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Abstract

We study the stability of traveling wave solutions to a fifth-order water wave model.
By solving a constrained minimization problem we show that “ground state” traveling
wave solutions exist. Their stability is shown to be determined by the convexity or
concavity of a function d(c) of the wave speed c. The analysis makes frequent use of
the variational properties of the traveling waves.

1 Introduction

We study the stability properties of traveling wave solutions to a generalized fifth-order
Korteweg-deVries equation of the form

ut + uxxxxx + buxxx = (f(u, ux, uxx))x (1.1)

where we assume the nonlinear term has the variational structure

f(q, r, s) = Fq(q, r)− rFqr(q, r)− sFrr(q, r) (1.2)

for some F (q, r) ∈ C3(R2) which is homogeneous of degree p + 1 for some p > 1. That is,
we assume

F (λq, λr) = λp+1F (q, r) (1.3)

for all λ ≥ 0 and (q, r) ∈ R2.
Such equations arise as long-wave approximations to the water-wave equations. On the

one hand, they have been derived as second order asymptotic expansions for unidirectional
wave propagation, the first order expansions being of course the Korteweg-deVries equation

ut + buxxx + uux = 0. (1.4)

In this way Olver [23] derived equation (1.1), with a nonlinear term of the form F (u, ux) =
−uu2

x (for a specific choice of parameters). The same equation was proposed by Benney [5]
as a model for the interaction of short and long waves. Later, both Zufiria [31] and Hunter &
Scheurle [13] derived (1.1) with F (u, ux) = −u3, and considered it as a model for water waves
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with Bond number τ near 1/3, the critical value at which the KdV equation ceases to be an
effective model. In both (1.1) and (1.4) the coefficient b of the third order dispersive term is
proportional to τ −1/3. On the other hand, higher-order model equations have been derived
by considering perturbations of the Hamiltonian structure of the full water-wave problem.
In [23] Olver obtained (1.1) with the (inhomogeneous) nonlinear term F (u, ux) = u4 + uu2

x.
More recently Craig & Groves [11] observed that the Hamiltonian structure of the water-
wave problem may be formulated using the Dirichlet-Neumann operator. By considering a
Taylor expansion of this operator they arrived at (1.1) with F (u, ux) = uu2

x − u3. For a
more detailed discussion of the history of higher-order water wave models equations we refer
the reader to [17, 24] and the references therein. We remark that, due to the homogeneity
assumption on F , the class of equations considered here does not include equations in the
so-called KdV heirarchy discovered by Lax [18].

By a traveling wave we mean a solution of (1.1) of the form u(x, t) = ϕ(x + ct), where c
represents the speed of the wave. Inserting this into (1.1) and integrating once, we see that
ϕ must satisfy

ϕxxxx + bϕxx + cϕ = f(ϕ, ϕx, ϕxx) (1.5)

This equation also appears as the solitary wave equation for models of both a buckling strut
[3, 25] and a suspension bridge [22]. A higher dimensional analog has also been considered
[19]. Furthermore, we mention that equation (1.5) (with f(ϕ, ϕx, ϕxx) = ϕ2) has been
derived directly as a model for solitary water-waves by means of a center-manifold reduction
of the full water-wave equations [2, 8]. In this paper, however, we consider only the stability
properties of traveling waves with respect to the evolution equation (1.1).

The existence of traveling wave solutions of (1.1) has been has been considered by many
authors. Using techniques identical to those presented here, Weinstein [30] proved existence
in the case b < 0 and F (u, ux) = |u|p+1. For F (u, ux) = −u3 existence was established
in [31] and [13]. Kichenassamy and Olver [17] proved criteria for the existence of sech2

type solitary waves, and showed that such solutions exist only if f(u, ux, uxx) is a cubic
polynomial. Kichenassamy [16] proved the existence of traveling wave solutions of (1.1)
for the nonlinearity of the form F (u, ux) = −uu2

x + u3 + u4. His method of proof used a
variational argument similar to the one presented here. The results however differ in two
respects: first, the nonlinearity he considered was inhomogeneous while those considered
here are all homogeneous, and second, the speed of the solitary waves found was given by
a Lagrange multiplier, while here the speed is specified as a parameter in the functionals
used in the minimization. Recently Champneys and Groves [10] considered traveling waves
of (1.1) with a nonlinearity of the form F (u, ux) = uu2

x − u3 derived in [10]. They arrived
at a global (in the paramater b and wave speed c) bifurcation picture which describes the
regions in which traveling waves exist, as well as the types of traveling waves (e.g. elevation,
depression, multi-modal) which exist in each region. The most notable feature of the traveling
waves treated here is their lack of positivity. The values of b and c we consider here are such
that the linearization of (1.5) about zero has four complex eigenvalues. Thus the solitary
waves have exponentially decaying oscillatory tails, and are therefore non-positive. In the
case F (u, ux) = uu2

x − u3 numerical evidence shows these traveling waves to be waves of
depression [10].

Stability results for solitary waves of the Korteweg-deVries equation go back to the works
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of Benjamin [4] and Bona [6]. They showed that solitary wave solutions are stable in the
space H1(R) associated with the conserved quantities of (1.4). Later, Bona, Souganidis
and Strauss [7] and Souganidis and Strauss [28] obtained stability and instability results for
certain generalizations of these equations by making use of the Hamiltonian formulation of
these problems to apply the theory of Grillakis, Shatah and Strauss [12]. By a different
method, Weinstein [29, 30] proved stability of solitary waves for a class of generalized long-
wave equations. The results of this paper are in the same spirit as those above, in that we
consider the nonlinear stability (see Definition 1.3) of traveling wave solutions of (1.1) in the
space H2(R) associated with its conserved quantities. We show that there exists a function
d(c) of the wave speed c such that traveling waves with speed c are stable if and only if d is
convex at c. See Theorems 4.1, 5.3 and Corollary 5.14.

Much of the stability analysis is based on techniques developed in the works cited above.
The most noteworthy difference concerns the assumptions made in [7, 28, 30] about the
traveling wave solutions ϕ. First, it was assumed that the traveling waves are positive which,
as mentioned above, is not the case here. Second, it was assumed that the operator Hc (see
Definition 5.1) obtained by linearizing the solitary wave equation about the traveling wave ϕ
has exactly one negative eigenvalue and that zero is a simple eigenvalue with eigenfunction
ϕx. This last assumption is particularly difficult to verify in practice [1, 29, 12]. To avoid
these difficulties, we use the variational characterization of the traveling waves. The stability
proof uses a compactness argument due to Cazenave & Lions [9] and Shatah [26]. The proof
of instability is an application of the theory of Grillakis, Shatah and Strauss [12], modified as
in [7] to fit the present problem. The key observation in both cases is that the invariants of
(1.1) and the functionals by which the traveling waves are obtained are related by equation
(3.1). This ideas was also used by the author in the stability analysis of a fourth-order
wave equation [19] and by Liu [21], who studied the stability of the KP equation. Shatah
& Strauss [27] used a similar technique to prove the instability of solitary waves for the
generalized Klein-Gordon equation.

The existence of traveling waves is considered in Section 2. We construct solutions of (1.5)
by solving a constrained minimization problem in H2(R). The concentration-compactness
lemma of Lions [20] is used to show that all minimizing sequences for this problem are
relatively compact in H2(R) up to a sequence of spatial translations. This fact, in addition
to establishing existence of traveling waves, becomes a central feature in both the regularity
of d(c) and the proof of the stability theorem. We show that the traveling waves thus obtained
are classical solutions of (1.5). In Section 3 we define the function d(c) of the wave speed
c by which the stability of the traveling waves is determined. We establish some regularity
properties of d(c) and derive an explicit formula for the case when b = 0 and F (q, r) is jointly
homogeneous in q and r. Section 4 contains the proof of the main stability theorem and
uses a compactness argument due to Cazenave & Lions [9] and Shatah [26]. The instability
theorem is proved in Section 5. Applying the theory of Grillakis, Shatah and Strauss [12]
(see also [7] and [28]) we construct a Lyapunov functional. The construction of the function
λ in Lemmas 5.8 and 5.9 is where equation (3.1) is used in place of spectral information.
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The functionals

E(u) =

∫ ∞

−∞

1

2
|uxx|2 − b

2
|ux|2 − F (u, ux)dx

Q(u) =
1

2

∫ ∞

−∞
|u|2dx

(1.6)

are in C2(H2(R),R) and are (formally) conserved quantities of (1.1). In terms of E the
evolution equation (1.1) may be written

ut = JE ′(u) (1.7)

where J = −∂x, while the traveling wave equation (1.5) takes the form

E ′(ϕ) + cQ′(ϕ) = 0 (1.8)

We make the following assumption concerning the well-posedness of (1.1) in the space H2(R).

Assumption 1.1 Given initial data g ∈ H2(R) there exists some T > 0 which depends
only on ‖g‖H2(R) and a unique solution u ∈ C([0, T ), H2(R)) of (1.1) with u(0) = g, which
satisfies E(u(t)) = E(g), Q(u(t)) = Q(g) for t ∈ [0, T ).

Remark 1.2 When F (u, ux) depends only on u, Assumption 1.1 follows by applying the
results of Kato [14],[15]. For certain more general nonlinearities Ponce [24] has shown well-
posedness in Hs(R) for s ≥ 4.

We will use the following definition of stability throughout.

Definition 1.3 We say a set S ⊂ H2(R) is stable with respect to (1.1) if given ε > 0 there
exists some δ > 0 such that if g satisfies infψ∈S ‖g−ψ‖H2(R) < δ then the solution u(t) of (1.1)
with initial data u(0) = g exists for all t > 0 and satisfies supt∈[0,∞) infψ∈S ‖u(t)−ψ‖H2(R) < ε.
Otherwise we say S is unstable with respect to (1.1).

We shall use 〈·, ·〉 to denote the pairing of H−2(R) with H2(R) and we remark that when
both arguments are in L2(R) then this is equivalent to the inner product on L2(R).

2 Existence of Traveling Waves

In this section we obtain solutions to the traveling wave equation (1.5) by solving a con-
strained minimization problem involving the functionals Ic, K ∈ C2(H2(R),R) defined by

Ic(u) =
1

2

∫ ∞

−∞
|uxx|2 − b|ux|2 + c|u|2dx

K(u) =

∫ ∞

−∞
F (u, ux)dx.

(2.1)
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In addition to (1.3) we assume further that there is some u ∈ H2(R) such that

∫ ∞

−∞
F (u, ux)dx > 0 (2.2)

and therefore K(u) is positive for some u ∈ H2(R). To ensure coercivity of Ic we restrict
ourselves to c > b2

+/4 where b+ = max(b, 0).

Lemma 2.1 The functional Ic defined in (2.1) is coercive if c > b2
+/4.

Proof. For u ∈ H2(R) we may integrate by parts to find

Ic(u) =
1

2

∫ ∞

−∞
|uxx|2 + buxxu + c|u|2dx

≥ 1

2

(
1− b+

2
√

c

) ∫ ∞

−∞
|uxx|2 + c|u|2dx

where we have made use of the inequality uxxu ≤ εu2
xx

2
+ u2

2ε
with ε = c−1/2. It is clear that

the latter integral is equivalent to the H2(R) norm if c > 0. ¥

Using the homogeneity of F (q, r) we obtain the following estimates on K.

Lemma 2.2 Let F (q, r) satisfy (1.3) and let K(u) be defined as in (2.1). Then K is locally
Lipschitz on W 1,p+1(R).

Proof. Since F is homogeneous of degree p + 1 it follows that

|F (q, r)| ≤ C
(|q|p+1 + |r|p+1

)
. (2.3)

Indeed, first suppose 0 < q < r. Then by (1.3)

|F (q, r)| = rp+1|F (q/r, 1)| ≤ Crp+1.

Similarly |F (q, r)| ≤ Cqp+1 for 0 < r < q and (2.3) holds for positive q and r. The result for
arbitrary q and r follows similarly. Hence for u ∈ W 1,p+1(R) we have

|K(u)| ≤ C(‖u‖p+1
Lp+1 + ‖ux‖p+1

Lp+1) = C‖u‖p+1
W 1,p+1

Next, since both Fq and Fr are homogeneous of degree p we have

|DF (q, r)| ≤ C (|q|p + |r|p) . (2.4)

Hence, for u, v ∈ W 1,p+1(R)

|K(u)−K(v)| ≤
∫ ∞

−∞
|DF (w, w̃)|(|u− v|+ |ux − vx|)dx
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where w = λu + (1− λ)v, w̃ = λux + (1− λ)vx for some function 0 ≤ λ(x) ≤ 1. By Hölder’s
inequality and (2.4) we have

|K(u)−K(v)| ≤ ‖DF (w, w̃)‖
L

p+1
p

(‖u− v‖Lp+1 + ‖ux − vx‖Lp+1)

≤ C(‖u‖p
W 1,p+1 + ‖v‖p

W 1,p+1)‖u− v‖W 1,p+1

and the lemma is proved. ¥

For c > b2
+/4 we now define

mλ(c) = inf{Ic(ψ) : ψ ∈ H2(R), K(ψ) = λ}
for λ ≥ 0. By the assumptions (1.3), (2.2) on F , there exist ψ ∈ H2(R) such that K(ψ) = λ
for λ ≥ 0 and by the coercivity of Ic it follows that mλ(c) is non-negative and satisfies

mλ(c) = λ
2

p+1 m1(c) (2.5)

for all λ ≥ 0. Hence
mλ(c) + m1−λ(c) > m1(c)

for λ ∈ (0, 1). We call ψk a minimizing sequence if Ic(ψk) → m1(c) and K(ψk) → 1. The
following is an application of the Concentration Compactness Lemma [20].

Theorem 2.3 Let ψk be a minimizing sequence for the pair of functionals Ic, K in (2.1)
and suppose F (q, r) satisfies (1.3) and (2.2). Then there exists a subsequence {ψkj

}, yj ∈ R
and ψ ∈ H2(R) such that ψkj

→ ψ in H2(R).

Proof. Let ψk be a minimizing sequence. Then the condition c > b2
+/4 implies that Ic is

coercive and ψk is bounded in H2(R), so that the sequence of L1(R) functions

ρk = |∂2
xψk|2 + |ψk|2

is bounded. After extracting a subsequence we may assume that L = limk→∞
∫∞
−∞ ρkdx exists.

By normalizing we may assume further that
∫∞
−∞ ρkdx = L for all k. By the Concentration

Compactness Lemma [20] there are three possibilities:

(i) Compactness: There exist yk ∈ R such that for any ε > 0 there exists R(ε) > 0 such
that for all k ∫

|x−yk|≤R(ε)

ρkdx ≥
∫ ∞

−∞
ρkdx− ε

(ii) Vanishing: For every R > 0

lim
k→∞

sup
y∈R

∫

|x−y|≤R

ρkdx = 0

(iii) Dichotomy: There exists l ∈ (0, L) such that for all ε > 0 there exist R, Rk → ∞,
yk ∈ R and k0 such that

∣∣∣∣
∫

|x−yk|≤R

ρkdx− l

∣∣∣∣ < ε and

∣∣∣∣
∫

R<|x−yk|<Rk

ρkdx

∣∣∣∣ < ε
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for k > k0.

We first show that compactness of ρk implies the existence of a minimizer. Since ψk is
bounded in H2(R) there is some subsequence ψj and some ψ ∈ H2(R) such that

ψj(·+ yj) ⇀ ψ in H2(R)

ψj(·+ yj) → ψ in H1
loc(R)

Also since ψj is bounded in W 1,q(R) for all q, the convergence also takes place strongly in
W 1,p+1

loc (R). By compactness of ρk and the Sobolev inequality it follows that the sequence

σj = |∂xψj(·+ yj)|p+1 + |ψj(·+ yj)|p+1

is also compact. We claim this implies strong convergence in W 1,p+1(R). Given ε > 0 choose
R0 so large that ∫

|x|≥R0

|∂xψ|p+1 + |ψ|p+1dx < ε

By compactness of σj there exist j1(ε) and R(ε) > R0 such that
∫

|x|≥R(ε)

σjdx < ε

for j ≥ j1(ε). By the convergence in W 1,p+1
loc (R) there exists j2(ε) ≥ j1(ε) such that

‖ψj(·+ yj)− ψ‖p+1
W 1,p+1(B(0,R(ε))) < ε

for j ≥ j2(ε). Thus
‖ψj(·+ yj)− ψ‖W 1,p+1(R) < (2p+1 + 1)ε

for j ≥ j2(ε), which proves the claim. Thus by Lemma 2.2 it follows that K(ψ) = 1. By the
weak convergence in H2(R) and the weak lower semicontinuity of Ic we have Ic(ψ) ≤ m1(c),
and therefore ψ must be a minimizer.

We next prove that ρk is compact by ruling out possibilities (ii) and (iii). First suppose
that (ii) holds. It follows from (2.3) and the Sobolev inequality that

∫

|x−y|≤1

F (ψk, ∂xψk)dx ≤ C

(∫

|x−y|≤1

ρkdx

) p+1
2

for all y ∈ R. By (ii) we can choose k(ε) so large that
∫

|x−y|≤1

F (ψk, ∂xψk)dx ≤ Cε
p−1
2

∫

|x−y|≤1

ρkdx

for k ≥ k(ε). Summing over intervals centered at even integers gives

K(ψk) ≤ Cε
p−1
2

and we arrive at the contradiction that K(ψk) → 0 as k → ∞. Next suppose (iii) holds.
Then we may define cutoff functions ξ1 and ξ2 with support on |x| ≤ 2 and |x| ≥ 1/2
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respectively and with ξ1(x) = 1 for |x| ≤ 1 and ξ2(x) = 1 for |x| ≥ 1, in such a way that the
functions ψk,1(x) = ξ1(|x− yk|/R)ψk(x) and ψk,2(x) = ξ2(|x− yk|/Rk)ψk(x) satisfy

Ic(ψk) = Ic(ψk,1) + Ic(ψk,2) + O(ε) (2.6)

K(ψk) = K(ψk,1) + K(ψk,2) + O(ε)

for k ≥ k0. Since {ψk}∞k=1 is bounded in H2(R) it follows that ψk,1 and ψk,2 are also bounded
in H2(R) independently of ε. Hence K(ψk,1) and K(ψk,2) are bounded and we may pass to a
subsequence to define λi(ε) = limk→∞ K(ψk,i) for i = 1, 2. Since λ1(ε) and λ2(ε) are bounded
independently of ε we can choose a sequence εj → 0 such that the limits λi = limj→∞ λi(εj)
exist. We clearly have λ1 + λ2 = 1 and there are three cases to consider.

If λ1 ∈ (0, 1) then by (2.6)

Ic(ψk) = Ic(ψk,1) + Ic(ψk,2) + O(εj)

≥ mK(ψk,1)(c) + mK(ψk,2)(c) + O(εj)

=
(
K(ψk,1)

2
p+1 + K(ψk,2)

2
p+1

)
m1(c) + O(εj)

Letting k →∞ and using the fact that ψk is a minimizing sequence yields

m1(c) ≥
(
λ1(εj)

2
p+1 + λ2(εj)

2
p+1

)
m1(c) + O(εj)

and letting j →∞ we arrive at the contradiction

m1(c) ≥
(

λ
2

p+1

1 + λ
2

p+1

2

)
m1(c) > m1(c).

If λ1 = 0 (or equivalently λ1 = 1) we use the coercivity of Ic and the assumption of
dichotomy to estimate

Ic(ψk,1) ≥ 1

2

(
1−

√
b2
+/4c

) ∫ ∞

−∞
|∂2

xψk,1|2 + |ψk,1|2dx

=
1

2

(
1−

√
b2
+/4c

) ∫

|x−yk|≤2R)

|∂2
xψk|2 + |ψk|2dx + O(εj)

=
1

2

(
1−

√
b2
+/4c

)
(l + O(εj)).

Thus

Ic(ψk) = Ic(ψk,1) + Ic(ψk,2) + O(εj)

≥ 1

2

(
1−

√
b2
+/4c

)
(l + O(εj)) + K(ψk,2)

2
p+1 m1(c) + O(εj).

As above we let k →∞ and then j →∞ to find

m1(c) ≥ 1

2

(
1−

√
b2
+/4c

)
l + m1(c) > m1(c),
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a contradiction.

Finally, if λ1 > 1 (or equivalently λ1 < 0) we use the positivity of Ic to estimate

Ic(ψk) ≥ Ic(ψk,1) + O(εj) ≥ K(ψk,1)
2

p+1 m1(c) + O(εj)

Once again sending k, j →∞ yields the contradiction

m1(c) ≥ λ
2

p+1

1 m1(c) > m1(c).

Hence the sequence ρk is compact. ¥

The function ψ found in Theorem 2.3 is a minimizer of Ic subject to the constraint K = 1
and is therefore a weak solution of the Euler-Lagrange equation

ψxxxx + bψxx + cψ = µf(ψ, ψx, ψxx) (2.7)

for some multiplier µ. By the homogeneity of f we can rescale to obtain a solution ϕ = µ
1

p−1 ψ
of (1.5). Such a solution will be called a ground state. We now show that this weak solution
is in fact a classical solution of (1.5).

Lemma 2.4 Suppose ϕ ∈ H2(R) is a weak solution of (1.5). Then ϕ is a classical solution
and ϕ ∈ C5(R). Furthermore, |ϕ| → 0 exponentially as x → ±∞.

Proof. By (1.2) and (1.3) we have

|f(q, r, s)| ≤ C
(|q|p + |r|p + |r||q|p−1 + |s|(|q|p−1 + |r|p−1)

)
(2.8)

Since ϕ ∈ H2(R), both ϕ and ϕx are in L∞(R) ∩ L2(R) and thus f(ϕ, ϕx, ϕxx) ∈ L2(R).
Since ϕ is a weak solution of (1.5) this imples ϕ ∈ H4(R) and therefore f(ϕ, ϕx, ϕxx) ∈
C1(R). Thus ϕ ∈ C5(R) is a classical solution of (1.5). Next we write (1.5) as a system
φ′ = Aφ + P (φ) where

A =




0 1 0 0
0 0 1 0
0 0 0 1
−c 0 −b 0




and P (φ1, φ2, φ3, φ4) = (0, 0, 0, f(φ1, φ2, φ3)). It follows from the condition c > b2
+ that A has

two eigenvalues with positive real part and two with negative real part. Thus the exponential
decay follows from the stable-manifold theorem if we can show that ϕ(x) and its first three
derivatives approach zero as x →∞. But this follows from

‖ϕ‖C3([n,n+1]) ≤ C‖ϕ‖H4([n,n+1]) → 0 as n →∞
since ϕ ∈ H4(R). ¥

Remark 2.5 At present it is not known whether the ground state solutions of (1.5) are
unique, up to translations and symmetries of the nonlinear term. Thus we consider the
stability of the set of ground states Gc. See (3.6) below.
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3 The function ddd(((ccc)))

The functionals E and Q are related to the functionals Ic and K used to obtain the traveling
waves by the simple formula

E(u) + cQ(u) = Ic(u)−K(u). (3.1)

It is precisely this relationship that makes it possible to utilize the variational properties of
the traveling waves in the stability analysis. In light of (1.8) and (3.1) we define d(c) by

d(c) = E(ϕ) + cQ(ϕ), (3.2)

for c > b2
+/4, where ϕ is any ground state solution of (1.5).

Lemma 3.1 The function d(c) is well defined on (b2
+/4,∞), is strictly increasing, and is

differentiable at all but countably many points.

Proof. First we notice that by the homogeneity of F , any ground state is a minimizer of
the quotient

Ic(u)

K(u)2/p+1

over non-zero u ∈ H2(R). Thus, multiplying (1.5) by ϕ and using (1.3) we find that

2Ic(ϕ) = (p + 1)K(ϕ) = (p + 1)

(
2m1(c)

p + 1

) p+1
p−1

. (3.3)

This shows that d(c) is well defined and

d(c) =
p− 1

p + 1
Ic(ϕ) =

p− 1

2
K(ϕ) =

p− 1

2

(
2m1(c)

p + 1

) p+1
p−1

. (3.4)

Next, for 0 6= u ∈ H2(R) fixed, Lu(c) = Ic(u)/K(u)2/p+1 is a line. Since m1(c) is the
infimum of this family of lines, it follows that m1(c) is a concave function on (b2

+/4,∞), and
thus is continuous and differentiable at all but countably many points. By (3.4) the same
regularity properties hold for d(c). Next let ϕ1 and ϕ2 be ground states with speeds c1 and
c2 respectively, with c1 > c2. Then

m1(c1) =
Ic1(ϕ1)

K(ϕ1)2/p+1
=

Ic2(ϕ1) + 1
2
(c1 − c2)

∫
R ϕ2

1dx

K(ϕ1)2/p+1
≥ m1(c2) +

(c1 − c2)
∫
R ϕ2

1dx

2K(ϕ1)2/p+1
(3.5)

This shows that m1 is strictly increasing, so that by (3.4) d must be strictly increasing as
well. ¥

In view of (3.4) we define the set of ground states with speed c by

Gc = {ϕ ∈ H2(R) : 2(p− 1)Ic(ϕ) = (p2 − 1)K(ϕ) = 2(p + 1)d(c)} (3.6)

for c > b2
+/4.
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Lemma 3.2 At points of differentiability of d(c) we have

d′(c) = Q(ϕ). (3.7)

for any ϕ ∈ Gc.

Proof. Again let c1 > c2. By reversing the roles of c1 and c2 in (3.5) we find that

∫
R ϕ2

1dx

2K(ϕ1)2/p+1
≤ m(c1)−m(c2)

c1 − c2

≤
∫
R ϕ2

2dx

2K(ϕ2)2/p+1

Because this holds for all such ground states, we have also that

qs(c1)(
2m1(c1)

p + 1

)2/p−1
≤ m(c1)−m(c2)

c1 − c2

≤ qi(c2)(
2m1(c2)

p + 1

)2/p−1

where qi(c) and qs(c) are the infimum and supremum, respectively, of {Q(ϕ) : ϕ ∈ Gc}. We
claim that lim supc→c0 qi(c) ≤ qs(c0) and lim infc→c0 qs(c) ≥ qi(c0). It follows from the claim
and (3.4) that the right and left derivatives of d(c) are d′(c+) = qi(c) and d′(c−) = qs(c),
respectively. At points of differentiability we have qi(c) = qs(c) and the lemma follows.
To prove the claim let ck → c0 and choose ϕk ∈ Gck

. By (3.3) and the continuity of m1

it follows that ϕk is a minimizing sequence for the pair Ic0 , K. Thus by Theorem 2.3
some subsequence ϕkj

when translated appropriately, converges to some ϕ0 ∈ Gc0 . Thus
lim supj→∞ qi(ckj

) ≤ limj→∞ Q(ϕkj
) = Q(ϕ0) ≤ qs(c0). Similarly lim infj→∞ qs(ckj

) ≤ qi(c0).
Since this holds for all sequences ck → c0, this proves the claim. ¥

Lemma 3.3 Suppose b = 0 and F (q, r) is homogeneous in r of degree β. Then for all c > 0
we have

d(c) = d(1)cγ where γ =
3p− 2β + 5

4(p− 1)

Proof. It follows from the homogeneity of F in r that if we set v(x) = λu(µc) for λ, µ > 0,
then f(v, vv, vxx) = λpµβf(u, ux, uxx). Thus if ϕ1 is a solution of (1.5) with c = 1 it follows
that

ϕc(x) = c(4−β)/4(p−1)ϕ1(c
1/4x) (3.8)

is a solution of (1.5) with speed c. The lemma then follows from (3.4) by computing K(ϕc).
¥

4 Stability

Our main result in this section is the following.

Theorem 4.1 Let c > b2
+/4 and suppose Assumption 1.1 holds. If d′′(c) > 0 then the set of

ground states Gc is stable.
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Remark 4.2 For speeds c at which d is not twice differentiable, we may replace the condition
d′′(c) > 0 by strict convexity in an interval containing c. See [26], [19].

Let
Uc,ε = {v ∈ H2(R) : inf{‖v − ϕ‖H2(R) : ϕ ∈ Gc} < ε}

denote the ε-neighborhood around Gc. Since d(c) is strictly increasing, we may associate to
any u ∈ Uc,ε the speed

c(u) = d−1

(
p− 1

2
K(u)

)
. (4.1)

The following lemma provides the crucial bound involving these speeds.

Lemma 4.3 If d′′(c) > 0 then there exists ε > 0 such that for any u ∈ Uc,ε and ϕ ∈ Gc we
have

E(u)− E(ϕ) + c(u)(Q(u)−Q(ϕ)) ≥ 1

4
d′′(c)|c(u)− c|2

Proof. Since d′(c) = Q(ϕ) we have the expansion

d(c̃) = d(c) + Q(ϕ)(c̃− c) +
1

2
d′′(c)(c̃− c)2 + o(|c̃− c|2)

for c̃ near c. By choosing ε sufficiently small the continuity of c(u) implies that

d(c(u)) ≥ d(c) + Q(ϕ)(c(u)− c) +
1

4
d′′(c)(c(u)− c)2

= E(ϕ) + c(u)Q(ϕ) +
1

4
d′′(c)(c(u)− c)2

Next, if ϕc(u) ∈ Sc(u) then, by (3.4) and (4.1), K(ϕc(u)) = 2
p−1

d(c(u)) = K(u). Since ϕc(u)

minimizes Ic over all u with K(u) = 2
p−1

d(c(u)) we then have

E(u) + c(u)Q(u) = Ic(u)(u)−K(u)

≥ Ic(u)(ϕc(u))−K(ϕc(u))

= d(c(u)),

which proves the lemma. ¥

Proof of Theorem 4.1 Suppose Gc is unstable and choose initial data gk so that

inf
ϕ∈Gc

‖gk − ϕ‖H2(R) <
1

k

and let uk(t) be the solution of (1.1) with uk(0) = gk. Then, by Assumption 1.1 uk is
continuous in t, and there exist tk so that

inf
ϕ∈Gc

‖uk(tk)− ϕ‖H2(R) = δ. (4.2)
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Since E and Q are invariants of (1.1) and since Gc is bounded, we can find ϕk ∈ Gc so that

E(uk(tk))− E(ϕk) → 0

Q(uk(tk))−Q(ϕk) → 0.
(4.3)

as k →∞. If δ is chosen so small that Lemma 4.3 applies, then

E(uk(tk))− E(ϕk) + c(uk(tk))[Q(uk(tk))−Q(ϕk)] ≥ 1

4
d′′(c)|c(uk(tk))− c|2

and therefore, by (4.3), c(uk(tk)) → c as k →∞. The continuity of d then implies that

K(uk(tk)) → 2

p− 1
d(c)

which in turn, using (3.1), (4.3) and (3.2), implies that

Ic(uk(tk)) → 2(p + 1)

p− 1
d(c).

Hence uk(tk) is a minimizing sequence for the pair Ic, K and thus by Theorem 2.3 has a
subsequence ukj

(tkj
) such that

lim
j→∞

‖ukj
(tkj

)− ϕj‖H2(R) = 0

for some sequence {ϕj}∞j=1 ⊂ Gc. Since this contradicts (4.2) the theorem is proved. ¥

5 Instability

Our main assumption in this section is the following.

Assumption 5.1 There exists a choice ϕ(c) which is C1 as a map from (b2
+/4,∞) to H2(R)

such that ϕ(c) ∈ Gc.

Remark 5.2 As shown in the proof of Lemma 3.3, Assumption 5.1 holds with the map given
by (3.8) whenever b = 0 and F (q, r) is jointly homogeneous in q and r.

We will denote by ϕ′(c) the derivative of ϕ(c) with respect to the parameter c. We define
T (r), r ∈ R to be the group of translations acting on H2(R) by

T (r)u(x) = u(x + r).

For c > b2
+/4 the orbit of the traveling wave ϕ(c) is given by

Tc = {T (r)ϕ(c) : r ∈ R}
and we define

Vc,ε = {v ∈ H2(R) : inf{‖ψ − v‖H2(R) : ψ ∈ Tc} < ε}
to be the ε-neighborhood of Tc.
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Theorem 5.3 Suppose Assumptions 5.1 and 1.1 hold. Let c > b2
+/4 and p ≥ 2. If d′′(c) < 0

then Tc is unstable.

We first prove a result concerning the regularity of ϕ′(c).

Lemma 5.4 Suppose c > b2
+/4 and Assumption 5.1 holds. Then ϕ′(c) ∈ C4(R) and

|ϕ′(c)| → 0 exponentially as x → ±∞.

Proof. Since ϕ(c) is a weak solution of (1.5) it follows by differentiating with respect to c
that ϕ′(c) is a weak solution of

uxxxx + buxx + cu = −ϕ + fqu + frux + fsuxx

where fq = Fqq(ϕ, ϕx)−ϕxFqqr(ϕ, ϕx)−ϕxxFqrr(ϕ, ϕx), fr = −ϕxFqrr(ϕ, ϕx)−ϕxxFrrr(ϕ, ϕx)
and fs = −Frr(ϕ, ϕx), and we have suppressed the dependence on c. Since both ϕ(c), ϕ′(c) ∈
H2(R) and F ∈ C3(R2), it follows that each term on the right hand side is in L2(R). Hence
ϕ′(c) ∈ H4(R) and the right hand side is continuous, so that ϕ′(c) ∈ C4(R). The exponential
decay follows as in Lemma 2.4. ¥

The following lemmas supply the tools with which to constuct a Lyapunov functional.
Notice that, if

Hc = E ′′(ϕ(c)) + cQ′′(ϕ(c)) (5.1)

denotes the operator associated with the linearization around ϕ(c), we have

〈Hcϕ(c), ϕ(c)〉 = −(p2 − 1)K(ϕ(c)) < 0

Thus the ground state itself may be used to produce an unstable direction.

Lemma 5.5 If d′′(c) < 0 then there exists y ∈ H2(R) so that

(i)
〈
Hcy, y

〉
< 0

(ii)
〈
ϕ(c), y

〉
= 0.

Proof. Define
q(h, σ) = Q(ϕ(h) + σϕ(c)). (5.2)

Then
q(c, 0) = Q(ϕ(c)) = d′(c)

and
∂q

∂h
(c, 0) =

〈
Q′(ϕ(c)), ϕ′(c)

〉
= d′′(c) < 0

The Implicit Function Theorem then implies that there exists ε > 0 and a C2 map h :
(−ε, ε) → (b2

+/4,∞) such that

q(h(σ), σ) = Q(ϕ(h(σ)) + σϕ(c)) = Q(ϕ(c)) and h(0) = c. (5.3)
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If we define
y = h′(0)ϕ′(c) + ϕ(c) (5.4)

then y ∈ H2(R) by Assumption 5.1, and we have

〈
ϕ(c), y

〉
=

〈
Q′(ϕ(c)), y

〉
=

d

dσ
q(h(σ), σ) = 0 (5.5)

and thus (ii) is satisfied. To show that (i) holds we define

ψ(σ) = ϕ(h(σ)) + σϕ(c) (5.6)

and set
E(σ) = E(ψ(σ)). (5.7)

It follows from (5.5) and (1.8) that We next show that

E(0) = E(ϕ(c))

E′(0) = 0

E′′(0) =
〈
Hcy, y

〉
.

(5.8)

The first statement is obvious. Next we compute

E′(σ) =
〈
E ′(ψ(σ)), ψ(σ)

〉

0 = c
〈
Q′(ψ(σ)), ψ(σ)

〉

Adding these equations, evaluating at σ = 0, and using the fact that ϕ(c) satisfies (1.8)
yields the second statement. For the third assertion we compute

E′′(σ) =
〈
E ′′(ψ(σ))ψ′(σ), ψ′(σ)

〉
+

〈
E ′(ψ(σ)), ψ′′(σ)

〉

0 = c
〈
Q′′(ψ(σ))ψ′(σ), ψ′(σ)

〉
+ c

〈
Q′(ψ(σ)), ψ′′(σ)

〉

If we add these equations and evaluate at σ = 0 then the first order terms again cancel so
that we are left with

E′′(0) =
〈
E ′′(ϕ(c)) + cQ′′(ϕ(c))ψ′(0), ψ′(0)

〉
=

〈
Hcy, y

〉
.

With (5.8) established we now need to consider the second order Taylor expansions of E and
Q at ϕ(h(σ)). We first write

E(u + v) = E(u) +
〈
E ′(u), v

〉
+

1

2

〈
E ′′(u)v, v

〉
+ o

(‖v‖2
)

Q(u + v) = Q(u) +
〈
Q′(u), v

〉
+

1

2

〈
Q′′(u)v, v

〉
+ o

(‖v‖2
)

With u = ϕ(h(σ)) and v = σϕ(c) we have ψ(σ) = u + v and

E(ψ(σ)) + h(σ)Q(ψ(σ)) = d(h(σ)) +
1

2
σ2

〈
Hh(σ)ϕ(c), ϕ(c)

〉
+ o

(
σ2

)
,
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where we have made use of (3.2), (1.8) and (5.1) with c = h(σ). Hence, by (5.3) and (5.7)
we have

E(σ) =
1

2
σ2

〈
Hh(σ)ϕ(c), ϕ(c)

〉− h(σ)Q(ϕ(c)) + d(h(σ)) + o(σ2)

By the concavity of d and (3.7) we have

d(h(σ)) ≤ d(c) + (h(σ)− c)d′(c) = E(ϕ(c)) + h(σ)Q(ϕ(c))

so that

E(σ) ≤ 1

2
σ2

〈
Hh(σ)ϕ(c), ϕ(c)

〉
+ E(ϕ(c)) + o(σ2)

<
1

4
σ2

〈
Hcϕ(c), ϕ(c)

〉
+ E(ϕ(c)) + o(σ2)

for σ small enough. Together with (5.8) this implies that E′′(0) < 0 and therefore (i) holds.
¥

We omit the proof of the following lemma, which is the analogue of ([7] Lemma 4.1).

Lemma 5.6 There exist ε > 0 and a C1 map s : Vc,ε → R so that for v ∈ Vc,ε and r ∈ R we
have

(i) s(ϕ(c)) = 0

(ii)
〈
T (s(v))v, ∂xϕ(c)

〉
= 0

(iii) s(T (r)v) = s(v)− r

(iv) s′(v) =
T (−s(v))∂xϕ(c)∫∞

−∞ v(x)T (−s(v))∂2
xϕ(c)dx

We now define

B(v) = T (−s(v))y − 〈
v, T (−s(v))y

〉
∂xs

′(v)

= T (−s(v))y −
〈
v, T (−s(v))y

〉
〈
v, T (−s(v))∂2

xϕ(c)
〉T (−s(v))∂2

xϕ(c)
(5.9)

Lemma 5.7 B is a C1 function from Vc,ε to H2(R) which commutes with T and satisfies
B(ϕ(c)) = y and 〈B(v), v〉 = 0 for all v ∈ Vc,ε.

Proof. That B is C1 follows from the fact that y is a linear combination of ϕ(c) and ϕ′(c),
and both of these are in H5(R) by Assumption 5.1 and Lemmas 2.4 and 5.4. By Lemma 5.6(i)
B(ϕ(c)) = y and it is clear that

〈
Bv, v

〉
= 0 for v ∈ Vc,ε. Finally it follows from Lemma

5.6(iii) that B commutes with T . ¥

By the previous lemma we may define R(λ, v) to be the solution of the equation

dR

dλ
= B(R)
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with initial data R(0, v) = v ∈ Vc,ε. It follows that

(i) R is C1 for |λ| < λ0(v) for any v ∈ Vc,ε

(ii) R(λ, T (r)v) = T (r)R(λ, v) for all v ∈ Vc,ε, r ∈ R
(iii) Q(R(λ, v)) = Q(v)

(iv)
∂R

∂λ
(0, ϕ(c)) = y.

Lemma 5.8 If d′′(c) < 0 then there exist ε > 0 and a C1 functional λ : Vc,ε → R such that
for v ∈ Vc,ε

K(R(λ(v), v)) = K(ϕ(c)) =
2

p− 1
d(c)

Proof. Since R(0, ϕ(c)) = ϕ(c) the lemma follows from the Implicit Function Theorem if we
can show that

∂K

∂λ

(
R(λ, ϕ(c))

)∣∣∣
λ=0

6= 0

By (5.4), the homogeneity of K and (3.4) we have

∂K

∂λ

(
R(λ, ϕ(c))

)∣∣∣
λ=0

=
〈
K ′(ϕ(c)), y

〉

= h′(0)
〈
K ′(ϕ(c)), ϕ′(c)

〉
+

〈
K ′(ϕ(c)), ϕ(c)

〉

= h′(0)
d

dc
K(ϕ(c)) + (p + 1)K(ϕ(c))

=
2

p− 1
(h′(0)d′(c) + (p + 1)d(c).)

Since d(c) > 0 we only need to show that h′(0)d′(c) > 0. Using (3.7), (5.4) and Lemma
5.5(ii) we find that

h′(0)d′(c) = h′(0)Q(ϕ(c)) =
1

2
h′(0)

〈
ϕ(c), ϕ(c)

〉

=
1

2
h′(0)

〈
ϕ(c),−h′(0)ϕ′(c)

〉

= −1

2
(h′(0))2d′′(c) > 0

which proves the lemma. ¥

Lemma 5.9 If d′′(c) < 0 then the functional λ defined in Lemma 5.8 satisfies

E(R(λ(v), v)) ≥ E(ϕ(c))

for v ∈ Vc,ε with Q(v) = Q(ϕ(c)).
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Proof. By Lemma 5.8, K(R(λ(v), v)) = K(ϕ(c)) and, since Ic is minimized at ϕ(c) subject
to this constraint, we have

E(R(λ(v), v)) = Ic(R(λ(v), v))−K(R(λ(v), v))− cQ(R(λ(v), v))

≥ Ic(ϕ(c))− cQ(ϕ(c))−K(ϕ(c))

= E(ϕ(c))

and the lemma is proved. ¥

Lemma 5.10 Let v ∈ Vc,ε with Q(v) = Q(ϕ(c)) and λ(v) 6= 0. If d′′(c) < 0 then

E(ϕ(c)) < E(v) + λ(v)P (v)

where P (v) = 〈E ′(v), B(v)〉 and λ is defined in Lemma 5.8.

Proof. This follows by computing a second order Taylor expansion of E(R(λ, v)) at λ = 0.
For any v we have

∂

∂λ
E(R(λ, v))

∣∣∣∣
λ=0

=

〈
E ′(R(0, v),

∂R

∂λ
(0, v)

〉
=

〈
E ′(v), B(v)

〉
= P (v)

Also, since Q(R(λ, ϕ(c))) = Q(ϕ(c)) we have

∂

∂λ
Q(R(λ, ϕ(c))) =

∂2

∂λ2
Q(R(λ, ϕ(c))) = 0

for all λ. Since R(0, ϕ(c)) = ϕ(c) it follows as in the proof of Lemma 5.5(i), making use of
the fact that ϕ(c) solves (1.8), that

∂2

∂λ2
E(R(λ, ϕ(c)))

∣∣∣∣
λ=0

=
〈
Hcy, y

〉
< 0.

So, for λ 6= 0 small and ε > 0 small it follows that if v ∈ Vc,ε then

E(R(λ, v)) < E(v) + λP (v).

If v also satisfies Q(v) = Q(ϕ(c)) then Lemma 5.9 implies

E(ϕ(c)) ≤ E(R(λ(v), v)) < E(v) + λ(v)P (v)

and the lemma is proved. ¥

Lemma 5.11 There curve ψ(σ) defined by (5.6) maps (−δ, δ) to H2(R) and satisfies

(i) ψ(0) = ϕ(c)

(ii) E(ψ(σ)) < E(ϕ(c)) for σ 6= 0

(iii) Q(ψ(σ)) = Q(ϕ(c))

(iv) P (ψ(σ)) changes sign at σ = 0
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Proof. It was shown in the proof of Lemma 5.5 that (i) and (iii) hold. Since E(ψ(σ)) = E(σ)
by (5.7), (ii) follows from (5.8) and Lemma 5.5(i). Since the function λ(ψ(σ)) is defined by

K(ϕ(c)) = K(R(λ(ψ(σ)), ψ(σ)))

differentiating at σ = 0 gives

0 =

〈
K ′(ϕ(c)),

(
∂R

∂λ

∂λ(ψ(σ))

∂σ
+

∂R

∂v

∂ψ(σ)

∂σ

)∣∣∣
σ=0

〉

=

(
∂λ(ψ(σ))

∂σ

∣∣∣
σ=0

+ 1

)〈
K ′(ϕ(c)), y

〉

But the last pairing was shown to be positive in the proof of Lemma 5.8. Thus

∂λ(ψ(σ))

∂σ

∣∣∣
σ=0

= −1

so that λ(ψ(σ)) changes sign at σ = 0. This also shows that λ(ψ(σ)) 6= 0 for σ 6= 0 small.
Thus, since E(ψ(σ)) is maximized at σ = 0 Lemma 5.10 shows that

λ(ψ(σ))P (ψ(σ)) > 0.

and therefore P (ψ(σ)) also changes sign at σ = 0. ¥

We now establish a crucial decay estimate on solutions of (1.1) with special initial data.
We first quote a lemma from [28] concerning the decay rate of solutions to the linear equation.

Lemma 5.12 Let U0(t) denote the evolution operator for the linear equation

ut + uxxxxx + buxxx = 0 (5.10)

Then, for all t > 0, U0(t) is bounded from L1(R) to L∞(R) and

‖U0(t)‖1,∞ ≤ C(1 + t)−
1

1+µ

where µ = 2 if b 6= 0 and µ = 4 if b = 0.

It is convenient to write (1.1) as

ut −Mux = (f(u, ux, uxx))x

where M = −∂4
x − b∂2

x. The next lemma shows that solutions with special initial data obey
a sublinear growth estimate. See Theorem 4.3 of [28].

Lemma 5.13 For p ≥ 2 let g ∈ H2(R) ∩ L1(R) and suppose Mg ∈ L1(R). If u(t) is the
solution of (1.1) with initial data u(0) = g, then

sup
−∞<z<∞

∣∣∣∣
∫ z

−∞
u(x, t)dx

∣∣∣∣ ≤ C(1 + t
µ

1+µ )

for 0 ≤ t < T where T is the existence time for u, µ is as in Lemma 5.12 and where C is a
constant depending only on sup

0≤τ≤t
‖u(τ)‖H2(R), ‖g‖L1(R) and ‖Mg‖L1(R).
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Proof. The solution u satisfies

u(t) = U0(t)g +

∫ t

0

U0(t− τ) (f(u, ux, uxx))x dτ

= U0(t)g + ∂x

∫ t

0

U0(t− τ)f(u, ux, uxx)dτ

Define U(x, t) =
∫ x

−∞ u(ξ, t)dξ and Z(x, t) =
∫ x

−∞(U0(t)g)(ξ)dξ. We then have

U(t) = Z(x, t) +

∫ t

0

U0(t− τ)f(u, ux, uxx)dτ

Since U0(t)g solves the linear equation we have

Z(x, t) =

∫ x

−∞
g(ξ)dξ +

∫ t

0

(MU0(τ)g) (x)dτ

=

∫ x

−∞
g(ξ)dξ +

∫ t

0

(U0(τ)Mg) (x)dτ

and therefore by Lemma 5.12

|Z(x, t)| ≤ ‖g‖L1(R) + C

∫ t

0

(1 + τ)−
1

1+µ‖Mg‖L1(R)dτ

≤ C(1 + t)
µ

1+µ
(‖g‖L1(R) + ‖Mg‖L1(R)

)

Using Lemma 5.12 again we see that
∣∣∣∣
∫ t

0

U0(t− τ)f(u, ux, uxx)dτ

∣∣∣∣ ≤ C(1 + t)
µ

1+µ sup
τ∈[0,t]

‖f(u(τ), ux(τ), uxx(τ))‖L1(R)

By (2.8) and the Sobolev inequality we have

‖f(u(τ), ux(τ), uxx(τ))‖L1(R) ≤ C‖u(τ)‖H2(R)

for p ≥ 2. ¥

Proof of Theorem 5.3. We proceed by contradiction. Suppose Tc is stable and choose
initial data g on the curve ψ(σ) sufficiently close to ϕ(c). Let u(t) denote the solution of
(1.1) with initial data u(0) = g, which we may assume (by stability) to exist on the interval
[0,∞) and satisfy u(t) ∈ Vc,ε for all t. By the definition of ψ and by our assumptions on ϕ(c)
we have ‖g‖L1(R) ≤ C. Also, since ψ(σ) is a linear combination of ϕ(h(σ)) and ϕ(c), (1.5)
implies

Mψ(σ) = σcϕ(c)− σf(ϕ(c), ϕ(c)x, ϕ(c)xx) + h(σ)ϕ(h(σ))− f(ϕ(h(σ)), ϕ(h(σ))x, ϕ(h(σ))xx)

Hence, using (2.8) again, it follows that ‖Mg‖L1(R) is bounded by the L1 and H2 norms of
both ϕ(c) and ϕ(h(σ)), which are bounded by Lemma 2.4. Next define

Y (x) =

∫ x

−∞
y(z)dz,
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where y is the unstable direction constructed in Lemma 5.5 and let

A(t) =

∫ ∞

−∞
Y (x− s(u(t)))u(x, t)dx = 〈T (−s(u(t)))Y, u(t)〉 . (5.11)

We now show (as in [7]) that A(t) converges by letting γ =
∫∞
−∞ y(x)dx and writing

A(t) =

∫ ∞

−∞
(Y (x− s(u(t)))− γH(x− s(u(t)))) u(x, t)dx + γ

∫ ∞

s(u(t))

u(x, t)dx

where H denotes the Heaviside function. By the assumption of stability we have that
‖u(t)‖H2(R) ≤ C for all t and thus Lemma 5.13 implies that

|A(t)| ≤ ‖Y − γH‖L2(R)‖u(t)‖L2(R) + C(1 + t
µ

1+µ )

To show that Y − γH ∈ L2(R) notice that

‖Y − γH‖L2(R) =

(∫ 0

−∞

(∫ x

−∞
y(z)dz

)2

dx +

∫ ∞

0

(∫ ∞

x

y(z)dz

)2

dx

)1/2

=

(∫ ∞

−∞

(∫ ∞

−∞
k(x, z)dz

)2

dx

)1/2

where k(x, z) = y(z)χ{z/x > 1}. By Minkowski’s inequality the last term is bounded by

∫ ∞

−∞

(∫ ∞

−∞
(k(x, z))2dx

)1/2

dz =

∫ 0

−∞

(∫ 0

z

(y(z))2dx

)1/2

dz +

∫ ∞

0

(∫ z

0

(y(z))2dx

)1/2

dz

=

∫ ∞

−∞
|z|1/2|y(z)|dz

which is bounded by Lemma 5.5, Lemma 2.4, Assumption 5.1 and Lemma 5.4. Hence we
have

|A(t)| ≤ C(1 + t
µ

1+µ ) (5.12)

for 0 ≤ t < ∞. Differentiating (5.11) in t and using (5.9), we see that

dA

dt
= 〈T (−s(u(t)))Y, ut(t)〉 − 〈T (−s(u(t)))y, u(t)〉 〈s′(u(t)), ut(t)〉
= 〈T (−s(u(t)))Y − 〈T (−s(u(t)))y, u(t)〉 s′(u(t)), JE ′(u(t))〉
= 〈T (−s(u(t)))y − 〈T (−s(u(t)))y, u(t)〉 ∂xs

′(u(t)), E ′(u(t))〉
= 〈B(u(t)), E ′(u(t))〉 = P (u(t))

By Lemma 5.11(ii) and the invariance of E, we have

0 < C0 = E(ϕ(c))− E(g) = E(ϕ(c))− E(u(t))

for some constant C0 and by the invariance of Q we may apply Lemma 5.10 to conclude that

λ(u(t))P (u(t)) > C0 for t ∈ [0,∞).
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Thus both λ(u(t)) and P (u(t) do not change sign. Without loss of generality assume that
both are positive. Then by choosing ε smaller if necessary we may assume that 0 < λ(u(t)) <
1. So, for u(t) ∈ Vc,ε, we have

dA

dt
≥ C0 > 0

Together with (5.12) this implies that u(t) leaves Vc,ε in finite time, a contradiction to the
stability assumption. Hence Tc must be unstable. ¥

Corollary 5.14 Suppose b = 0 and F (q, r) satisfies (1.3), (2.2) and is homogeneous in q of
degree α and homogeneous in r of degree β, where α + β = p + 1 > 2. Then solitary waves
of any speed c > 0 are stable if α + 3β < 10 and unstable if α + 3β > 10.

In particular, if F (q, r) is a homogeneous polynomial, we have stability only in the cases

uα for 3 ≤ α ≤ 9
uαux for 2 ≤ α ≤ 6
uαu2

x for 1 ≤ α ≤ 3
u3

x

and instability otherwise. Thus the equations studied by Olver, Zufiria and Hunter &
Scheurle admit stable solitary waves.

Proof. By Lemma 3.3 d(c) is convex when γ > 1, which occurs when α + 3β < 10. ¥

The regions of stability S and instability I are shown in Figure 1.

0 2 4 6 8 10
0

1

2

3

4

α

β

stability

instability

Figure 1: Regions of stability and instability.
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