(Φc)

if and only if α(|c|) = β(|c|).
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Proof. From (4.6) we see that, for s0 < s,

−(s0 + s)β(s0)

(m∗(s0))
2

p−1

≥ m∗(s)−m∗(s0)

s− s0

≥ −(s0 + s)α(s)

(m∗(s))
2

p−1

. (4.9)

We now claim that
lim sup

s→s0

α(s) ≤ β(s0).

Let {sk} be any sequence so that sk → s0 and let ψck
∈ S̃ck

, where ck = skν. Then if we set
c0 = s0ν, the continuity of m∗ implies

Ic0(ψk) → (m∗(s0))
p+1
p−1

and
K(ψck

) → (m∗(s0))
p+1
p−1 .

Thus {ψck
}∞k=1 is a minimizing sequence for Ic0 and, by Theorem 2.1, has a strongly conver-

gent subsequence ψcj
(modulo translations) to some ψc0 ∈ S̃c0 . Hence

∫

Rn

|ν · ∇ψcj
|2dx →

∫

Rn

|ν · ∇ψc0|2dx

and thus
lim sup

j→∞
α(sj) ≤ β(s0)

which proves the claim. Applying the claim to (4.8) shows that

lim
s→s+

0

m∗(s)−m∗(s0)

s− s0

=
−2s0β(s0)

(m∗(s0))
2

p−1

.

Similary we see that

lim
s→s−0

m∗(s)−m∗(s0)

s− s0

=
−2s0α(s0)

(m∗(s0))
2

p−1

Thus the left and right derivatives of m(s) exist everywhere and are equal whenever α(s) =
β(s). The lemma therefore follows from (4.3). ¥

Lemma 4.3 α(s1) = β(s1) ⇐⇒ α is right continuous at s1 ⇐⇒ β is left continuous at
s1.

Proof. By the inequalities in (4.9),

β(s2)

(m∗(s2))
2

p−1

≥ α(s2)

(m∗(s2))
2

p−1

≥ β(s1)

(m∗(s1))
2

p−1

≥ α(s1)

(m∗(s1))
2

p−1

(4.10)

for s1 < s2. Thus α(s)/(m∗(s))
2

p−1 and β(s)/(m∗(s))
2

p−1 are increasing functions of s. Ap-
plying Theorem 2.1 once shows that α(s) is lower semicontinuous and β(s) is upper semi-
continuous. Hence α(s) is left continuous and β(s) is right continuous. By (4.10) it follows
that

lim
s→s+

1

α(s) = β(s1)
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and
lim

s→s−1
β(s) = α(s1)

and the lemma is proved. ¥

Corollary 4.4 The function d∗(s) is differentiable at all but countably many points of the
interval [0,

√
2).

Proof. The monotonicity of α/m
2/(p−1)
∗ and β/m

2/(p−1)
∗ , together with the continuity of m∗

show that α(s) and β(s) are continuous at all but countably many points of [0,
√

2). Hence
by Lemma 4.2 and Lemma 4.3, it follows that d∗(s) is differentiable at all but countably
many points of [0,

√
2). ¥

We now wish to obtain bounds on d∗(s) in order to determine regions of convexity and
concavity. We first find an upper bound on d∗(s) for s near

√
2.

Lemma 4.5 Suppose 1 < p < 2∗ − 1. Then

d∗(s) ≤ C(2− s2)γ

where γ = 2n−(n−2)(p+1)
2(p−1)

.

Proof. We consider the case n = 1 only, as the result for n > 1 follows similarly. First let
ζ1 =

√
2−s2

2
, ζ2 =

√
2+s2

2
. Then ζ = ζ1 + ζ2i solves ζ4 + s2ζ2 + 1 = 0 and therefore e±ζx, e±ζ̄x

are solutions of the linear equation ϕxxxx + s2ϕxx + ϕ = 0. Define gs ∈ H2(R) by

gs(x) = e−ζ1|x|
(

cos ζ2|x|+ ζ1

ζ2

sin ζ2|x|
)

Integrating by parts we see that
Ic(gs) = 2

√
2− s2

Also, for s near
√

2 we have for some constant C that

K(gs) ≥ C√
2− s2

and therefore

m∗(s) ≤ Ic(gs)

K(gs)
2

p+1

≤ C(2− s2)
p+3

2(p+1)

Finally (4.3) implies

d∗(s) ≤ C(2− s2)
p+3

2(p−1)

which proves the lemma. ¥

Remark 4.6 If p < 1 + 4
n

then γ > 1 and hence (2− c2)γ vanishes to first order at c =
√

2.
The positivity and monotonicity of d∗ then imply the existence of intervals of convexity
arbitrarily close to

√
2.
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We next establish a lower bound on d∗ under the assumption that d∗ is differentiable.

Lemma 4.7 Suppose that d∗(s) is differentiable on [0,
√

2). Then

d∗(c) ≥ d∗(0)

(
1− s2

2

) p+1
p−1

Furthermore, suppose that Assumption 6.1 holds (see Section 6). Then there is an interval
I containing zero such that d′′∗(s) < 0 for all s in I.

Proof. Set s = |c|. Then, if ϕc is any ground state, we have by Lemma 4.2

d′∗(s) = −s

∫

Rn

|ν · ∇ϕc|2dx

By (4.2) and (2.10),

d∗(s) =
p− 1

p + 1
Ic(ϕc) ≥ p− 1

p + 1

(
1− s2

2

)
‖ϕ(c)‖2

H2(Rn)

=
p− 1

p + 1

(
1− s2

2

)(
Ic(ϕc) + s2

∫

Rn

|ν · ∇ϕc|2dx

)

=

(
1− s2

2

)(
d∗(s)− p− 1

2(p + 1)
sd′∗(s)

)

Thus
d′∗(s)
d∗(s)

≥
(

p + 1

p− 1

) −2s

2− s2

and the first statement follows. To prove the second statement we differentiate (6.3) to
obtain

d′′∗(s) = −
∫

Rn

|ν · ∇ϕ(c)|2dx− 2s

∫

Rn

(ν · ∇ϕ(c))(ν · ∇ϕ′(c))dx

≤ −(1− s)

∫

Rn

|ν · ∇ϕ(c)|2dx + s

∫

Rn

|ν · ∇ϕ′(c)|2dx

Since ϕ(c) is C2 from [0,
√

2) to X, it follows that d′′∗(s) < 0 if s is chosen small enough. ¥

Remark 4.8 Lemma 4.7 shows that there are intervals of concavity of d∗(s) arbitrarily close
to c = 0.

We shall need the following lemmas in order to relate the properties of d(c) and d∗(s).

Lemma 4.9 Let f : Rn → R be C2 and radial, with f(x) = g(|x|). Then, for x 6= 0, D2f(x)
is singular if and only if g′′(|x|) = 0 or g′(|x|) = 0. (D2f(0) = g′′(0)I)
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Proof. Since

fxixj
=

(
g′′(|x|)
|x|2 − g′(|x|)

|x|3
)

xixj +
g′(|x|)
|x| δij,

we have
D2f(x) = M(|x|)(x⊗ x) + N(|x|)I

where

M(r) =

(
g′′(r)
r2

− g′(r)
r3

)
N(r) =

g′(r)
r

.

Now D2f(x) is singular if and only if −N(|x|)/M(|x|) is an eigenvalue of x ⊗ x. Since the
eigenvalues of x⊗ x are zero and |x|2, we have either N(|x|) = 0, which implies g′(|x|) = 0,
or −N(|x|) = |x|2M(|x|), which implies g′′(|x|) = 0. ¥

Lemma 4.10 Let f : Rn → R be C2 with f(x) = g(|x|) and suppose g′′(|x|) ≤ 0 and
g′(|x|) ≤ 0. Then, for x 6= 0, D2f(x) is negative-semidefinite. Further, for x 6= 0, D2f(x) is
negative-definite if and only if g′′(|x|) < 0 and g′(|x|) < 0.

Proof. Since D2f(x) is symmetric it suffices to show that it has only nonpositive(negative)
eigenvalues. If λ is an eigenvalue of D2f , then

λ = N(|x|) or λ = N(|x|) + |x|2M(|x|)
in which case λ = g′(|x|)/|x| or λ = g′′(|x|). ¥

So if d∗(s) is differentiable and d′′∗(s) < 0 we have by (4.4), Lemma 4.2 and Lemma 4.10
that D2d(c) is negative definite for every c with |c| = s.

5 Stability

Recall that the set of ground states was defined by

Gc =
{
ψ ∈ H2(Rn) : (p + 1)K(ψ) = 2Ic(ψ) = 2cp(m1(c))

p+1
p−1

}
(5.1)

We extend this to a subset of X in the natural way and write

Gc =
{
Ψ = (ψ, c · ∇ψ) : ψ ∈ Gc

}

The tubular neighborhood of radius ε about Gc is defined by

Uc,ε = {w ∈ X : inf{‖w −Ψ‖X : Ψ ∈ Gc} < ε}
We show that the set of ground states Gc is stable whenever d∗(s) is strictly convex in

a neighborhood of |c|. The variational nature of the ground states is used to show that
sequences of later time data are minimizing sequences, provided the initial data is chosen
close enough to Gc. First we state without proof a lemma due to Shatah [25] concerning
strictly convex functions.
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Lemma 5.1 Let h be any function which is strictly convex in an interval I about s. Then
given ε > 0 there exists N(ε) > 0 so that for s1 ∈ I, |s1 − s| ≥ ε we have

1. s1 < s < s0, |s0 − s| < ε/2, s0 ∈ I ⇒
h(s1)− h(s0)

s1 − s0

≤ h(s)− h(s0)

s− s0

− 1

N(ε)
(5.2)

2. s0 < s < s1, |s0 − s| < ε/2, s0 ∈ I ⇒
h(s1)− h(s0)

s1 − s0

≥ h(s)− h(s0)

s− s0

+
1

N(ε)
(5.3)

Lemma 5.2 Suppose that d∗(s) is strictly convex in an interval I around s. Then for every
ε > 0, there exists N(ε) > 0 so that for s1 ∈ I with |s1 − s| ≥ ε we have

d∗(s1) ≥ d∗(s)− sβ(s)(s1 − s) +
1

N(ε)
(s− s1)

for s1 < s and

d∗(s1) ≥ d∗(s)− sα(s)(s1 − s) +
1

N(ε)
(s1 − s)

for s1 > s.

Proof. This follows by taking limits in (1) and (2) of Lemma 4.1 as s0 → s and using the
inequalities in (4.9). ¥

The next lemma uses the variational characterization of ground states to establish the
key inequality in the proof of stability. First we use the fact that d∗(s) is continuous and
strictly monotone on [0,

√
2) to define, for w = (u, v) near Φc

s(w) = d−1
∗

(
p− 1

2
K(u)

)

c(w) = s(w)ν

(5.4)

Lemma 5.3 Suppose that d∗(s) is strictly convex in an interval I containing |c|. Then there
exists ε > 0 so that for all w ∈ Uc,ε and any Ψc = (ψc, c · ψc) ∈ Gc,

E(w)− E(Ψc)− s(w)(Qν(w)−Qν(Ψc)) ≥ 1

N(ε)
|s(w)− |c|| (5.5)
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Proof. Since s(w) is a continuous function of w, we may choose ε small enough that s(Uc,ε)
is a subset of the interval I. Then equations (4.1) and (4.2) imply

E(w)− s(w)Qν(w) = Ic(w)(u)−K(u) +
1

2

∫

Rn

|v − c(w) · ∇u|2dx

≥ Ic(w)(u)−K(u)

≥ Ic(w)(ψc(w))−K(ψc(w)) = d∗(s(w))

since
2

p− 1
d∗(s(w)) = K(u) = K(ψc(w)) and ψc(w) minimizes Ic(w) subject to this constraint.

On the other hand, by Lemma 5.2 and (4.1) we have

d∗(s(w)) ≥ d∗(|c|)−Qν(Ψc)(s(w)− |c|) +
1

N(ε)
|s(w)− |c||

= E(Ψc)− s(w)Qν(Ψc) +
1

N(ε)
|s(w)− |c|| .

This proves the lemma. ¥

Theorem 5.4 Suppose that Assumption 3.1 holds and that 1 < p < 2∗ − 1. If d∗(s) is
strictly convex in an interval around |c|, then the set of ground states Gc is stable.

Proof. Assume that Gc is unstable and choose initial data wk(0) ∈ Uc,1/k. The by Assump-
tion 3.1 the solution wk(t) = (uk(t), vk(t)) with this initial data is continuous in t we can
find tk such that

inf
Ψ∈Gc

‖wk(tk)−Ψ‖X = δ. (5.6)

Since Uc,1/k is bounded for each k and since E and Q1 are invariants of the equation, we can
find Ψk ∈ Gc and a constant C such that

|E(wk(tk))− E(Ψk)| < C

k

|Q(wk(tk))−Q(Ψk)| < C

k
.

Now choose δ small enough so that Lemma 5.3 applies. Then

E(wk(tk))− E(Ψk)− s(wk(tk))(Qν(wk(tk))−Qν(Ψk)) ≥ 1

N(ε)
|s(wk(tk))− |c||.

So, letting k →∞, it follows that s(wk(tk)) → |c|. By (5.4) and the continuty of d∗ we then
have

lim
k→∞

K(uk(tk)) =
2

p− 1
d∗(s). (5.7)

Since (4.1) implies

Ic(uk(tk)) = E(wk(tk))− c ·Q(wk(tk)) + K(uk(tk))

− 1

2

∫

Rn

|vk(tk)− c · ∇uk(tk)|2dx
(5.8)
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we also have

lim sup
k→∞

Ic(uk(tk)) ≤ d∗(s) +
2

p− 1
d∗(s)

=
p + 1

p− 1
d∗(s).

(5.9)

By (5.7) we therefore have

lim
k→∞

Ic(uk(tk)) =
p + 1

p− 1
d∗(s).

So (2d∗(s)/(p − 1))−
1

p+1 uk(tk) is a minimizing sequence, and by Theorem 2.1 there exist
ψk ∈ Gc such that

lim
k→∞

‖uk(tk)− ψk‖H2(Rn) = 0 (5.10)

Finally, by (5.8)

lim
k→∞

∫

Rn

|vk(tk)− c · ∇uk(tk)|2dx = 0

and by (5.10)
lim
k→∞

‖c · ∇uk(tk)− c · ∇ψk‖L2(Rn) = 0.

Thus ‖vk(tk)− c · ∇ψk‖L2(Rn) → 0 and, together with (5.10), this implies

lim
k→∞

‖wk(tk)−Ψk‖X = 0,

which contradicts (5.6). ¥

Remark 5.5 Together with the bound in Lemma 4.5, Theorem 5.4 implies the existence of
stable traveling waves for some speeds near

√
2 when p < 1+ 4

n
. This differs from the second

order wave equation (in one dimension) for which all traveling waves are unstable [8].

6 Instability

We once again consider ground state traveling wave solutions of (1.1) and obtain conditions
on the wave speed which implies their instability. As in Section 5 we write the velocity as
c = sν, where it is assumed that the direction ν is fixed. Our main assumption in this section
is the following.

Assumption 6.1 For fixed ν there exists a C2 map

φ : [0,
√

2) → H2(Rn) (6.1)

such that φ(s) is a ground state with velocity sν.
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For fixed velocity c0 = s0ν, the map in (6.1) can be extended to a map from a neighborhood
U of c0 in Rn to H2(Rn) in the following manner. Let c ∈ Rn and choose an orthogonal
transformation Ac such that Acν = c/|c|. Then define ϕ(c)(x) = φ(|c|)(Atx). By the
invariance of the Laplacian under orthogonal transformations it follows that ϕ(c) is a ground
state with velocity c. For c near c0 it is possible to choose Ac smoothly in c. We may then
define the C2 map from U to X by

Φ(c) = (ϕ(c), c · ∇ϕ(c)) (6.2)

and denote by ϕ′(c) and Φ′(c) their gradients with respect to c. Together with (4.2) this
implies that d(c) is differentiable and we have by Lemma 4.2,

∇cd(c) = −Q(Φ(c)) = −c

∫

Rn

|ν · ∇ϕ(c)|2dx

d′∗(|c|) = −ν ·Q(Φ(|c|)) = −|c|
∫

Rn

|ν · ∇ϕ(c)|2dx ≤ 0.

(6.3)

Solutions of (1.1) are invariant under the group action T : Rn ×X → X defined by

T (r)w(x) = w(x + r) (6.4)

The set of translates of Φ(c) is given by

Tc = {T (r)Φ(c) : r ∈ Rn} (6.5)

The main result of this section is the following.

Theorem 6.2 For any n suppose that 1 < p < 2∗ − 1 and that Assumptions 3.1 and 6.1
hold. If d′′∗(|c|) < 0, then Tc is unstable.

Remark 6.3 It follows from Theorem 6.2 and Lemma 4.7 that there is an interval I0 =
[0, s0) of speeds such that Tc is unstable for |c| ∈ I0.

In the remainder of this section we shall use
〈·, ·〉 to denote the pairing of X∗ with X

and
〈·, ·〉

X
to denote the inner product in X. We will denoted by D and D2 the gradient

and Hessian, respectively and, for w = (u, v) ∈ X we will denote Dw = (Du,Dv). When
necessary, subscripts will be used to distinguish derivatives with respect to different variables
(e.g. DcΦ(c) denotes the derivative of the map Φ with respect to c, while DxΦ(c) denotes
the spatial gradient of Φ(c)). Derivatives of functions of a single real variable will be denoted
by ′ and ′′. We first reformulate the local existence assumption of Chapter 3 as follows.

Lemma 6.4 Suppose that Assumption 3.1 holds. For any n suppose 1 < p < 2∗ − 1 and
define W = L2(Rn)×H2(Rn). Given initial data g ∈ X there is some T > 0 depending only
on ‖g‖X , and a unique solution w = (u, v) of (3.1) in C([0, T ), X) ∩ C1([0, T ),W ∗) such
that w(0) = g and E(w(t)) = E(g) for t ∈ [0, T ).
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Proof. It suffices to show that wt = (ut, vt) ∈ C([0, T ),W ∗), where W ∗ = L2(Rn)⊕H−2(Rn).
This follows immediately from (3.5) since both B and P map X continuously into W ∗. ¥

It follows from Lemma 6.4 that the solution w satisfies

d

dt
〈v, w(t)〉 = 〈E ′(w(t)),−Jv〉 (6.6)

for all v ∈ W , where J : X∗ → X has domain D(J) = W and is defined by

J =

(
0 1
−1 0

)
(6.7)

The proof of the next lemma is trivial.

Lemma 6.5 For any non-zero w ∈ X, if T (rn)w → w in X then rn → 0.

We next define the ε-neighborhood of Tc by

Vc,ε = {w ∈ X : inf
Φ∈Tc

‖w − Φ‖X < ε}

Lemma 6.6 There exists ε > 0 and a C1 map ρ : Vc,ε → Rn such that for any w ∈ Vc,ε and
r ∈ Rn we have

(1) ‖T (ρ(w))w − Φ(c)‖X ≤ ‖T (r)w − Φ(c)‖X

(2)
〈
T (ρ(w))w, DxΦ(c)

〉
X

= 0

(3) ρ(T (r)w) = ρ(w)− r

(4) Jρ′ : Vc,ε → X.

(6.8)

Proof. Define G : X × Rn → R by

G(w, ρ) = ‖T (ρ)w − ϕc‖2
X = ‖T (ρ)w‖2

X + ‖Φ(c)‖2
X − 2

〈
w, T (−ρ)Φ(c)

〉
X

. (6.9)

Since ϕ ∈ H5(Rn) we may compute

DρG(w, ρ) = 2
〈
T (ρ)w, DxΦ(c)

〉
X

D2
ρG(w, ρ) = −2

〈
T (ρ)w,D2

xΦ(c)
〉

X

For any non-zero ξ ∈ Rn we have

D2
ρG(Φ(c), 0)ξ · ξ = 2‖ξ ·DxΦ(c)‖2

X > 0 (6.10)

since otherwise ϕ(c) would be constant in the direction ξ and therefore not in H2(Rn).
Hence D2

ρG(Φ(c), 0) is positive definite. Since DρG(Φ(c), 0) = 0, the Implicit Function
Theorem implies the existence of a neighborhood U of Φ(c) in X, a ball B(0, ε̃) and a C2
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map ρ : U → B(0, ε̃) such that DρG(w, ρ(w)) = 0 and D2
ρ(w, ρ(w)) is positive definite for

all w ∈ U . Thus ρ(w) is the unique minimizer of G(w, ·) in B(0, ε̃) for each w ∈ U . By
Lemma 6.5, there exists δ > 0 such that ‖T (r)Φ(c)−Φ(c)‖X < δ implies r ∈ B(0, ε̃). Choose
ε < δ/2 so that Vε = {w : ‖w − Φ(c)‖X < ε} ⊂ U . Then (1) and (2) hold for w ∈ Vε.

To show that (3) holds compute

‖T (ρ(w)− r)T (r)w − Φ(c)‖X ≤ ‖T (ρ(T (r)w) + r)w − Φ(c)‖X

= ‖T (ρ(T (r)w))T (r)w − Φ(c)‖X

≤ ‖T (ρ(w)− r)T (r)w − Φ(c)‖X .

(6.11)

Thus (3) follows if we can show that ρ(w)− r ∈ B(0, ε̃) when w, T (r)w ∈ Vε. Since

‖T (ρ(w)− r)ϕ− Φ(c)‖X ≤ ‖Φ(c)− T (r)w‖X + ‖T (ρ(w))w − Φ(c)‖X

≤ 2ε < δ,
(6.12)

it follows from our choice of δ that ρ(w)− r ∈ (−ε̃, ε̃). Now we extend ρ to w ∈ Vc,ε by first
choosing r such that T (r)w ∈ Vε. Then let ρ(w) = ρ(T (r)w)− r. Since (3) holds in Vε, ρ(w)
is independent of the choice of r and properties (1)-(3) follow for w ∈ Vc,ε.

To prove (4) we differentiate (2) to obtain

〈
T (ρ(w))y, DxΦ(c)

〉
X
− 〈

T (ρ(w))w,D2
xΦ(c)

〉
X

〈
ρ′(w), y

〉
(6.13)

Thus 〈
T (ρ(w))w,D2

xΦ(c)
〉

X

〈
ρ′(w), y

〉
=

〈
T (−ρ(w))IDxΦ(c), y

〉
(6.14)

where I = (∆2 + Id, Id) is the natural isomorphism from X to X∗. Since the matrix〈
T (ρ(w))w,D2

xΦ(c)
〉

is negative definite at w = Φ(c) it follows by continuity that its inverse
exists for all w ∈ Vc,ε for ε small enough. Thus

ρ′(w) =
〈
T (ρ(w))w, D2

xΦ(c)
〉−1

IT (−ρ(w))DxΦ(c). (6.15)

Since ϕ(c) ∈ H5(Rn) it follows that Jρ′(w) ∈ X. This proves the lemma. ¥

The next lemma proves the existence of an “unstable direction” and depends on the fact
that there is an element of X for which the linearized operator

Hc = E ′′(Φ(c))− c ·Q′′(Φ(c)) (6.16)

has negative spectrum. In fact, evaluating Hc on Φ(c) yields

〈
HcΦ(c), Φ(c)

〉
= −(p2 − 1)K(ϕ(c)) < 0. (6.17)

We need to modify Φ(c) in order to get a vector orthogonal to Q′(Φ(c)).

Lemma 6.7 If d′′∗(|c|) < 0 then there exists yu ∈ Y ≡ H4(Rn)×H4(Rn) such that

(1)
〈
Hcy

u, yu
〉

< 0

(2)
〈
Q′(Φ(c), yu

〉
= 0.

(6.18)
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Proof. Denote by B(0,
√

2) the ball in Rn of radius
√

2 centered at the origin, and define
q : B(0,

√
2)× R→ Rn by

q(h, σ) = Q(Φ(h) + σΦ(c)), (6.19)

then

Dhq(c, 0) = 〈Q′(Φ(c)), Φ′(c)〉 = Dc

(
Q′(Φ(c))

)

= −D2d(c) by (6.3).

Since d′′∗(|c|) < 0 and d′∗(|c|) < 0 it follows from Lemma 4.10 that D2d(c) is negative definite.
Therefore the Implicit Function Theorem implies that there exist ε > 0 and a C2 function
h : (−ε, ε) → B(0,

√
2) such that h(0) = c and

Q(Φ(h(σ)) + σΦ(c)) = Q(Φ(c)) (6.20)

for σ ∈ (−ε, ε). Next define
Ψ̃(σ) = Φ(h(σ)) + σΦ(c) (6.21)

Since h(0) = c, Ψ(0) = Φ(c) and we define

ỹ = Ψ̃′(0) = h′(0) ·DcΦ(c) + Φ(c) (6.22)

By (6.20),
〈
Q′(Φ(c)), ỹ

〉
=

d

dσ
Q(Φ(h(σ)) + σΦ(c))

∣∣∣
σ=0

= 0 (6.23)

and thus (2) holds for ỹ. To show that (1) holds define E(σ) = E(Ψ̃(σ)). We claim that

E(0) = E(Φ(c))

E ′(0) = 0

E ′′(0) =
〈
Hcỹ, ỹ

〉 (6.24)

The first statement is obvious, while the second follows by adding the equations

E ′(0) =
〈
E ′(Φ(c)), ỹ

〉

0 = −c · 〈Q′(Φ(c)), ỹ
〉

and using the fact that Φ(c) satisfies (3.6). We next compute

E ′′(σ) =
〈
E ′′(Ψ̃(σ)), Ψ̃′(σ)

〉
+

〈
E ′(Ψ̃(σ)), Ψ̃′′(σ)

〉

0 = −c · 〈Q′′(Ψ̃(σ)), Ψ̃′(σ)
〉

+
〈
Q′(Ψ̃(σ)), Ψ̃′′(σ)

〉

When we evaluate these at σ = 0 and add, (3.6) implies that we are left with

E ′′(0) =
〈
(E ′′(Φ(c))− c ·Q′′(Φ(c))) Ψ̃′(0), Ψ̃′(0)

〉
=

〈
Hcỹ, ỹ

〉

This proves (6.24). We now consider the Taylor expansions of E and Q at Φ(h(σ)). First
write

E(u + v) = E(u) +
〈
E ′(u), v

〉
+

1

2

〈
E ′′(u)v, v

〉
+ o

∥∥v‖2
)

Q(u + v) = Q(u) +
〈
Q′(u), v

〉
+

1

2

〈
Q′′(u)v, v

〉
+ o

∥∥v‖2
)
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With u = Φ(h(σ)) and v = σΦ(c) we have Ψ̃(σ) = u + v. If we multiply the latter equation
by −h(σ) and use (3.7), (3.6) and (6.16) (all with c = h(σ)) we obtain

E(Ψ̃(σ))− h(σ) ·Q(Ψ̃(σ)) = d(h(σ)) +
1

2
σ2

〈
Hh(σ)Φ(c), Φ(c)

〉
+ o

(
σ2

)

Hence

E(σ) = d(h(σ)) + h(σ) ·Q(Φ(c)) +
1

2
σ2

〈
Hh(σ)Φ(c), Φ(c)

〉
+ o

(
σ2

)

By the concavity of d and (6.3)

d(h(σ)) ≤ d(c) + (h(σ)− c) ·Dd(c)

= E(Φ(c))− h(σ) ·Q(Φ(c))
(6.25)

so that

E(σ) ≤ E(Φ(c)) +
1

2
σ2

〈
Hh(σ)Φ(c), Φ(c)

〉
+ o

(
σ2

)

< E(Φ(c)) +
1

4
σ2

〈
HcΦ(c), Φ(c)

〉
+ o

(
σ2

)

for σ 6= 0 small enough. Together with the first two parts of (6.24) this implies that E ′′(0) < 0
and therefore by the last part of (6.24)

〈
Hcỹ, ỹ

〉
< 0. (6.26)

Thus both (1) and (2) hold for ỹ.
Since H4(Rn) × H4(Rn) is dense in X we can perturb ỹ slightly to obtain a vector in

Y satisfying (1) and (2). First let Qi(w) denote the ith component of Q(w). Without loss
of generality we may suppose that the Q′

i(Φ(c)) are linearly independent. We will define
inductively y1, . . . , yn in Y with the property

〈
Q′

i(Φ(c)), yj

〉
= δij (6.27)

Let y be any element of Y for which
〈
Q′

1(Φ(c)), y
〉 6= 0, and let

y1 =
y〈

Q′
1(Φ(c)), y

〉 .

Next, assume that we have constructed y1, . . . , yk such that (6.27) is satisfied for 1 ≤ i, j ≤ k,
and choose any y ∈ Y such that

〈
Q′

k+1(Φ(c)), y
〉−

k∑
i=1

〈
Q′

i(Φ(c)), y
〉〈

Q′
k+1(Φ(c)), yi

〉 6= 0. (6.28)

This can be done by the assumption of independence. We now define

yk+1 = y −
k∑

i=1

〈
Q′

i(Φ(c)), y
〉
yi
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Then by the induction hypothesis,
〈
Q′

i(Φ(c)), yk+1

〉
= 0 for i = 1, . . . , k and by (6.28)〈

Q′
k+1(Φ(c)), yk+1

〉 6= 0. If we now subtract

〈
Q′

k+1(Φ(c)), yi

〉
〈
Q′

k+1(Φ(c)), yk+1

〉yk+1

from yi for each i = 1, . . . , k and normalize yk+1, we obtain a collection y1, . . . , yk+1 satisfying
(6.27).

Having chosen y1, . . . , yn satisfying (6.27) we let ε > 0 be given and choose yε ∈ Y such
that ‖yε − ỹ‖X < ε. Define

yu = yε −
n∑

i=1

〈
Q′

i(Φ(c)), yε

〉
yi

Then yu ∈ Y and, by (6.27),
〈
Q′

i(Φ(c)), yu
〉

= 0 for i = 1, . . . , n. If ε is chosen small enough
it follows from (6.26) that

〈
Hcy

u, yu
〉

< 0. Thus (1) and (2) hold for yu. Later we will need
the first components of yu and ỹ to be close in the sense that

‖yu
1 − ỹ1‖Lp+1(Rn) ≤ 1

2
‖ϕ(c)‖Lp+1(Rn). (6.29)

This again follows by choosing ε small enough. ¥

We now define the Lyapunov functional A : Vc,ε → R by

A(w) = −〈
J−1yu, T (ρ(w))w

〉
.

Lemma 6.8 The functional A is C1 on Vc,ε and

(1) A(T (r)w) = A(w) for any r ∈ Rn,

(2) JA′(Φ(c)) = −yu,

(3)
〈
Q′(w), JA′(w)

〉
= 0.

(6.30)

Proof. Part (1) follows from Lemma 6.6(3). For y ∈ Vc,ε ∩ Y and w ∈ X, we have

〈
A′(y), w

〉
= −〈

J−1yu, T (ρ(y))w
〉− 〈

J−1yu, T (ρ(y))Dy
〉 · 〈ρ′(y), w

〉
. (6.31)

By Lemma 6.7, J−1∇yu ∈ Xn and therefore A′ extends to all of Vc,ε. So A is C1 and

〈
A′(Φ(c)), w

〉
= −〈

J−1yu, w
〉− 〈

J−1yu, DxΦ(c)
〉 · 〈ρ′(Φ(c)), w

〉

= −〈
J−1yu, w

〉
+

〈
Q′(Φ(c)), yu

〉 · 〈ρ′(Φ(c)), w
〉 (6.32)

By Lemma 6.7(2) the last term on the right hand side vanishes, and therefore (2) holds.
Differentiating (1) with respect to r at r = 0 proves (3). ¥
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We now wish to construct a curve in X through Φ(c) in the unstable direction yu, on
which the functional Q is constant and such that E is maximized at Φ(c). First let W (λ,w0)
denote the solution of

dW

dλ
= −JA′(W )

with initial data W (0, w0) = w0 ∈ Vc,ε and let the components of W be given by W1(λ,w0),
W2(λ,w0). By Lemma 6.8 (3),

∂Q

∂λ

(
W (λ, w0)

)
= 0

and thus Q is constant in λ on W . Also,

∂W

∂λ

(
λ, Φ(c)

)∣∣∣
λ=0

= yu (6.33)

by Lemma 6.8 (2) and by Lemma 6.8 (1)

T (r)W (λ,w0) = W (λ, T (r)w0). (6.34)

The next lemma shows that there is a point along the curve W (λ,w0) at which the func-
tional K attains the value K(ϕ(c)). This allows us to once again exploit the variational
characterization of ϕ(c).

Lemma 6.9 If d′′∗(|c|) < 0 then there exists ε > 0 and a C1 functional λ : Vc,ε → R so that
for w ∈ Vc,ε

K(W1(λ(w), w)) = K(ϕ(c)) =
2

p− 1
d(c). (6.35)

Proof. As in Lemma 6.6 we first show that there is a C1 functional λ defined on the
neighborhood Vε of Φ(c) with values in (−ε̃, ε̃) such that for w ∈ Vε, λ(w) is the unique
solution of (6.35) in (−ε̃, ε̃). Since W1(0, Φ(c)) = Φ(c), this follows from the implicit function
theorem and (6.34) once it is shown that

∂K

∂λ
(W1(λ, Φ(c)))

∣∣∣
λ=0

6= 0.

By (6.33) we have
∂K

∂λ

(
W1(λ, Φ(c))

)∣∣∣
λ=0

=
〈
K ′(ϕ(c)), yu

1

〉
(6.36)

which may be broken up as

〈
K ′(ϕ(c)), yu

1

〉
=

∫

Rn

|ϕ(c)|p−1ϕ(c)(yu
1 − ỹ1)dx +

∫

Rn

|ϕ(c)|p−1ϕ(c)ỹ1dx. (6.37)

By (6.29) we can bound the first integral in (6.37) by
∣∣∣∣
∫

Rn

|ϕ(c)|p−1ϕ(c)(yu
1 − ỹ1)dx

∣∣∣∣ ≤ ‖ϕ(c)‖p
Lp+1(Rn)‖yu

1 − ỹ1‖Lp+1(Rn)

≤ 1

2
‖ϕ(c)‖p+1

Lp+1(Rn).

(6.38)
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Using (6.22) we can rewrite the second term as
∫

Rn

|ϕ(c)|p−1ϕ(c)ỹ1dx = h′(0) ·
∫

Rn

|ϕ(c)|p−1ϕ(c)DcΦ(c)dx

+ ‖ϕ(c)‖p+1
Lp+1(Rn).

(6.39)

But since d(c) =
p− 1

2
K(ϕ(c)), (6.3) implies

−Q(Φ(c)) = Dd(c) =
p− 1

2

∫

Rn

|ϕ(c)|p−1ϕ(c)Φ′(c)dx

and therefore

h′(0) ·
∫

Rn

|ϕ(c)|p−1ϕ(c)DcΦ(c)dx = − 2

p− 1
h′(0) ·Q(Φ(c)). (6.40)

Using Lemma 6.7 and equations (6.22), (3.6) we see that

0 =
〈
Q′(Φ(c)), ỹ

〉
=

〈
Q′(Φ(c)), h′(0) ·DΦ(c) + Φ(c)

〉

= h′(0) ·Dc(Q(Φ(c))) +
〈
Q′(Φ(c)), Φ(c)

〉

= −h′(0) ·D2d(c) + 2Q(Φ(c)).

(6.41)

Thus since D2d is negative definite, (6.41) implies

− 2

p− 1
h′(0) ·Q(Φ(c)) = − 1

p− 1
h′(0) ·D2d(c) · h′(0) ≥ 0 (6.42)

In view of (6.39), (6.40) and (6.42) we therefore have
∫

Rn

|ϕ(c)|p−1ϕ(c)ỹ1dx ≥ ‖ϕ(c)‖p+1
Lp+1(Rn)

which, together with (6.38) implies

∂K

∂λ

(
W1(λ, Φ(c))

)∣∣∣
λ=0

≥ 1

2
‖ϕ(c)‖p+1

Lp+1(Rn) > 0.

Next let w ∈ Vε and suppose that r is small enough that T (r)w ∈ Vε as well. Then by (6.34),

K(W1(λ(w), T (r)w)) = K((T (r)W (λ(w), w))1) = K(W1(λ(w), w)) = K(ϕ(c))

Since λ(T (r)w) is the unique solution of K(W1(λ, T (r)w)) = K(ϕ(c)) in (−ε̃, ε̃), it follows
that

λ(T (r)w) = λ(w) (6.43)

Thus λ may be extended to Vc,ε as follows. Let w ∈ Vc,ε and choose r such that T (r)w ∈ Vε.
Then set λ(w) = λ(T (r)w). To see that this definition is independent of the choice of r,
suppose T (r1)w and T (r2)w are both in Vε. Then T (r1)w = T (r1 − r2)T (r2)w and (6.43)
implies that λ(T (r1)w) = λ(T (r2)w). ¥
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Lemma 6.10 Suppose d′′∗(s) < 0. Then there exists ε > 0 and a C1 functional λ : Vc,ε ∩
{Q(w) = Q(Φ(c))} → R such that

E(W (λ(w), w)) ≥ E(Φ(c)). (6.44)

Proof. Let w ∈ Vc,ε with Q(w) = Q(Φ(c)) and let λ(w) be given by Lemma 6.9. Then since
ϕ(c) minimizes Ic subject to the constraint K(u) = K(ϕ(c)) we have, using (4.1) and (6.35),

E(W (λ(w), w)) = Ic(W1(λ(w), w)) + c ·Q(W (λ(w), w))

−K(W1(λ(w), w)) +
1

2

∫

Rn

|(W2 − c · ∇W1)(λ(w), w)|2dx

≥ Ic(W1(λ(w), w)) + c ·Q(W (λ(w), w))−K(W1(λ(w), w))

= Ic(W1(λ(w), w)) + c ·Q(Φ(c))−K(ϕ(c))

≥ Ic(ϕ(c)) + c ·Q(Φ(c))−K(ϕ(c)) = E(Φ(c))

which proves the lemma. ¥
Lemma 6.11 Let w ∈ Vc,ε with Q(w) = Q(Φ(c)) and λ(w) 6= 0. If d′′(s) < 0 then

E(Φ(c)) < E(w) + λ(w)R(w)

where R(w) ≡ 〈
E ′(w),−JA′(w)

〉
.

Proof. The lemma follows by computing the second order Taylor expansion of E(W (λ,w))
at λ = 0.

∂E

∂λ

(
W (λ,w)

)∣∣∣
λ=0

=

〈
E ′(w),

∂W

∂λ
(λ,w)

∣∣∣
λ=0

〉
= R(w) (6.45)

and

∂2E

∂λ2

(
W (λ, Φ(c))

)∣∣∣
λ=0

=
〈
E ′′(Φ(c))yu, yu

〉
+

〈
E ′(Φ(c)),

∂2W

∂λ2
(0, Φ(c))

〉
. (6.46)

Since Q(W (λ,w)) = Q(Φ(c)),

∂Q

∂λ

(
W (λ, Φ(c))

)∣∣∣
λ=0

=
∂2Q

∂λ2

(
W (λ, Φ(c))

)∣∣∣
λ=0

= 0

so that

0 = c · 〈Q′′(Φ(c))yu, yu
〉

+ c ·
〈

Q′(Φ(c)),
∂2W

∂λ2
(0, Φ(c))

〉
. (6.47)

Subtracting (6.47) from (6.46) and using (3.6) yields

∂2E

∂λ2

(
W (λ, Φ(c))

)∣∣∣
λ=0

=
〈
(E ′′ − c ·Q′′)(Φ(c))yu, yu

〉
< 0.

Thus, for λ 6= 0 small and ε small enough it follows that if w ∈ Vc,ε then

E(W (λ,w)) < E(w) + λR(w).

So if w also satisfies Q(w) = Q(Φ(c))we have by that Lemma 6.10

E(Φ(c)) ≤ E(W (λ(w), w)) < E(w) + λ(w)R(w)

as long as λ(w) 6= 0. ¥
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Lemma 6.12 There exists δ > 0 and a C2 curve Ψ : (−δ, δ) → Vc,ε such that Ψ(0) = Φ(c),
Ψ′(0) = y, Q(Ψ(τ)) = Q(Φ(c)), R(Ψ(τ)) changes sign at τ = 0 and E(Ψ(τ)) has a strict
local maximum at τ = 0.

Proof. Since
〈
Q′(Φ(c)), yu

〉
= 0, yu is tangent to the manifold M = {w ∈ X : Q(w) =

Q(ϕ)}, and thus there is a curve Ψ(τ) in M with Ψ(0) = Φ(c) and Ψ′(0) = yu. To show
that E(Ψ(τ)) is maximized at s = 0 we differentiate in τ to obtain

dE

dτ

(
Ψ(τ)

)∣∣∣∣
τ=0

=
d

dτ

(
E(Ψ(τ))− c ·Q(Ψ(τ))

)∣∣∣∣
τ=0

=
〈
E ′(Φ(c))− c ·Q′(Φ(c)), yu

〉
= 0

by (3.6). Also

d2E

dτ 2

(
Ψ(τ)

)
=

〈
[E ′′(Ψ(τ))− c ·Q′′(Ψ(τ))]Ψ′(τ), Ψ′(τ)

〉

+
〈
E ′(Ψ(s))− c ·Q′(Ψ(τ)), Ψ′′(τ)

〉

and therefore
d2E

dτ 2

(
Ψ(τ)

)∣∣∣∣
τ=0

=
〈
Hcy

u, yu
〉

X
< 0

by Lemma 6.6 (1). Thus E(Ψ(τ)) is locally maximized at τ = 0. Next recall that λ is defined
by (6.35) and satisfies

K(Φ(c)) = K(W1(λ(Ψ(τ)), Ψ(τ))) =

∫

Rn

|W1(λ(Ψ(τ)), Ψ(τ))|p+1dx.

Differentiating at τ = 0 gives

0 =

〈
K ′(ϕ(c)),

(
∂W1

∂λ

∂λ(Ψ(τ))

∂τ
+

∂W1

∂u

∂Ψ1

∂τ
+

∂W1

∂v

∂Ψ2

∂τ

)∣∣∣∣
τ=0

〉
(6.48)

Since W (0, w) = w = (u, v) = (W1(0, w),W2(0, w)),

∂W1

∂u

(
0, w

)
= Id and

∂W1

∂v

(
0, w

)
= 0.

Thus, since
∂Ψ1

∂τ

∣∣∣
τ=0

=
∂W1

∂λ
(λ, Φ(c))

∣∣∣
λ=0

= yu
1 , (6.48) becomes

0 =

(
∂λ(Ψ(τ))

∂τ

∣∣∣∣
τ=0

+ 1

)〈
K ′(ϕ(c)), yu

1

〉

The latter pairing was shown to be positive in the proof of Lemma 6.9. Thus

∂λ(Ψ(τ))

∂τ

∣∣∣∣
τ=0

= −1
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and, since λ(Φ(c)) = 0, we have shown that λ(Ψ(τ)) changes sign at τ = 0. Furthermore,
λ(Ψ(τ)) 6= 0 for all small τ 6= 0 and therefore we may apply Lemma 6.11 to obtain

0 < E(Φ(c))− E(Ψ(τ)) < λ(Ψ(τ))R(Ψ(τ)).

Hence R(Ψ(τ)) changes sign at τ = 0. ¥

Proof of Theorem 6.2 Fix ε > 0 small enough so that Lemma 6.12 applies. Choose τ near
zero so that λ(Ψ(τ)) > 0 and choose initial data w0 = Ψ(τ). Then by Lemma 6.12, Q(w0) =
Q(Φ(c)), E(w0) < E(Φ(c)) and we may assume that R(w0) > 0. By Assumption3.1, there is
an interval [0, t0) on which a solution w(t) exists and satisfies w(0) = w0, Q(w(t)) = Q(w0),
and E(w(t)) = E(w0). We may suppose that t0 = ∞ because otherwise Tc is unstable by
definition. Now, by Lemma 6.11,

0 < E(Φ(c))− E(w0) = E(Φ(c))− E(w(t))

< λ(w(t))R(w(t))

for all t > 0. Thus by the continuity of P , R(w(t)) > 0 for all t > 0. We may assume that
λ(w(t)) < 1 so that

R(w(t)) > E(Φ(c))− E(w0) ≡ ε0 > 0.

Now let W = D(J) with the graph norm ‖w0‖2
W = ‖w0‖2

X∗ + ‖Jw0‖2
X . Then J : W → X

and J∗ : X∗ → W ∗ are continuous and by Lemma 6.4 we have

d

dt

〈
w0, w(t)

〉
=

〈
E ′(w(t)),−Jw0

〉
=

〈− J∗E ′(w(t)), w0

〉
W ∗,W

Hence

dw

dt
= −J∗E ′(w)

So (by [8], Lemma 4.6) we may compute

dA

dt

(
w(t)

)
=

〈
dw(t)

dt
, A′(w(t))

〉

W ∗,W

=
〈− J∗E ′(w(t)), A′(w(t))

〉
W ∗,W

=
〈
E ′(w(t)),−JA′(w(t))

〉
= R(w(t)) > ε0

But A is bounded on Vc,ε and hence w(t) must leave Vc,ε in finite time, and therefore Tc is
unstable. ¥

Remark 6.13 By (4.7) we see that d′′(s) < 0 in some interval around zero. Thus at small
speeds travelling waves are unstable.

32



7 Standing Waves

In this section we extend our results to include the (easier) case of standing wave solutions
of (1.1).

By a standing wave we mean a solution of (1.1) of the form

u(x, t) = eiωtϕ(x) (7.1)

where the space X = H2(Rn) × L2(Rn) now consists of complex valued functions and has
inner product given by

〈
(u1, v1), (u2, v2)

〉
= Re

∫

Rn

∆u1∆u2 + u1u2 + v1v2dx

Substituting (7.1) into (1.1) shows that ϕ must satisfy

∆2ϕ + (1− ω2)ϕ = |ϕ|p−1ϕ (7.2)

We solve (7.2) for ω2 < 1 using the method of Section 1 to show that minimizing sequences
for the pair

Iω(u) =

∫

Rn

|∆u|2 + (1− ω2)|u|2dx

K(u) =

∫

Rn

|u|p+1dx

are relatively compact in H2(Rn) up to translation. The absence of second order terms in
(7.2) allows us to use the scaling property of the nonlinearity to make a choice of the ground
state which is smooth in ω. If ϕ0 is a ground state solution of (7.2) with ω = 0 (i.e. ϕ0 is a
stationary state of (1.1)), then

ϕw(x) = (1− ω2)
1

p−1 ϕ0((1− ω2)
1
4 x) (7.3)

is a ground state with frequency ω. Next we consider the invariants of (1.1) relevant to
standing waves

E(w) =

∫

Rn

1

2
|∆u|2 +

1

2
|v|2 +

1

2
|u|2 − 1

p + 1
|u|p+1dx

Q(w) = Im

∫

Rn

ūvdx

If ϕ is any ground state with frequency ω, we define Φ = (ϕ, iωϕ) and it follows that

E ′(ϕϕϕ)− ωQ′(ϕϕϕ) = 0

We define the action function d(ω) as before by

d(ω) = E(ϕϕϕ)− ωQ(ϕϕϕ)
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By the relation

E(w)− ωQ(w) =
1

2
Iω(u)− 1

p + 1
K(u) +

1

2

∫

Rn

|v − iωu|2dx

we see that d(ω) is well defined and

d(ω) =
p− 1

2(p + 1)
Iω(ϕ) =

p− 1

2(p + 1)
K(ϕ)

which, by (7.3), yields the explicit formula

d(ω) =
p− 1

2(p + 1)
K(ϕ0)(1− ω2)γ̃ γ̃ =

p + 1

p− 1
− n

4
. (7.4)

If we define the set of ground states with frequency ω to be

Sω = {ψ ∈ H2(Rn)|Iω(ψ) = K(ψ) =
2(p + 1)

p− 1
d(ω)}

then we have the following stability result.

Theorem 7.1 Suppose that Assumption 3.1 holds and that 1 < p < 2∗ − 1. If d′′(ω) > 0,
then Sω is stable.

Proof. We define

ω(w) = d−1

(
p− 1

2(p + 1)
K(u)

)
=

(
1−

(
K(u)

K(ϕ0)

) 1
γ̃
) 1

2

for w near Sω. Under the assumption d′′(ω) > 0 we can improve the inequality (5.5) to

E(w)− E(ψψψ)− ω(w)(Q(w)−Q(ψψψ)) ≥ 1

4
d′′(ω)|ω(w)− ω|2

for any ψψψ ∈ Sω and w near Sω. The rest of the proof is identical to the proof of Theorem
5.4. ¥

Solutions of (1.1) are invariant under the group action T : R×X → X given by

T (s)w = eiωsw = (eiωsu, eiωsv)

Given a ground state ϕϕϕ with frequency ω we define its orbit under T by

Tω = {T (s)ϕϕϕ|s ∈ R}
With these definitions we have

Theorem 7.2 Suppose that Assumption 3.1 holds and 1 < p < 2∗ − 1. If d′′(ω) < 0, then
Tω is unstable.

34



Proof. First, Lemma 6.5 and Lemma 6.6 are true for T as given above, σ, τ ∈ R, modulo 2π.
Also, Theorem 6.7 follows more easily in this case since we no longer insist that the unstable
direction yu have any regularity properties. Thus we may define the Lyapunov functional by

A(w) = −〈
J−1yu, T (σ(w))w

〉

The rest of the proof follows exactly as in Section 6. ¥

Using the expression (7.4) for d(ω) we may now explicitly determine the intervals in
which ground states are stable and unstable. We compute

d′′(ω) = 2γ̃(1− ω2)γ̃−2(w2(2γ̃ − 1)− 1)

Thus if γ̃ ≤ 1
2

then d′′(ω) < 0 for all ω2 < 1. That is, when

p ≥ 1 +
8

n− 2

all ground states are unstable. On the other hand, if

p < 1 +
8

n− 2

then ground states are stable in the interval ω2 > 1
2γ̃−1

and unstable in the interval ω2 < 1
2γ̃−1

.

Ground states at the critical value ω2 = 1
2γ̃−1

are also unstable since, by the smooth choice
of ground states, there are unstable states arbitrarily nearby.
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