
Stability and Weak Rotation Limit of Solitary Waves of
the Ostrovsky Equation

Steve Levandosky∗ and Yue Liu†

Abstract

In this paper we study several aspects of solitary wave solutions of the Ostrovsky
equation. Using variational methods, we show that as the rotation parameter goes to
zero, ground state solitary waves of the Ostrovsky equation converge to solitary waves
of the Korteweg-deVries equation. We also investigate the properties of the function
d(c) which determines the stability of the ground states. Using an important scaling
identity, together with numerical approximations of the solitary waves, we are able to
numerically approximate d(c). These calculations suggest that d is convex everywhere,
and therefore all ground state solitary waves of the Ostrovsky equation are stable.

1 Introduction

The equation (
ut − βuxxx +

(
u2

)
x

)
x

= γu, x ∈ R (1.1)

was derived by Ostrovsky [10] as a model for the propagation of small-amplitude internal
waves in a rotating fluid, where the parameter γ > 0 measures the effect of rotation. The
parameter β determines the type of dispersion. For β < 0 (negative dispersion), the equation
models surface and internal waves in the ocean and surface waves in a shallow channel with
uneven bottom [2], while for β > 0 (positive dispersion), it models capillary waves on the
surface of a liquid and magneto-acoustic waves in a plasma [4, 5].

Liu and Varlamov [14] considered the Cauchy problem for the Ostrovsky equation. They
showed that equation (1.1) is well-posed in the space

Xs = {f ∈ Hs(R) | F−1
(
f̂(ξ)/ξ

)
∈ Hs(R)}

with norm

‖f‖Xs = ‖f‖Hs +

∥∥∥∥∥F
−1

(
f̂(ξ)

ξ

)∥∥∥∥∥
Hs
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for s > 3/2, where F denotes the Fourier transform. Equation (1.1) has the conserved
quantities

E(u) =

∫
1

2
βu2

x +
1

2
γ|D−1

x u|2 +
1

3
u3 dx, V (u) =

1

2

∫
u2 dx.

Solitary wave solutions of the form u(x, t) = ϕ(x− ct) satisfy the stationary equation

βϕxx + cϕ + γD−2
x ϕ = ϕ2. (1.2)

Liu and Varlamov [9] showed using the Concentration Compactness Lemma that there exist
solutions of (1.2) in the space X1 provided c < 2

√
βγ. Moreover, these ground state solutions

are characterized as minimizers of

I(u; β, c, γ) =

∫
βu2

x − cu2 + γ(D−1
x u)2 dx, (1.3)

subject to a constraint of the form

K(u) = −
∫

u3 dx = λ > 0. (1.4)

The set of all such solutions will be denoted by G(β, c, γ). In this paper, we are concerned
with two aspects of these solutions.

First, we are interested in their behavior as the rotation parameter γ vanishes. If we set
γ = 0 in equation (1.1) and integrate, we obtain the Korteweg-deVries (KdV) equation

ut − βuxxx +
(
u2

)
x

= 0. (1.5)

Thus it is natural to wonder whether the solitary waves of the Ostrovsky equation converge
to those of the KdV equation as γ approaches zero. We prove in Theorem 3.1 that the
solitary waves of the Ostrovsky equation converge strongly in the space H1(R) to those of
the KdV equation as γ goes to zero. The proof uses the variational characterization of both
the Ostrovsky and KdV solitary waves.

We are also interested in the stability of solitary wave solutions of (1.1). Following the
notation of Liu and Varlamov [9], we make the following definition.

Definition 1.1. A set S ⊂ X is X-stable with respect to equation (1.1) if for any ε > 0
there exists a δ > 0 such that for any u0 ∈ X ∩Xs, s > 3/2, with

inf
v∈S

‖u0 − v‖X < δ

the solution u(t) of (1.1) satisfying the initial condition u(0) = u0 can be extended to a
solution in C([0,∞), X ∩Xs) and

sup
0≤t<∞

inf
v∈S

‖u(t)− v‖X < ε.

Otherwise we say S is X-unstable.
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Using the methods of [3], [6] and [13], it was shown by Liu and Varlamov [9] that the
function

d(c) = E(ϕ)− cV (ϕ), ϕ ∈ G(β, c, γ) (1.6)

determines the stability of the set of ground states. The main result is the following.

Theorem 1.2. Let β > 0 and c < 2
√

βγ. If d is strictly convex in a neighborhood of c, then
the set of ground states G(β, c, γ) is X1-stable.

Unfortunately, there is no known closed form expression for d, and thus it is difficult to
determine whether or not d is convex. As in [6], Liu and Varlamov obtained bounds on d
which enabled them to conclude that d must be convex for c near 2

√
βγ. By entirely different

methods, which avoid the use of the function d(c), Liu [8] has shown that solitary waves are
stable for small γ > 0. Here, we investigate in detail the function d(c), both analytically and
numerically. A scaling property of d allows us to reduce the problem of computing d from
the unbounded domain c < 2

√
βγ to two finite intervals. Numerical calculations of d appear

to indicate that d is convex everywhere.
The paper is organized as follows. In Section 2 we establish several important analytical

properties of d. In Section 3 we use the behavior of d at the boundary γ = 0 to discuss the
relationship between the solitary waves of the Ostrovsky equation and those of the Korteweg
deVries equation. Finally, in Section 4 we present the numerical computations of d which
imply its convexity.

2 Analytical Properties of d.

In this section we establish some important regularity and scaling properties of the function
d. We begin by relating d to the minimization problem that characterizes the ground states.
First, we define

m(β, c, γ) = inf
u∈X1,K(u) 6=0

I(u; β, c, γ)

K(u)2/3
.

For β > 0, γ > 0 and c < 2
√

βγ we have

I(u; β, c, γ) ≥ M

∫
u2

x + |D−1
x u|2 dx,

where

M =

{
4βγ−c2

2(β+γ+
√

(β−γ)2+c2)
for 0 < c < 2

√
βγ

min{β, γ} for c ≤ 0

}
> 0. (2.1)

Thus, since ‖u‖L3 ≤ C‖u‖X1 for some constant C, it follows that

m(β, c, γ) > 0 for β > 0, γ > 0, c < 2
√

βγ.

The ground state solutions of (1.2) achieve this minimum, and if we multiply (1.2) by ϕ and
integrate, we find that

I(ϕ; β, c, γ) = K(ϕ)
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so
m(β, c, γ) = I(ϕ; β, c, γ)1/3 = K(ϕ)1/3.

Next, using the definition (1.6) of d, which we will now consider as a function of β, c and γ,
we have

d(β, c, γ) =
1

2
I(ϕ; β, c, γ)− 1

3
K(ϕ) =

1

6
I(ϕ; β, c, γ) =

1

6
K(ϕ) =

1

6
m(β, c, γ)3. (2.2)

This in fact proves that d is well-defined, independently of the choice of ϕ ∈ G(β, c, γ) in
equation (1.6). Using equation (2.2), we may very concisely characterize the set of ground
states is as

G(β, c, γ) = {ϕ ∈ X1 | I(ϕ; β, c, γ) = K(ϕ) = 6d(β, c, γ)}. (2.3)

The following lemma restates in terms of d the relative compactness, up to translation, of
minimizing sequences. See the proof of Theorem 2.3 in [9].

Lemma 2.1. Let ψk ∈ X1 satisfy

lim
k→∞

I(ψk; β, c, γ) = lim
k→∞

K(ψk) = 6d(β, c, γ).

Then there exists some ϕ ∈ G(β, c, γ), a subsequence, renamed ψk, and a sequence yk ∈ R
such that ψk(· − yk) → ϕ strongly in X1.

Our next lemma establishes the scaling properties of m, and hence of d.

Lemma 2.2. Let β > 0, γ > 0 and c < 2
√

βγ. For any r > 0 and s > 0 we have

m(rs2β, rc, rs−2γ) = rs1/3m(β, c, γ).

Proof. Let u ∈ X1 with K(u) 6= 0. For any r > 0 we have

I(u; rβ, rc, rγ) = rI(u; β, c, γ),

so m(rβ, rc, rγ) = rm(β, c, γ). Next let v(x) = u(sx) for s > 0. Then

I(v; β, c, γ) =
1

s
I(u; s2β, c, s−2γ) K(v) =

1

s
K(u)

so
I(v; β, c, γ)

K(v)2/3
= s−1/3 I(u; s2β, c, s−2γ)

K(u)2/3

and consequently
m(s2β, c, s−2γ) = s1/3m(β, c, γ).

Corollary 2.3. Let β > 0, γ > 0 and c < 2
√

βγ. For any r > 0 and s > 0 we have

d(rs2β, rc, rs−2γ) = r3sd(β, c, γ).
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Since the stability condition in Theorem 1.2 involves the convexity of d, it would be
desirable to work with d′′(c). However, it is not generally known whether or not d is twice
differentiable. The following lemmas summarize the regularity properties of d.

Lemma 2.4. The function d is continuous on the domain β > 0, γ > 0, c < 2
√

γβ.
Furthermore, d is strictly increasing in γ and β and strictly decreasing in c.

Proof. First, fix c and γ > 0 and consider β1 > β2 > c2
+/4γ, where c+ = max{0, c}. Let ϕβ1

and ϕβ2 be ground states with β = β1 and β = β2, respectively. Then

m(β2, c, γ) ≤ I(ϕβ1 ; β2, c, γ)

K(ϕβ1)
2/3

=
I(ϕβ1 ; β1, c, γ) + (β2 − β1)

∫
(ϕβ1)

2
x dx

K(ϕβ1)
2/3

=
I(ϕβ1 ; β1, c, γ)

K(ϕβ1)
2/3

+ (β2 − β1)

∫
(ϕβ1)

2
x dx

K(ϕβ1)
2/3

= m(β1, c, γ) + (β2 − β1)

∫
(ϕβ1)

2
x dx

K(ϕβ1)
2/3

< m(β1, c, γ),

so m is strictly increasing in β. On the other hand,

m(β1, c, γ) ≤ I(ϕβ2 ; β1, c, γ)

K(ϕβ2)
2/3

=
I(ϕβ2 ; β2, c, γ) + (β1 − β2)

∫
(ϕβ2)

2
x dx

K(ϕβ2)
2/3

= m(β2, c, γ) + (β1 − β2)

∫
(ϕβ2)

2
x dx

K(ϕβ2)
2/3

,

so

0 ≤ m(β1, c, γ)−m(β2, c, γ) ≤ (β1 − β2)

∫
(ϕβ2)

2
x dx

K(ϕβ2)
2/3

.

Now since

I(ϕβ2 ; β2, c, γ) ≥ M

∫
(ϕβ2)

2
x dx,

where M is defined by (2.1), it follows that

|m(β1, c, γ)−m(β2, c, γ)| ≤ M−1m(β2, c, γ)(β1 − β2)

so m is locally Lipschitz continuous in β. By similar reasoning it follows that m is decreasing
in c, increasing in γ, and locally Lipschitz in c and γ. Since d = 1

6
m3, the same conclusions

hold for d.
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Lemma 2.5. For each fixed c and γ > 0, the partial derivative ∂d/∂β(β, c, γ) exists for
all but countably many β > min{0, c2/4γ}. Similarly, ∂d/∂c and ∂d/∂γ exist for all but
countably many c and γ, respectively. At points where the partials exist,

∂d

∂β
=

1

2

∫
(ϕx)

2 dx

∂d

∂c
= −1

2

∫
ϕ2 dx

∂d

∂γ
=

1

2

∫
(D−1

x ϕ)2 dx.

Proof. Since d is continuous and monotone with respect to each variable, it follows that the
partial derivatives exist at all but countable many points. To verify the formulas above, first
fix c and γ. Then by the inequalities in the proof of Lemma 2.4,

∫
(ϕβ1)

2
x dx

K(ϕβ1)
2/3

≤ m(β1, c, γ)−m(β2, c, γ)

β1 − β2

≤
∫

(ϕβ2)
2
x dx

K(ϕβ2)
2/3

for β1 > β2 > c2
+/4γ. Let

gs(β, c, γ) = sup

{∫
(ϕβ)2

x dx | ϕβ ∈ G(β, c, γ)

}

gi(β, c, γ) = inf

{∫
(ϕβ)2

x dx | ϕβ ∈ G(β, c, γ)

}

Then, for β1 > β2 > c2
+/4γ,

gs(β1, c, γ)

m(β1, c, γ)2
≤ m(β1, c, γ)−m(β2, c, γ)

β1 − β2

≤ gi(β2, c, γ)

m(β2, c, γ)2

We now claim that
lim

β→β0

sup gi(β, c, γ) ≤ gs(β0, c, γ).

To see this, choose any βk → β0 and ϕk ∈ G(βk, c, γ). The continuity of m implies that
I(ϕk) → 6d(β0, c, γ) and K(ϕk) → 6d(β0, c, γ). Then by Lemma 2.1, there is a translated
subsequence ϕkj

which converges in X1 to some function ϕ in G(β0, c, γ). Hence

lim
j→∞

sup gi(βj, c, γ) ≤
∫

(ϕx)
2 dx ≤ gs(β0, c, γ).

Consequently
∂m

∂β
(β−, c, γ) =

gs(β, c, γ)

m(β, c, γ)2
.

Now, as d = 1
6
m3, this implies

∂d

∂β
(β−, c, γ) =

1

2
gs(β, c, γ)

6



Likewise,
∂d

∂β
(β+, c, γ) =

1

2
gi(β, c, γ)

So at points where the partial derivative exists, we must have gs(β, c, γ) = gi(β, c, γ), and
the first formula above follows. The proof of the other formulas is similar.

Remark 2.6. If the ground state solutions of (1.2) are unique up to translation, so that
each G(β, c, γ) consists only of translations of a single profile, it would then follow that d is
differentiable everywhere.

For the remainder of this section we fix β = 1 and we make the following assumption.

Assumption 2.7. The function d(c, γ) is twice differentiable in the region {(c, γ) : γ >
0, c < 2

√
βγ}.

In order to be able to draw conclusions about the concavity of d for all c, we need to use
its scaling properties to reduce the scope of the problem. Using Corollary 2.3 with s = r−1/2,
we have

d(rc, r2γ) = r5/2d(c, γ) (2.4)

Consequently, the value of d at any point along a curve of the form c = a
√

γ determines
the values of d at all other points on that curve. We therefore need only compute d along
some set of paths which crosses every such curve. We make the following choice. Let
Γ1 = {(c, 1/4) | −1 ≤ c < 1} and Γ2 = {(−1, γ) | 0 < γ ≤ 1/4}. It is clear from Figure
1 that every curve of the form c = a

√
γ within the domain of d (c < 2

√
γ) passes through

either Γ1 or Γ2. We now consider dcc along each path.

Γ1 : γ = 1/4

Γ2 : c = −1
c

γ

−2 −1 0 1 2

Figure 1: Domain of d and the curves Γ1 and Γ2.

Along Γ1. Fix γ > 0. By equation (2.4) we have d(c, γ) = (4γ)5/4d(c/
√

4γ, 1/4) for c ≤ 2
√

γ
and thus

dcc(c, γ) = (4γ)1/4dcc(c/
√

γ, 1/4). (2.5)

Thus, it suffices to determine the sign of dcc(c, 1/4) > 0 for −1 < c < 1.
Along Γ2. Now fix c < 0. Using equation (2.4) we have d(c, γ) = (−c)5/2d(−1, γ/c2). The
partials with respect to c are given by

dc(c, γ) = 2γ(−c)−1/2dγ(−1, γ/c2)− 5

2
(−c)3/2d(−1, γ/c2)
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and

dcc(c, γ) = 4γ2(−c)−7/2dγγ(−1, γ/c2)− 4γ(−c)−3/2dγ(−1, γ/c2) +
15

4
(−c)1/2d(−1, γ/c2)

If we let r = γ/c2, then this becomes

dcc(c, γ) =
1

4
(−c)1/2

(
16r2dγγ(−1, r)− 16rdγ(−1, r) + 15d(−1, r)

)

= (−c)1/2dcc(−1, r).

Thus it suffices to determine the sign of

dcc(−1, γ) =
1

4

(
16γ2dγγ(−1, γ)− 16γdγ(−1, γ) + 15d(−1, γ)

)
(2.6)

for 0 < γ ≤ 1/4. The numerical results presented in Section 4 suggest that the quantities
are positive for all γ > 0 and c < 2

√
γ.

3 Weak Rotation Limit

In this section, we show that the solitary waves of the Ostrovsky equation (1.1) converge to
those of the KdV equation (1.5). We remark that such a relationship is somewhat surprising
since the Ostrovsky solitary waves have zero mass, as can be seen by integrating (1.1) with
respect to x, while the KdV solitary waves given by equation (3.2) below clearly do not
have zero mass. Figure 2 illustrates that the positive part of the Ostrovsky solitary waves
translates off to infinity as γ goes to zero. These images were actually the inspiration for
Lemma 3.3.

In order to precisely state the convergence result, we first recall that solitary waves of
the KdV equation satisfy

βϕxx + cϕ = ϕ2 (3.1)

and that for each β > 0 and c < 0 the unique (up to translation) ground state solution of
(3.1) is given explicitly by

ϕ0(x) =
3

2
c sech2

(
1

2
x

√
|c|
β

)
. (3.2)

Theorem 3.1. Fix β > 0 and c < 0 and consider any sequence γk → 0+. Denote by ϕk

any element of G(β, c, γk) and let ϕ0 be given as in equation (3.2). Then there exists a
subsequence (renamed γk) and translations yk so that

ϕk(· − yk) → ϕ0

in H1. That is, the KdV solitary waves are the limits in H1 of solitary waves of the Ostrovsky
equation.
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γ = 0.01
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γ = 0.001
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γ = 0.0001
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−2

0.5

γ = 0.00001

Figure 2: Convergence to KdV solitary waves as γ → 0. Here β = 1 and c = −1.

To prove this result, we first note that the solutions (3.2) satisfy the same variational
principle as do the Ostrovsky solitary waves, but with γ = 0 and in the space H1(R). That
is, they achieve the minimum

m(β, c, 0) = inf
u∈H1,K(u)6=0

I(u; β, c, 0)

K(u)2/3

where

I(u; β, c, 0) =

∫
βu2

x − cu2 dx,

and K is defined as before by equation (1.4). We may extend the definition of d(β, c, γ) to
the boundary γ = 0 (see Figure 1), as

d(β, c, 0) =
1

6
K(ϕ0) = −9c3

16

∫ ∞

−∞
sech6

(
1

2
x

√
|c|
β

)
dx =

6

5
(−c)5/2

√
β.

Thus, equation (2.3) again characterizes the set of these ground states, and we have the
following analog of Lemma 2.1
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Lemma 3.2. Let ψk ∈ H1(R) satisfy

lim
k→∞

I(ψk; β, c, 0) = lim
k→∞

K(ψk) = 6d(β, c, 0).

Then there exists some ϕ ∈ G(β, c, 0), a subsequence, renamed ψk, and a sequence yk ∈ R
such that ψk(· − yk) → ϕ strongly in H1(R).

The idea of the proof of Theorem 3.1 is to show that the Ostrovsky solitary waves form a
minimizing sequence for the KdV variational problem as γ vanishes. We first need to show
that d is continuous up to the boundary γ = 0. The following lemma is needed.

Lemma 3.3. The space X1 is dense in H1(R).

Proof. Let ϕ ∈ H1. Then by the Sobolev embedding, we may assume ϕ is continuous. Now,
given ε > 0, choose R > 0 so large that

∫

|x|>R

ϕ2
x + ϕ2 dx < ε

Next, choose R1 > R such that |ϕ(R1)| < min(1, ε), and let

M =

∫ R1

0

ϕ(x) dx

Without loss of generality, suppose ϕ(R1) ≥ 0 and M ≥ 0. We now define a function ψ ∈ X1.
First we set

ψ(x) = ϕ(x), x ∈ [0, R1]

Next we extend ψ to be linear with slope −1 on I1 = [R1, R2] with ψ(R2) = −h, where
h ≡ ε

M+2
. We now define ψ to be the constant −h on the interval I2 = [R2, R3], of length w,

to be determined. Finally, extend ψ linearly with slope 1 on I3 = [R3, R4] so that ψ(R4) = 0,
and set ψ(x) = 0 for all x > R4. See Figure 3. We now have

ϕ

ψ

h

w

R1 R2 R3 R4

Figure 3: X1 approximation of an H1 function.

∫ ∞

0

ψ(x) dx = M +
1

2

(
ϕ(R1)

2 − h2
)− wh− 1

2
h2
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This equals zero when

w =
1

h

(
M +

1

2
ϕ(R1)

2 − h2

)

We define ψ similarly for x ≤ 0. Since ψ is continuous, piecewise C1 and compactly sup-
ported, it is in H1. Furthermore, since

∫ ∞

−∞
ψ(x) dx = 0,

it follows that

(D−1
x ψ)(x) =

∫ x

−∞
ψ(y) dy

is also compactly supported. Thus both ψ and D−1
x ψ are in H1, so ψ is in X1. We now show

that ψ is close to ϕ in H1. First, since ψ and ϕ agree on [0, R1], we have

‖ψ − ϕ‖2
H1(0,∞) = ‖ψ − ϕ‖2

H1(R1,∞)

≤ ‖ϕ‖2
H1(|x|>R) +

∫ ∞

R1

ψ2
x + ψ2 dx

= ‖ϕ‖2
H1(|x|>R) +

∫ ∞

I1∪I2∪I3

ψ2
x + ψ2 dx

The first term is less than ε by our choice of R. We now calculate the second term explicitly.
On I1 and I3, ψ2

x = 1, so

∫

I1∪I3

ψ2
x + ψ2 dx = ϕ(R1) + h +

1

3
(ϕ(R1)

3 + h3) + h +
1

3
h3 < 3ε + ε3

On the interval I2, we have ψx = 0, so

∫

I2

ψ2
x + ψ2 dx = wh2 = h

(
M +

1

2
ϕ(R1)

2 − h2

)
< ε

We estimate the integral over (−∞, 0) similarly. This completes the proof of the lemma.

Lemma 3.4. Fix β > 0 and c < 0. Then lim
γ→0+

m(β, c, γ) = m(β, c, 0).

Proof. By the monotonicity of m in γ, it suffices to show that m(β, c, γk) → m(β, c, 0) for
some sequence γk → 0. For each positive integer k, choose a function ψk in X1 with

‖ψk − ϕ0‖H1 <
1

k

and let

γk = min

(
1

k
,

1

k
∫ |D−1

x ψk|2 dx

)
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Then

m(β, c, γk) ≤ I(ψk; β, c, γk)

K(ψk)2/3

=
I(ψk; β, c, 0) + γk

∫ |D−1
x ψk|2 dx

K(ψk)2/3

≤ I(ψk; β, c, 0) + 1
k

K(ψk)2/3

Since I(·; β, c, 0) and K are both continuous on H1, we therefore have

lim
k→∞

m(β, c, γk) ≤ I(ϕ0; β, c, 0)

K(ϕ0)2/3
= m(β, c, 0)

On the other hand, since m is strictly increasing in γ, we have m(β, c, γk) > m(β, c, 0), so

lim
k→∞

m(β, c, γk) = m(β, c, 0)

which proves the lemma.

Proof of Theorem 3.1. By continuity of m at γ = 0,

I(ϕk; β, c, 0) = I(ϕk; β, c, γk)− γk

∫
(D−1

x ϕk)
2 dx

≤ I(ϕk; β, c, γk)

= m(β, c, γk)
3 → m(β, c, 0)3 = 6d(β, c, 0)

and
K(ϕk) = m(β, c, γk)

3 → m(β, c, 0)3 = 6d(β, c, 0).

Thus, the result follows by Lemma 3.2. ¤

4 Numerical Results

We now present some numerical results that imply the convexity of d in c for all c. We
first outline the numerical method employed to compute the solutions. Letting z = D−1

x ϕ,
equation (1.2) may be rewritten

βz′′′′ + cz′′ + γz = 2z′z′′ (4.1)

Multiplying (4.1) by z′ and integrating gives

βz′′′z′ − β

2
(z′′)2 +

c

2
(z′)2 +

γ

2
z2 =

2

3
(z′)3,

where we have used the fact that z and its derivatives decay to zero as |x| → ∞. We assume
without loss of generality that ϕ has a local minimum at x = 0, so that z′′(0) = 0. The
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shooting parameters are chosen to be a1 = z(0) and a2 = z′(0), and the equation above gives
z′′′(0) =

(
2
3
a3

2 − c
2
a2

2 − γ
2
a2

1

)
/βa2. We therefore need to solve the system

z′1 = z2

z′2 = z3

z′3 = z4

z′4 = (2z2z3 − cz3 − γz1)/β

with initial data (a1, a2, 0,
(

2
3
a3

2 − c
2
a2

2 − γ
2
a2

1

)
/βa2) over an interval [−X,X]. Since we are

looking for a solution that decays to zero as x → ±∞, it must lie in the intersection of the
stable and unstable manifolds of the system above. Let Es and Eu denote the stable and
unstable subspaces of the corresponding linear system

z′ = Mz, M =




0 1 0 0
0 0 1 0
0 0 0 1

−γ/β 0 −c/β 0


 .

For any z ∈ R4, we may write z = zs + zu where zs ∈ Es and zu ∈ Eu. Furthermore,
there exists matrices As and Au, which depend only on β, γ and c, such that zs = Asz and
zu = Auz. Setting v+

u = Auz(X) and v−s = Asz(−X), we then define the shooting function
by S(a1, a2) = (‖v+

u ‖2, ‖v−s ‖2). To implement Newton’s method on S, derivatives of the
solution with respect to α1 and α2 are required, so we also solve the auxiliary system

w′
1 = w2

w′
2 = w3

w′
3 = w4

w′
4 = (2w2z3 + 2w3z2 − cw3 − γw1)/β

with initial data
(
1, 0, 0,− γa1

βa2

)
and

(
0, 1, 0, (4

3
a2 − 1

2
c + 1

2
γ

a2
1

a2
2
)/β

)
. After solving these sys-

tems using a Runge-Kutta-Fehlberg solver, the method then proceeds by applying Newton’s
method and incrementing X until the tail of the solution is sufficiently small. MATLAB
routines and data are available at http://mathcs.holycross.edu/̃ spl/papers/ostrovsky/.

Typical profiles are shown in Figure 4 and Figure 2. For c > −2
√

βγ they have exponen-
tially decaying oscillatory tails, while for c ≤ −2

√
βγ the tails are exponentially decaying,

but not oscillatory. All profiles appear to be even functions of x. However, we do not have
a proof of this fact, nor do we assume this in the numerical computations.

We now fix β = 1 and recall from Section 2 that it suffices to compute dcc along Γ1 and
Γ2 (see Figure 1) and that dcc is given by equation (2.6) along Γ2. Using the numerically
computed solitary waves, we can compute K(ϕ), and use formula (2.2) to compute d. We
can also use Lemma 2.5 to compute dc and dγ. We then have two methods of approximating
dcc; by using a second difference of d, or by using a first difference of its derivatives. The
graph of dcc along Γ1 is shown in Figure 5. It is clear that dcc(c, 1/4) > 0 for all c ∈ (−1, 1).
Figure 6 shows a blowup of the minimum, which occurs at approximately c = 0.964. The
curve appears to be smooth there. The graph of dcc along Γ2 is shown in Figure 7. Again,
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Figure 4: Solitary waves of the Ostrovsky equation.
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Figure 5: dcc(c, γ) for γ = 1/4, −1 ≤ c < 1.

0.927 0.972
1.7

3.1

Figure 6: Blowup of the minimum in Figure 5.
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Figure 7: Graph of dcc(c, γ) for c = −1 and 0 < γ < 1/4.

it is clear that dcc is positive. We also note that, as γ → 0, dcc(−1, γ) → 9/2, the value of
d′′(−1) for the KdV solitary waves.

These calculations suggest that d is convex in c for all β > 0, γ > 0 and c < 2
√

βγ, from
which it would follow that all ground states of the Ostrovsky equation are stable.
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