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Abstract

Considered herein is the stability problem of solitary wave solutions of a generalized
Ostrovsky equation, which is a modification of the Korteweg-de Vries equation widely
used to describe the effect of rotation on surface and internal solitary waves or capillary
waves.

1 Introduction

The nonlinear dispersive equation

(
ut − βuxxx + (u2)x

)
x

= γu, x ∈ R, (1.1)

was derived by Ostrovsky [20] in dimensionless space-time variables (x, t) as a model for
the unidirectional propagation of weakly nonlinear long surface and internal waves of small
amplitude in a rotating fluid. The liquid is assumed to be incompressible and inviscid. Here
u(t, x) represents the free surface of the liquid and the parameter γ > 0 measures the effect
of rotation. The parameter β determines the type of dispersion, namely, β < 0 (negative
dispersion) for surface and internal waves in the ocean or surface waves in a shallow channel
with an uneven bottom and β > 0 (positive dispersion) for capillary waves on the surface of
liquid or for oblique magneto-acoustic waves in plasma. See Benilov [2], Galkin, Stepanyants
and Gilman [7] and Gilman, Grimshaw and Stepanyants [8].

Considered herein is the generalization of the Ostrovsky equation

(ut − βuxxx + f(u)x)x = γu, x ∈ R (1.2)

where f is a C2 function which is homogeneous of degree p ≥ 2, in the sense that it satisfies
sf ′(s) = pf(s). This includes for instance nonlinearities of the form f(u) = ±|u|p and
±|u|p−1u. Certain equations of this class have a direct relation to physical systems. In
particular, when p = 3, equation (1.2) describes the propagation of internal waves of even
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modes, which possess a cubic nonlinearity, in the ocean. See Galkin and Stepanyants [7],
Leonov [13] and Shrira [22, 23].

In this paper, we investigate the stability of solitary wave solutions of (1.2). Using
variational methods we prove the existence of solitary waves (Theorem 2.1). Solitary waves
thus obtained are called ground states and the set of all ground states is denoted by G(β, c, γ).
The variational characterization of the ground states permits us to consider the limiting
behavior of the solitary waves as the rotation parameter γ vanishes, and we show that the
ground state solitary waves converge to solitary waves of the KdV equation (Theorem 2.5).

The stability analysis makes use of the conserved quantities

E(u) =

∫

R

β

2
u2

x +
γ

2
|D−1

x u|2 + F (u) dx

and

V (u) =
1

2

∫

R

u2 dx

where F ′ = f and F (0) = 0 and the operator D−1
x is defined via the Fourier transform as

D̂−1
x f = (−iξ)−1f̂(ξ).

It was shown by Liu and Varlamov [18] that the classical Ostrovsky equation (1.1) is well-
posed in the space

Xs = {f ∈ Hs(R) | D−1
x f ∈ Hs(R)}

with norm
‖f‖Xs = ‖f‖s + ‖D−1

x f‖s

for s > 3/2. The methods therin also imply the same result for the generalized Ostrovsky
equation (1.2). We therefore make the following definition.

Definition 1.1. A set S ⊂ X is X-stable with respect to equation (1.2) if for any ε > 0
there exists δ > 0 such that for any u0 ∈ X ∩Xs, s > 3/2, with

inf
v∈S

‖u0 − v‖X < δ (1.3)

the solution u(t) of (1.2) with initial value u0 can be extended to a solution in C([0,∞), X ∩
Xs) and satisfies

inf
v∈S

‖u(t)− v‖X < ε (1.4)

for all t ≥ 0. Otherwise we say that S is X-unstable.

Our main results apply to the set G(β, c, γ), defined by (2.8). For each y ∈ R we define
the translation operator by τyv = v(· + y). Given a ground state ϕ in G(β, c, γ), the orbit
of ϕ is the set Oϕ = {τyϕ | y ∈ R}. We show, in Theorems 3.1 and 4.2 that the function d
defined by (3.1) determines the stability or instability of the solitary waves in the sense that
if d′′(c) > 0, then G(β, c, γ) is X1-stable and if d′′(c) < 0, then Oϕ is X1-unstable. Although
these results are not quite complementary, the only difference is due to the possible non-
uniqueness of ground states up to translation. That is, if ground states are unique up to
translation, then G(β, c, γ) = Oϕ.
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One difficulty in applying these results is the fact that an explicit formula for d is not
available. It is also not known if d(c) is twice differentiable. To remedy this, we also prove
a second result, Theorem 4.3, which provides sufficient conditions for instability directly
in terms of the parameters β, c, γ and p. The result is based on the work of Goncalves
Rebeiro [10]. Another approach to dealing with the lack of information about d(c) is to
compute it numerically. We conclude the paper with some numerical calculations of d′′ which
approximately determine regions of stability and instability in terms of the parameters.

Notation. The norm in the classical Sobolev spaces Hs(R) will be written ‖ · ‖s. For
1 ≤ q ≤ ∞, the norm in Lq(R) will be written | · |q.

2 Solitary Waves

Solitary-wave solutions of the form u(x, t) = ϕ(x− ct) satisfy the stationary equation

βϕxx + cϕ + γD−2
x ϕ = f(ϕ). (2.1)

We will prove existence of solitary waves in the space X1 by considering the following vari-
ational problem. Define the functionals

I(u) = I(u; β, c, γ) =

∫

R

βu2
x − cu2 + γ(D−1

x u)2 dx (2.2)

and

K(u) = −(p + 1)

∫

R

F (u) dx, (2.3)

where F satisfies F ′ = f and F (0) = 0. Then if ψ ∈ X1 achieves the minimum

Mλ = inf{I(u) | u ∈ X1, K(u) = λ} (2.4)

for some λ > 0, then there exists a Lagrange multiplier µ such that

βψxx + cψ + γD−2
x ψ = µf(ψ). (2.5)

Hence ϕ = µ
1

p−1 ψ satisfies (2.1). We call such solutions ground state solutions and denote
the set of all ground state solutions by G(β, c, γ). By the homogeneity of I and K, ground
states also achieve the minimum

m = m(β, c, γ) = inf
u∈X1

K(u)>0

I(u)

(K(u))
2

p+1

, (2.6)

and it follows that
Mλ = mλ

2
p+1 . (2.7)

We next note that the properties sf ′(s) = pf(s) and F ′ = f imply that sf(s) = (p+1)F (s),
so that

K(u) = −
∫

R

uf(u) dx
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and therefore multiplying (2.1) by ϕ and integrating yields I(ϕ) = K(ϕ). Thus we may
characterize the set of ground-state solutions G(β, c, γ) as

G(β, c, γ) =
{

ϕ ∈ X1 | K(ϕ) = I(ϕ; β, c, γ) = (m(β, c, γ))
p+1
p−1

}
. (2.8)

We now seek to prove that this set is non-empty. We say that a sequence ψk is a minimizing
sequence if for some λ > 0,

lim
k→∞

K(ψk) = λ and lim
k→∞

I(ψk) = Mλ.

Theorem 2.1. Let β > 0, γ > 0 and c < 2
√

βγ. Let ψk be a minimizing sequence for some
λ > 0. Then there exists a subsequence (renamed ψk), scalars yk ∈ R and ψ ∈ X1 such that
ψk(· + yk) → ψ in X1. The function ψ achieves the minimum I(ψ) = Mλ subject to the
constraint K(ψ) = λ.

Proof. The result is an application of the Concentration Compactness Lemma of Lions [16].
We outline the proof here. First observe that by equation (2.7), the strict subadditivity
condition

Mα + Mλ−α > Mλ (2.9)

holds for any α ∈ (0, λ). Next, since β > 0 , γ > 0 and c < 2
√

βγ, the functional I satisfies
the coercivity condition

I(u) ≥ A

∫

R

u2
x + (D−1

x u)2 dx = A‖u‖2
X1

where

A =

{
4βγ−c2

2(β+γ+
√

(β−γ)2+c2)
for 0 < c < 2

√
βγ

min{β, γ} for c ≤ 0

}
> 0. (2.10)

It is also clear that I(u) ≤ C‖u‖2
X1

for some constant C, so I(u)1/2 is equivalent to the norm
on X1. Now let ψk be a minimizing sequence. Then by coercivity of I, the sequence ψk is
bounded in X1, so if we define

ρk = |Dxψk|2 + |D−1
x ψk|2,

then after extracting a subsequence, we may assume

lim
k→∞

∫

R

ρk dx = L > 0.

We may assume further after normalizing that
∫
R

ρk dx = L for all k. By the Concentration
Compactness Lemma, a further subsequence ρk satisfies one of the following three conditions.

• Vanishing: For every R > 0, lim
k→∞

sup
y∈R

∫

B(y,R)

ρk dx = 0.
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• Dichotomy: There exists some l ∈ (0, L) such that for any ε > 0 there exist R > 0 and
Rk →∞, yk ∈ R and k0 such that

∣∣∣∣
∫

B(yk,R)

ρk dx− l

∣∣∣∣ < ε and

∣∣∣∣
∫

R<|x−yk|<Rk

ρk dx

∣∣∣∣ < ε

for k ≥ k0.

• Compactness: There exists yk ∈ R such that for any ε > 0 there exists R(ε) such that

∫

B(yk,R(ε))

ρk dx ≥
∫

R

ρk dx− ε

for all k.

In the same manner as in [14], it follows from the coercivity of I, the Sobolev inequality and
the subadditivity condition (2.9) that both vanishing and dichotomy may be ruled out, and
therefore the sequence ρk is compact. Now set ϕk(x) = ψk(x+yk). Since ϕk is bounded in X1,
a subsequence ϕk converges weakly to some ψ ∈ X1, and by the weak lower semicontinuity
of I over X1, we have

I(ψ) ≤ lim
k→∞

I(ϕk) = Mλ.

Furthermore, weak convergence in X1, compactness of ρk and the Sobolev inequality imply
strong convergence of ϕk to ψ in Lp+1. Therefore

K(ψ) = lim
k→∞

K(ϕk) = λ,

so I(ψ) ≥ Mλ. Together with the inequality above, this implies I(ψ) = Mλ, so ψ is a
minimizer of I subject to the constraint K(ϕ) = λ. Finally, since I is equivalent to the norm
on X1, φk ⇀ ψ and I(φk) → I(ψ), it follows that φk converges strongly to ψ in X1.

At this time it is unknown whether or not the ground states are unique up to translation.
Uniqueness would imply that if ϕ ∈ G(β, c, γ) is any ground state, then G(β, c, γ) = Oϕ, in
which case the stability and instability theorems (Theorems 3.1 and 4.2) are complementary.
We suspect that the ground states are unique, at least in the case c < −2

√
βγ, when the

ground states have non-oscillatory tails.

The function m(β, c, γ) defined above plays an important role in our later results, so we
now will investigate some of its properties. The first is a simple scaling identity.

Lemma 2.2. Let β > 0, γ > 0 and c < 2
√

βγ. For any r > 0 and s > 0 we have

m(rs2β, rc, rs−2γ) = rs
p−1
p+1 m(β, c, γ).

Proof. Let u ∈ X1 with K(u) 6= 0. For any r > 0 we have

I(u; rβ, rc, rγ) = rI(u; β, c, γ),
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so m(rβ, rc, rγ) = rm(β, c, γ). Next let v(x) = u(sx) for s > 0. Then

I(v; β, c, γ) =
1

s
I(u; s2β, c, s−2γ) K(v) =

1

s
K(u)

so
I(v; β, c, γ)

K(v)
2

p+1

= s
1−p
p+1

I(u; s2β, c, s−2γ)

K(u)
2

p+1

and consequently

m(s2β, c, s−2γ) = s
p−1
p+1 m(β, c, γ).

Next, we show that m is continuous and monotone in each of its variables.

Lemma 2.3. The function m is continuous on the domain β > 0, γ > 0, c < 2
√

γβ.
Furthermore, m is strictly increasing in γ and β and strictly decreasing in c.

Proof. First, fix β > 0 and γ > 0 and consider c1 < c2 < 2
√

βγ. Let ϕc1 and ϕc2 be ground
states with c = c1 and c = c2, respectively. Then

m(β, c2, γ) ≤ I(ϕc1 ; β, c2, γ)

K(ϕc1)
2

p+1

=
I(ϕc1 ; β, c1, γ) + (c1 − c2)

∫
ϕ2

c1
dx

K(ϕc1)
2

p+1

=
I(ϕc1 ; β, c1, γ)

K(ϕc1)
2

p+1

+ (c1 − c2)

∫
ϕ2

c1
dx

K(ϕc1)
2

p+1

= m(β, c1, γ) + (c1 − c2)

∫
ϕ2

c1
dx

K(ϕc1)
2

p+1

< m(β, c1, γ),

so m is strictly decreasing in c. On the other hand,

m(β, c1, γ) ≤ I(ϕc2 ; β, c1, γ)

K(ϕc2)
2

p+1

=
I(ϕc2 ; β, c2, γ) + (c2 − c1)

∫
ϕ2

c2
dx

K(ϕc2)
2

p+1

= m(β, c2, γ) + (c2 − c1)

∫
ϕ2

c2
dx

K(ϕc2)
2

p+1

,

so

0 ≤ m(β, c1, γ)−m(β, c2, γ) ≤ (c2 − c1)

∫
ϕ2

c2
dx

K(ϕc2)
2

p+1

.

Now since

I(ϕc2 ; β, c2, γ) ≥ A

∫
ϕ2

c2
dx,
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where A is defined by (2.10), it follows that

|m(β, c2, γ)−m(β, c1, γ)| ≤ A−1m(β, c2, γ)(c2 − c1)

so m is locally Lipschitz continuous in c. By similar reasoning it follows that m is increasing
and locally Lipschitz in β and γ.

We now consider the effect of letting the rotation parameter γ approach zero. Formally,
this results in the generalized KdV equation

βϕxx + cϕ = f(ϕ). (2.11)

For c < 0, ground state solutions of (2.11) achieve the minimum

m(β, c, 0) = inf
u∈H1

K(u)>0

I(u; β, c, 0)

K(u)
2

p+1

where

I(u; β, c, 0) =

∫
βu2

x − cu2 dx,

and K is defined as before by equation (2.3). Thus the set of ground states may be charac-
terized as

G(β, c, γ) =
{

ϕ ∈ H1 | K(ϕ) = I(ϕ; β, c, 0) = (m(β, c, 0))
p+1
p−1

}
.

Moreover, it is well-known that the ground states are unique up to translation, so that
G(β, c, 0) = {ϕ0(· − y) | y ∈ R} for some ϕ0. For example, in the case of the nonlinearity
f(u) = (−u)p where p ≥ 2 is an integer, we have the explicit formula

ϕ0(x) = −
(−c(p + 1)

2

) 1
p−1

sech
2

p−1

(
p− 1

2

√−c

β
x

)
.

Therefore the analogue of Theorem 2.1 takes the following form.

Theorem 2.4. Let β > 0, and c < 0. Let ψk be a sequence in H1 such that

lim
k→∞

I(ψk; β, c, 0) = lim
k→∞

K(ψk) = (m(β, c, 0))
p+1
p−1 .

Then there exists a subsequence (renamed ψk), scalars yk ∈ R such that ψk(·+ yk) → ϕ0 in
H1.

Theorem 2.5. Fix β > 0, and c < 0 and consider any sequence γk → 0+. Denote by ϕk any
element of G(β, c, γk). Then there exists a subsequence (renamed γk) and translations yk so
that

ϕk(·+ yk) → ϕ0 (2.12)

in H1, as γk → 0+. That is, the generalized KdV solitary waves are the limits in H1 of
solitary waves of the generalized Ostrovsky equation.
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To prove this theorem, we will show that the sequence of Ostrovsky solitary waves is a
minimizing sequence for the KdV variational problem. The following lemma is proved in
[15].

Lemma 2.6. The space X1 is dense in H1.

Using the lemma, we next prove that the function m is continuous at γ = 0.

Lemma 2.7. Fix β > 0 and c < 0. Then

lim
γ→0+

m(β, c, γ) = m(β, c, 0). (2.13)

Proof. Since m is strictly increasing in γ, it suffices to show that m(β, c, γk) → m(β, c, 0)
for some sequence γk → 0. By the density of X1 in H1 we may choose ψk in X1 such that
‖ψk − ϕ0‖H1 < 1

k
and define

γk = min

(
1

k
,

1

k
∫ |D−1

x ψk|2 dx

)
.

Then

m(β, c, γk) ≤ I(ψk; β, c, γk)

K(ψk)
2

p+1

=
I(ψk; β, c, 0) + γk

∫ |D−1
x ψk|2 dx

K(ψk)
2

p+1

≤ I(ψk; β, c, 0) + 1
k

K(ψk)
2

p+1

.

Since I(·; β, c, 0) and K are both continuous on H1, we therefore have

lim sup
k→∞

m(β, c, γk) ≤ I(ϕ0; β, c, 0)

K(ϕ0)
2

p+1

= m(β, c, 0)

On the other hand, given ϕk ∈ G(β, c, γk) we have ϕk ∈ H1, so

m(β, c, 0) ≤ I(ϕk; β, c, 0)

K(ϕk)
2

p+1

=
I(ϕk; β, c, γk)− γk

∫ |D−1
x ϕk|2 dx

K(ϕk)
2

p+1

<
I(ϕk; β, c, γk)

K(ϕk)
2

p+1

= m(β, c, γk).

Thus
lim inf

k→∞
m(β, c, γk) ≥ m(β, c, 0)

and the lemma follows.
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Proof of Theorem 2.5. By continuity of m at γ = 0 we have

lim
k→∞

K(ϕk) = lim
k→∞

m(β, c, γk)
p+1
p−1 = m(β, c, 0)

p+1
p−1

and

lim sup
k→∞

I(ϕk; β, c, 0) = lim sup
k→∞

I(ϕk; β, c, γk)− γk

∫
(D−1

x ϕk)
2 dx

≤ lim
k→∞

I(ϕk; β, c, γk)

= lim
k→∞

m(β, c, γk)
p+1
p−1

= m(β, c, 0)
p+1
p−1 .

Thus ϕk is a minimizing sequence for the KdV variational problem, and the result follows
from Theorem 2.4. ¤

3 Stability

The main result of this section is the following.

Theorem 3.1. Let β > 0, γ > 0 and c < 2
√

βγ. Let d be defined as in (3.1). If d′′(c) > 0
then the set of ground states G(β, c, γ) is X1-stable.

The proof is based on arguments in [14], which makes use of the method of [5]. We remark
here that the condition d′′(c) > 0 may be replaced by strict convexity of d in a neighborhood
of c. See [24].

Given β > 0, γ > 0 and c < 2
√

βγ, we define

d(c) = d(β, c, γ) = E(ϕ)− cV (ϕ) (3.1)

where ϕ is any element of G(β, c, γ). Since

E(u)− cV (u) =
1

2
I(u)− 1

p + 1
K(u) (3.2)

it follows from (2.8) that

d(β, c, γ) =
p− 1

2(p + 1)
I(ϕ) =

p− 1

2(p + 1)
K(ϕ) =

p− 1

2(p + 1)
(m(β, c, γ))

p+1
p−1 . (3.3)

Therefore d is well-defined, and we may deduce its properties by examining the function
m(β, c, γ). The following two lemmas are immediate corollaries of Lemmas 2.2 and 2.3.

Lemma 3.2. Let β > 0, γ > 0 and c < 2
√

βγ. For any r > 0 and s > 0 we have

d(rs2β, rc, rs−2γ) = r
p+1
p−1 sd(β, c, γ).
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Lemma 3.3. The function d is continuous on the domain β > 0, γ > 0, c < 2
√

γβ.
Furthermore, d is strictly increasing in γ and β and strictly decreasing in c.

Lemma 3.4. For each fixed β > 0 and γ > 0, the partial derivative ∂d/∂c(β, c, γ) exists for
all but countably many c < 2

√
βγ. Similarly, ∂d/∂β and ∂d/∂γ exist for all but countably

many β and γ, respectively. At points where the partials exist,

∂d

∂β
=

1

2

∫
(ϕx)

2 dx

∂d

∂c
= −1

2

∫
ϕ2 dx

∂d

∂γ
=

1

2

∫
(D−1

x ϕ)2 dx.

Proof. Since d is continuous and monotone with respect to each variable, it follows that the
partial derivatives exist at all but countable many points. To verify the formulas above, first
fix β > 0 and γ > 0. Then by the inequalities in the proof of Lemma 2.3,

−
∫

ϕ2
c2

dx

K(ϕc2)
2

p+1

≤ m(β, c2, γ)−m(β, c1, γ)

c2 − c1

≤ −
∫

ϕ2
c1

dx

K(ϕc1)
2

p+1

for c1 < c2 < 2
√

βγ. Let

gs(β, c, γ) = sup

{∫
ϕ2

c dx | ϕc ∈ G(β, c, γ)

}

gi(β, c, γ) = inf

{∫
ϕ2

c dx | ϕc ∈ G(β, c, γ)

}

Then, for c1 < c2 < 2
√

βγ,

− gi(β, c2, γ)

m(β, c2, γ)
2

p−1

≤ m(β, c2, γ)−m(β, c1, γ)

c2 − c1

≤ − gs(β, c1, γ)

m(β, c1, γ)
2

p−1

We now claim that
lim
c→c0

sup gi(β, c, γ) ≤ gs(β, c0, γ).

To see this, choose any ck → c0 and ϕk ∈ G(β, ck, γ). The continuity of m, the charac-

terization (2.8) and the relation (3.3) imply that I(ϕk) → 2(p+1)
p−1

d(β, c0, γ) and K(ϕk) →
2(p+1)

p−1
d(β, c0, γ). Therefore ϕk is a minimizing sequence, so by Theorem 2.1, there is a trans-

lated subsequence (renamed ϕk) which converges in X1 to some function ϕ in G(β, c0, γ).
Hence

lim
k→∞

sup gi(β, ck, γ) ≤
∫

ϕ2 dx ≤ gs(β, c0, γ).

Consequently
∂m

∂c
(β, c+, γ) = − gs(β, c, γ)

m(β, c, γ)
2

p−1

.
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Now, since d = p−1
2(p+1)

m
p+1
p−1 , this implies

∂d

∂c
(β, c+, γ) = −1

2
gs(β, c, γ)

Likewise,
∂d

∂c
(β, c−, γ) = −1

2
gi(β, c, γ).

So at points where the partial derivative exists, we must have gs(β, c, γ) = gi(β, c, γ), and
the first formula above follows. The proof of the other formulas is similar.

We note here that the preceding proof illustrates that uniqueness of ground states up
to translation would imply differentiability of d. For if G(β, c, γ) consists of translates of a
single ground state, then gs(β, c, γ) = gi(β, c, γ), from which the differentiability of d follows.

For the remainder of this section we will regard d only as a function of c for fixed β and
γ. So notation such as d′, d′′ or d−1 should be interpreted with respect to the variable c. A
key role in the stability analysis is played by the ε-neighborhood of the set of ground states,
defined by

Uc,ε =

{
u ∈ X1 | inf

ϕ∈G(β,c,γ)
‖u− ϕ‖X1 < ε

}
.

Since d is strictly decreasing in c, we may define

c(u) = d−1

(
p− 1

2(p + 1)
K(u)

)
.

This associates a speed c(u) to any function u ∈ X1. The following lemma provides the key
estimate involving these speeds.

Lemma 3.5. If d′′(c) > 0 then there is some ε > 0 such that for any u ∈ Uc,ε and ϕ ∈
G(β, c, γ) we have

E(u)− E(ϕ)− c(u)(V (u)− V (ϕ)) ≥ 1

4
d′′(c)|c(u)− c|2.

Proof. Since d′(c) = −V (ϕc), it follows from Taylor’s theorem that

d(c1) = d(c)− V (ϕc)(c1 − c) +
1

2
d′′(c)(c1 − c)2 + o

(|c1 − c|2)

for c1 near c. By choosing ε sufficiently small, it then follows that

d(c(u)) ≥ d(c)− V (ϕc)(c(u)− c) +
1

4
d′′(c)(c(u)− c)2

= E(ϕc)− c(u)V (ϕc) +
1

4
d′′(c)(c(u)− c)2

for u ∈ Uc,ε. Now if ϕc(u) ∈ G(β, c(u), γ) then

K(ϕc(u)) =
2(p + 1)

p− 1
d(c(u)) = K(u),
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and ϕc(u) minimizes I(·; β, c(u), γ) subject to this constraint, so

E(u)− c(u)V (u) =
1

2
I(u; β, c(u), γ)− 1

p + 1
K(u)

≥ 1

2
I(ϕc(u); β, c(u), γ)− 1

p + 1
K(ϕc(u))

= d(c(u)).

This completes the proof.

Proof of Theorem 3.1. Suppose G(β, c, γ) is X1-unstable, and choose initial data uk
0 such

that

inf
ϕ∈G(β,c,γ)

‖uk
0 − ϕ‖X1 <

1

k
,

and let uk(t) be the solution of (1.2) with uk(0) = uk
0. By continuity in t, there is some δ > 0

and some times tk such that

inf
ϕ∈G(β,c,γ)

‖uk(tk)− ϕ‖X1 = δ (3.4)

By the initial assumption, we can find ϕk ∈ G(β, c, γ) such that

lim
k→∞

‖uk
0 − ϕk‖X1 = 0.

Therefore, since E and V are continuous on X1 and invariants of (1.2),

lim
k→∞

E(uk(tk))− E(ϕk) = lim
k→∞

E(uk
0)− E(ϕk) = 0 (3.5)

and
lim
k→∞

V (uk(tk))− V (ϕk) = lim
k→∞

V (uk
0)− V (ϕk) = 0. (3.6)

By Lemma 3.5, if δ is sufficiently small, we have

E(uk(tk))− E(ϕk)− c(uk(tk))(V (uk(tk))− V (ϕk)) ≥ 1

4
d′′(c)|c(uk(tk))− c|2. (3.7)

By equation (3.4) there is some ψk ∈ G(β, c, γ) such that ‖uk(tk) − ψk‖X1 < 2δ, and by
(2.10), we have

‖uk(tk)‖X1 ≤ ‖ψk‖X1 + 2δ ≤ 2δ + A−1I(ψk; β, c, γ) = 2δ +
2(p + 1)

A(p− 1)
d(c) < ∞.

Thus since K is Lipschitz continuous on X1 and d−1 is continuous, it follows that c(uk(tk))
is uniformly bounded in k. Thus by (3.5), (3.6) and (3.7) it follows that

lim
k→∞

c(uk(tk)) = c.

Continuity of K then implies

lim
k→∞

K(uk(tk)) = lim
k→∞

2(p + 1)

p− 1
d(c(uk(tk))) =

2(p + 1)

p− 1
d(c). (3.8)
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By (3.2) and (3.1), we have

1

2
I(uk(tk)) = E(uk(tk))− cV (uk(tk)) +

1

p + 1
K(uk(tk))

= d(c) + E(uk(tk))− E(ϕk)− c(V (uk(tk))− V (ϕk)) +
1

p + 1
K(uk(tk))

so it follows from (3.5), (3.6) and (3.8) that

lim
k→∞

I(uk(tk)) =
2(p + 1)

p− 1
d(c).

Thus uk(tk) is a minimizing sequence and therefore has a subsequence which converges in
X1 to some ϕ ∈ G(β, c, γ). This contradicts (3.4), so the proof of the theorem is complete.
¤

4 Instability

In this section we present two theorems which provide conditions for orbital instability of
solitary waves. The first is complementary to the stability theorem, in that it guarantees
instability when d′′(c) < 0. The second does not involve the function d, but rather gives a
set of sufficient conditions for instability directly in terms of the parameters β, γ, c and p.
While this result is not sharp, it does not rely on detailed knowledge of the function d. The
proof is based on the work of Goncalves Rebeiro [10], which is a modification of Shatah and
Strauss’ method [25].

The first theorem requires the following assumption.

Assumption 4.1. For each fixed β > 0 and γ > 0, there exists a C1 map c 7→ ϕc from
(−∞, 2

√
βγ) to X1 such that ϕc ∈ G(β, c, γ).

Theorem 4.2. Suppose β > 0, γ > 0, c < 2
√

βγ and Assumption 4.1 holds. If d′′(c) < 0,
then the orbit Oϕc is X1-unstable.

Theorem 4.3. Let β > 0, γ > 0, c < 2
√

βγ and ϕ ∈ G(β, c, γ). Then the orbit Oϕ is
X1-unstable if

(i) c < 0, p > 5, and γ < γ0, for some small γ0 > 0,

(ii) c ≤ 0 and p > 5 + 4
√

2, and γ > 0 or

(iii) c > 0 and p >
10 + k +

√
(10 + k)2 + 4(7 + k)

2
, where k = 8

(
2
√

βγ

2
√

βγ − c
− 1

)
> 0.

Theorems 4.2 and 4.3 are actually both direct corollaries of the following Theorem 4.4,
with different choices of the “unstable direction” φ. The choices are given in Lemmas 4.10
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and 4.11. As in the proof of the stability theorem, an important role will be played by the
ε-neighborhoods of the orbits of solitary waves. Given ϕ ∈ G(β, c, γ) and ε > 0, we define

Uϕ,ε =

{
u ∈ X1 | inf

v∈Oϕ

‖u− v‖X1 < ε

}
.

Theorem 4.4. Assume β > 0, γ > 0 and c < 2
√

βγ. Let M = {u ∈ X1; V (u) = V (ϕc)}
where ϕ = ϕc ∈ G(β, c, γ). If there exists φ ∈ L2, such that φ′ ∈ Xs, s > 3/2, φ′′ ∈ X1, φ′ is
tangent to M at ϕ, and

〈L′′(ϕ)φ′, φ′〉 < 0, (4.1)

then there exists an ε > 0 and a sequence {uj
0} in Uϕ,ε such that

(i) uj
0 → ϕ in X1 as j →∞.

(ii) For all positive integer j, uj is uniformly bounded, but escapes Uϕ,ε in finite time, where
uj is the solution of (1.2) with uj(0) = uj

0.

The proof of Theorem 4.4 is approached via a series of lemmas. Define

J(u) =

∫
βu2

x + γ(D−1
x u)2 − cu2 + (p + 1)F (u) dx (4.2)

and

L(u) = E(u)− cV (u) =
1

2
J(u) +

p− 1

2(p + 1)
K(u).

Lemma 4.5. Assume c < 2
√

βγ. Then there exists a ground state ϕ ∈ X1 satisfying
J(ϕ) = 0 such that

L(ϕ) = inf{L(u) | u ∈ X1, u 6= 0, J(u) = 0}. (4.3)

Proof. The Lemma follows by applying the arguments in the proof of Proposition 2.3 in
[17].

Lemma 4.6. Fix c < 2
√

γβ, let ϕ ∈ G(β, c, γ). There is an ε0 > 0 and a unique C2 map
α : Uϕ,ε0 → R such that α(ϕ) = 0 and for all v ∈ Uϕ,ε0, and any r ∈ R,

(i)
〈
τα(v)ϕ

′, v
〉

= 0,

(ii) α(τrv) = α(v) + r, and

(iii) α′(v) = − 1

〈v, ϕ′′(·+ α(v))〉ϕ
′(·+ α(v)).

In particular, for any w ∈ Oϕ we have 〈α′(w), w〉 = 0, and α′(w) =
1

|ϕ′|22
w′.

Proof. The proof is standard. See Theorem 3.1 in [10], Lemma 3.5 in [1], or Lemma 3.5 in
[3].
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Consider a function φ ∈ L2 such that φ′ ∈ X1. Define another vector field Bφ by

Bφ(v) = τα(v)φ
′ −

〈
v, τα(v)φ

′〉
〈
v, τα(v)ϕ′′

〉τα(v)ϕ
′′ (4.4)

for v ∈ Uϕ,ε.
The vector field Bφ is an extension of the formula (4.2) in Bona, Souganidis and Strauss

[5] and a similar formula was also used in [1, 3, 10]. The important properties of Bφ are
expressed in the following auxiliary result and will be used in the proof of Theorem 4.4.

Lemma 4.7. (i) Assume that φ ∈ L2 such that φ′, φ′′ ∈ X1. The mapping Bφ : Uϕ,ε0 → X1

is C1 with bounded derivative.

(ii) Bφ commutes with translations.

(iii) 〈Bφ(v), v〉 = 0, for all v ∈ Uϕ,ε0.

(iv) If 〈ϕ, φ′〉 = 0, then Bφ(ϕ) = φ′.

Proof. Since φ′, ϕ′′ ∈ X1, it is easy to see from the definition of Bφ that Bφ(v) ∈ X1 for all
v ∈ Uϕ,ε. We now prove that Bφ is C1 with bounded derivative. From part (iii) of Lemma
4.6 and (4.4), we have

Bφ(v) = τα(v)φ
′ +

〈
v, τα(v)φ

′〉 d

dx
α′(v).

A simple calculation shows

B′
φ(v)w = 〈α′(v), w〉 τα(v)φ

′′ +
(〈

w, τα(v)φ
′〉 + 〈α′(v), w〉 〈v, τα(v)φ

′′〉) d

dx
α′(v)

+
〈
v, τα(v)φ

′〉 d

dx
α′′(v)w

(4.5)

for all w ∈ X1. To show Bφ is a C1 function with bounded derivative, we need to show that
all terms in the right side of (4.5) are bounded in Uϕ,ε. In fact, for w ∈ X1 and v ∈ Uϕ,ε, we
have

〈
v′, τα(v)ϕ

′〉 d

dx
α′′(v)w = 〈α′(v), w〉 τα(v)ϕ

′′′

+
〈
τα(v)ϕ

′′, w
〉 d

dx
α′(v)− 〈α′(v), w〉 〈v′, τα(v)ϕ

′′〉 d

dx
α′(v).

(4.6)

Setting v = ϕ in (4.6) and using the relation α(ϕ) = 0 yields

d

dx
α′′(ϕ)w =

ϕ′′′

|ϕ′|42
〈w, ϕ′〉+

ϕ′′

|ϕ′|42
〈w, ϕ′′〉 . (4.7)

Therefore, ∥∥∥∥
d

dx
α′′(ϕ)

∥∥∥∥
L(X1, X1)

≤ C0 (‖ϕ‖4)
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and ∥∥∥∥
d

dx
α′(ϕ)

∥∥∥∥
X1

≤ C1(‖ϕ‖3).

Since α is C2 and
d

dx
α′ and

d

dx
α′′ are continuous, by taking ε > 0 small enough, if nec-

essary, there exists a constant C2 > 0 such that ‖α′(v)‖X1 ≤ C2,

∥∥∥∥
d

dx
α′(v)

∥∥∥∥
X1

≤ C2, and
∥∥∥∥

d

dx
α′′(v)

∥∥∥∥
L(X1, X1)

≤ C2 with C2 = C2(‖ϕ‖4) and for all v ∈ Uϕ,ε0 . It follows that Bφ is a C1

function and the derivative of Bφ is bounded by
∥∥B′

φ(v)w
∥∥

X1
≤ C2 (‖φ′′‖X1 + (ε + ‖ϕ‖X1)|φ′|2) ‖w‖X1

which implies that
‖B′

φ(v)‖L(X1, X1) ≤ C, ∀v ∈ Uϕ,ε

where the constant C depends only on C2, ‖φ′′‖X1 , |φ′|2, and ‖ϕ‖X1 . This proves (i). The
statement (ii) can be obtained immediately from the relation α(τy(v)) = α(v) + y for any
v ∈ X1 and y ∈ R. The statement (iii) can obtained directly from the definition of Bφ. By
α(ϕ) = 0 and by the assumption in (iv), 〈ϕ, φ′〉 = 0, we have

Bφ(ϕ) = φ′ +
〈ϕ, φ′〉
|ϕ′|22

ϕ′′ = φ′.

This completes the proof of Lemma 4.7.

Lemma 4.8. Let ϕ ∈ G(β, c, γ). Assume that φ ∈ L2 is defined in Theorem 4.4. Then there
exist ε3 > 0 and σ3 > 0, such that for each v0 ∈ Uϕ,ε3 ,

L(ϕ) ≤ L(v0) + P (v0)s (4.8)

for some s ∈ (−σ3, σ3), where P (v) = 〈L′(v), Bφ(v)〉 and L(v) = E(v)− cV (v).

Proof. Let Uϕ,ε be as in Lemma 4.6. For each v0 ∈ Uϕ,ε0 , consider the initial-value problem

dv

ds
= Bφ(v),

v(0) = v0.
(4.9)

By Lemma 4.7, it has a unique maximal solution v(v0, s) ∈ C2(Uϕ,ε0 , (−σ, σ)) with σ =
σ(v0) > 0. Moreover, for each ε1 < ε0, there exists σ1 > 0, such that σ(v0) ≥ σ1 for all v0 ∈
Uϕ,ε1 . Hence, for fixed ε1 and σ1, we can define the C2-mapping s ∈ (−σ1, σ1) 7→ L(v(v0, s)).
Let P (v) = 〈L′(v), Bφ(v)〉 and

R(v) = 〈L′′(v)Bφ(v), Bφ(v)〉+
〈
L′(v), B′

φ(v)(Bφ(v))
〉
. (4.10)

Applying Taylor’s theorem yields

L(v(v0, s)) = L(v0) + P (v0)s +
1

2
R(v(v0, ξs))s

2 (4.11)
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for some ξ ∈ (0, 1). Since P and R are continuous, L′(ϕ) = 0, and R(ϕ) = 〈L′′(ϕ)φ′, φ′〉 < 0,
there exist ε2 ∈ (0, ε1) and σ2 ∈ (0, σ1) such that

L (v(v0, s)) ≤ L(v0) + P (v0)s (4.12)

for v0 ∈ B(ϕ, ε2) and s ∈ (−σ2, σ2). On the other hand, a simple computation shows that

J(v(v0, s))

∣∣∣∣
(v0,s)=(ϕ,0)

= 0

and
∂

∂s
J(v(v0, s))

∣∣∣∣
(v0,s)=(ϕ,0)

= 〈J ′(ϕ), φ′〉 . (4.13)

We claim that 〈J ′(ϕ), φ′〉 6= 0. Otherwise, φ′ would be tangent to N at ϕ, where

N = {u ∈ X1 | u 6= 0, J(u) = 0} .

Hence, 〈L′′(ϕ)φ′, φ′〉 ≥ 0 since ϕ minimizes L on N by Lemma 4.5. But this contradicts
(4.1). Therefore, by the implicit function theorem, there exists ε3 ∈ (0, ε2) and σ3 ∈ (0, σ2)
such that for every v0 ∈ B(ϕ, ε3), there exists a unique s = s(v0) ∈ (−σ3, σ3) such that

J (v(v0, s(v0))) = 0. (4.14)

Applying (4.12) to (v0, s(v0)) given by (4.14) and taking into account that ϕ minimizes L
on N , we have

L(ϕ) ≤ L(v(v0, s)) ≤ L(v0) + P (v0)s (4.15)

for some s ∈ (−σ3, σ3). The above inequality can be extended to Uϕ,ε3 from the gauge
invariance.

Remark 4.9. From the relation

v(ϕ, s) = ϕ +

∫ s

0

τα(v(ϕ,t))φ
′dt−

∫ s

0

g(t)τα(v(ϕ, t))ϕ
′′ dt

where

g(t) =

〈
v, τα(v)φ

′〉
〈
v, τα(v)ϕ′′

〉 ,

it is easy to see that v(ϕ, s) ∈ Xl, l > 3
2
, for all s ∈ (−σ3, σ3).

Now we are in the position to prove Theorem 4.4.

Proof of Theorem 4.4. Since v(v0, s) commutes with τy, it follows by replacing v0 with v(ϕ, δ)
in (4.15) that

L(v(v(ϕ, δ), s)) ≤ L(v(ϕ, δ)) + P (v(ϕ, δ))s (4.16)

for any s ∈ (−σ2, σ2) and δ ∈ (−σ3, σ3) with 0 < σ3 < σ2. Taking s = −δ, it thus transpires
from (4.16) that

L(ϕ) ≤ L(v(ϕ, δ))− P (v(ϕ, δ))δ (4.17)
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for all δ ∈ (−σ3, σ3). Moreover, it follows from (4.11) and the fact that P (ϕ) = 0 that the
mapping δ 7→ L(v(ϕ, δ)) has a strict maximum locally at δ = 0. Hence, we have

L(v(ϕ, δ)) < L(ϕ), (4.18)

for all δ 6= 0 and δ ∈ (−σ4, σ4) with 0 < σ4 ≤ σ3. This in turn implies from (4.17) that

P (v(ϕ, δ)) < 0 (4.19)

for all δ ∈ (0, σ4). Let δj ∈ (0, σ4) such that δj → 0 as j → ∞. Consider the sequences of
initial data u0,j = v(ϕ, δj). Then by Remark 4.9, u0,j ∈ Xs, s > 3/2, for all positive integers
j and u0,j → ϕ in X1 as j → ∞, which proves (i). For all integers j, we need only verify
the solution uj(t) of (1.2) with uj(0) = u0,j escapes from Uϕ,ε3 for some ε3 > 0 and for all
positive integers j in finite time. To see this, let ε3 be defined as in Lemma 4.8. Define

Tj = sup{λ > 0; uj(t) ∈ Uϕ,ε3 , ∀t ∈ (0, λ)}

and
P− = {v ∈ Uϕ,ε3 ; L(v) < L(ϕ), P (v) < 0 }.

Consider the case of the maximal existence time T = +∞ by the definition of stability. It
now follows from Lemma 4.8 that for all integers j and t ∈ (0, Tj), there exists s = sj(t) ∈
(−σ3, σ3) satisfying

L(ϕ) ≤ L(uj(t)) + P (uj(t))s = L(u0,j) + P (uj(t))s. (4.20)

By (4.18) and (4.19), u0,j ∈ P−. Then we deduce that uj(t) ∈ P− for all t ∈ [0, Tj]. In
fact, if P (uj(t0)) > 0 for some t0 ∈ [0, Tj], then the continuity of P implies that there exists
some t1 ∈ [0, Tj] satisfying P (uj(t1)) = 0 and it thus follows from (4.20) that L(ϕ) ≤ L(u0,j)
which contradicts u0,j ∈ P−. Hence, by (4.20), P is bounded away from zero and

−P (uj(t)) ≥ L(ϕ)− L(u0,j)

σ3

= ηj > 0, ∀t ∈ [0, Tj] (4.21)

we now define a Liapunov function

A(t) =

∫

R

φ(x + α(uj(t)))uj(x, t)dx, t ∈ [0, Tj]. (4.22)

Then by the Cauchy-Schwarz inequality,

|A(t)| ≤ |φ|2|uj(t)|2 = |φ|2|u0,j|2 < +∞, t ∈ [0, Tj]. (4.23)

On the other hand, using the Hamiltonian formulation

duj

dt
= −∂xE

′(uj)
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of (1.2), we have

dA

dt
= α′(uj(t))

∫

R

φ′ (x + α(uj(t))) uj(t) +

∫

R

φ (x + α(uj(t)))
duj

dt

=

〈
α′(uj(t)),

duj

dt

〉〈
τα(uj(t))φ

′, uj

〉
+

〈
τα(uj(t))φ,

duj

dt

〉

=

〈〈
τα(uj(t))φ

′, uj(t)
〉 dα′(uj(t))

dx
+ τα(uj(t))φ

′, E ′(uj(t))

〉

= 〈Bφ(uj(t)), E
′(uj(t))〉

= 〈Bφ(uj(t)), L
′(uj(t))〉+ c 〈Bφ(uj(t)), uj(t)〉

= P (uj(t))

(4.24)

for t ∈ [0, Tj], where 〈Bφ(uj(t)), uj(t)〉 = 0. Hence (4.21) yields the lower bound

−dA

dt
≥ ηj > 0 ∀t ∈ [0, Tj]. (4.25)

Comparing (4.23) and (4.25), we conclude that Tj < +∞, for all j. This completes the
proof. ¤

In view of Theorem 4.4 we now look for functions φ that satisfies the inequality (4.1).

Lemma 4.10. Suppose β > 0, γ > 0, c < 2
√

βγ and Assumption 4.1 holds. If d′′(c) < 0
then there exists φ satisfying the conditions of Theorem 4.4.

Proof. By Assumption 4.1, d is differentiable and by Lemma 3.4, d′(c) = −V (ϕc). So if we
define

g(h, σ) = V (ϕh + σϕc),

then g(c, 0) = −d′(c) and

∂g

∂h
(c, 0) =

〈
V ′(ϕc),

∂ϕc

∂c

〉
= −d′′(c) > 0.

Therefore the implicit function theorem implies that there is a C2 map h : (−ε, ε) →
(−∞, 2

√
βγ) such that h(0) = c and

g(h(σ), σ) = V (ϕh(σ) + σϕc) = V (ϕc).

Thus

0 =
d

dσ
g(h(σ), σ)

∣∣∣∣
σ=0

=

〈
V ′(ϕc), h

′(0)
∂ϕc

∂c
+ ϕc

〉
(4.26)

so if we define

φ(x) =

∫ x

−∞
h′(0)

∂ϕc

∂c
(y) + ϕc(y) dy

then φ′ is tangent to M at ϕc and it follows from Assumption 4.1 that φ ∈ L2, φ′ ∈ Xs for
some s > 3/2 and φ′′ ∈ X1. It remains to show that φ satisfies (4.1). First observe that

L′′(ϕ) = E ′′(ϕc)− cV ′′(ϕc) = −β∂2
x − γD−2

x − c + f ′(ϕc), (4.27)
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so

〈L′′(ϕc)φ
′, φ′〉 = 〈L′′(ϕc)ϕc, ϕc〉+ 2h′(0)

〈
L′′(ϕc)ϕc,

∂ϕc

∂c

〉
+ (h′(0))2

〈
L′′(ϕc)

∂ϕc

∂c
,
∂ϕc

∂c

〉
.

(4.28)
We claim that

〈L′′(ϕc)ϕc, ϕc〉 = (1− p)K(ϕc), (4.29)〈
L′′(ϕc)ϕc,

∂ϕc

∂c

〉
= −2d′(c), (4.30)

and 〈
L′′(ϕc)

∂ϕc

∂c
,
∂ϕc

∂c

〉
= −d′′(c). (4.31)

To prove the the first two identities, recall that sf ′(s) = pf(s) and F ′ = f . Thus

〈L′′(ϕc)ϕc, ϕc〉 =

∫

R

(−β(ϕc)xx − γD−2
x ϕc − cϕc + pf(ϕc))ϕc dx

=

∫

R

(p− 1)ϕcf(ϕc) dx

= (1− p)K(ϕc),

and
〈

L′′(ϕc)ϕc,
∂ϕc

∂c

〉
=

∫

R

(−β(ϕc)xx − γD−2
x ϕc − cϕc + pf(ϕc))

∂ϕc

∂c
dx

=

∫

R

(p− 1)f(ϕc)
∂ϕc

∂c
dx

= (p− 1)
d

dc

∫

R

F (ϕc) dx

= −2d′(c).

For the third identity, differentiate the solitary wave equation with respect to c to find

β

(
∂ϕc

∂c

)

xx

+ c
∂ϕc

∂c
+ ϕc + γD−2

x

∂ϕc

∂c
= f ′(ϕ)

∂ϕc

∂c
,

so L′′(ϕc)
(

∂ϕc

∂c

)
= ϕc, and therefore

〈
L′′(ϕc)

∂ϕc

∂c
,
∂ϕc

∂c

〉
=

〈
ϕc,

∂ϕc

∂c

〉
=

1

2

d

dc

∫

R

ϕ2
c dx = −d′′(c)

by Lemma 3.4. We next compute h′(0). Using (4.26) and Lemma 3.4, we have

0 = h′(0)

〈
ϕc,

∂ϕc

∂c

〉
+ 〈ϕc, ϕc〉 =

1

2
h′(0)

d

dc
〈ϕc, ϕc〉+ 〈ϕc, ϕc〉 = −1

2
h′(0)d′′(c)− d′(c)

and therefore

h′(0) = −2d′(c)
d′′(c)

.
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Finally, equations (4.28), (4.29) and (4.30) give

〈L′′(ϕc)φ
′, φ′〉 = (1− p)K(ϕc) + 4

(d′(c))2

d′′(c)
< 0

under the assumption that d′′(c) < 0. This proves the lemma.

Lemma 4.11. Assume c < 2
√

βγ and let ϕ ∈ G(β, c, γ). Define

φ(x) =

∫ x

−∞
(ϕ(y) + 2yϕ′(y)) dy.

Then

(i) φ ∈ L2, φ′ ∈ Xs, s > 3/2, φ′′ ∈ X1, and φ′ is tangent to M at ϕ.

(ii) 〈L′′(ϕ)φ′, φ′〉 =
(p− 1)(5− p)

p + 1
K(ϕ) + 16γ

∫

R

(D−1
x ϕ)2 dx.

Proof. The first part of statement (i) is obvious because ϕ ∈ Xs for s > 3/2 and ϕ is
exponentially decaying at infinity. On the other hand, a simple calculation shows that

〈φ′, ϕ〉 =

∫

R

(ϕ(x) + 2xϕ′(x)) ϕ(x) dx =

∫

R

(xϕ2)′ dx = 0.

This proves (i). Now we need to estimate the quantity 〈L′′(ϕ)φ′, φ′〉. Differentiating the
solitary wave equation

βϕxx + cϕ + γD−2
x ϕ = f(ϕ) (4.32)

gives
βϕxxx + cϕx + γD−1

x ϕ = f ′(ϕ)ϕx. (4.33)

We now claim that

〈L′′(ϕ)ϕ, xϕ′〉 =
p− 1

p + 1
K(ϕ), (4.34)

and

〈L′′(ϕ) (xϕ′) , xϕ′〉 =
p− 1

2(p + 1)
K(ϕ) + 4γ

∫

R

(D−1
x ϕ)2. (4.35)

To prove these, again recall that f ′(ϕ)ϕ = pf(ϕ) and F ′ = f , so that

〈L′′(ϕ)ϕ, xϕ′〉 =

∫

R

(−βϕxx − γD−2
x ϕ− cϕ + pf(ϕ))xϕ′ dx

=

∫

R

(p− 1)xϕ′f(ϕ) dx

= (1− p)

∫

R

F (ϕ) dx

=
p− 1

p + 1
K(ϕ).
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Next, we note that the identities

∫

R

βϕ2
x − cϕ2 + γ(D−1

x ϕ)2 dx = K(ϕ) (4.36)

and ∫

R

1

2
βϕ2

x +
1

2
cϕ2 − 3

2
γ(D−1

x ϕ)2 dx = − 1

p + 1
K(ϕ), (4.37)

follow by multiplying (4.32) by ϕ and xϕ′, respectively, and integrating. Combining these
yields ∫

R

cϕ2 dx− 2γ

∫

R

(D−1
x ϕ)2 dx +

p + 3

2(p + 1)
K(ϕ) = 0. (4.38)

Next, we observe that

L′′(ϕ)(xϕ′) = −β(xϕ′)′′ − γD−2
x (xϕ′)− cxϕ′ + f ′(ϕ)xϕ′

= −β(xϕ′′′ + 2ϕ′′)− γxD−1
x ϕ + 2γD−2

x ϕ− cxϕ′ + xf ′(ϕ)ϕ′

= −x(βϕ′′′ + cϕ′ + γD−1
x ϕ− f ′(ϕ)ϕ′)− 2βϕ′′ + 2γD−2

x ϕ

Using equations (4.32) and (4.33), this simplifies to

L′′(ϕ)(xϕ′) = 2cϕ + 4γD−2
x ϕ− 2f(ϕ)

so

〈L′′(ϕ) (xϕ′) , xϕ′〉 =

∫

R

(2cϕ + 4γD−2
x ϕ− 2f(ϕ))xϕ′ dx

=

∫

R

−cϕ2 + 2F (ϕ) + 6γ(D−1
x ϕ)2 dx.

Together with (4.38), this implies

〈L′′(ϕ) (xϕ′) , xϕ′〉 = 4γ

∫

R

(D−1
x ϕ)2 dx +

(
p + 3

2(p + 1)
− 2

p + 1

)
K(ϕ)

= 4γ

∫

R

(D−1
x ϕ)2 dx +

p− 1

2(p + 1)
K(ϕ),

as claimed. Therefore we deduce from (4.29), (4.34) and (4.35) that

〈L′′(ϕ)φ′, φ′〉 = 〈L′′(ϕ)ϕ, ϕ〉+ 4 〈L′′(ϕ)ϕ, xϕ′〉+ 4 〈L′′(ϕ) (xϕ′) , xϕ′〉
= (1− p)K(ϕ) +

4(p− 1)

p + 1
K(ϕ) +

2(p− 1)

p + 1
K(ϕ) + 16γ

∫

R

(
D−1

x ϕ
)2

dx

=
(p− 1)(5− p)

p + 1
K(ϕ) + 16γ

∫

R

(
D−1

x ϕ
)2

dx.

(4.39)

This completes the proof of the Lemma.

Corollary 4.12. Let φ be defined in Lemma 4.11. Then 〈L′′(ϕ)φ′, φ′〉 < 0, if
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(i) c < 0, p > 5, and γ < γ0, for some small γ0 > 0,

(ii) c ≤ 0 and p > 5 + 4
√

2, and γ > 0 or

(iii) 0 < c < 2
√

γβ and p > p0 with p0 =
10 + k +

√
(10 + k)2 + 4(7 + k)

2
and k =

8

(
2
√

βγ

2
√

βγ − c
− 1

)
> 0.

Proof. To prove (i), we first claim that

lim
γ→0

γ

∫

R

(
D−1

x ϕ
)2

dx = 0.

In fact, in view of (4.36), we have

γ

∫

R

(
D−1

x ϕ
)2

dx =

∫

R

cϕ2 − βϕ2
x dx + K(ϕ) =

∫

ϕ

cϕ2 − βϕ2
x dx + (m(β, c, γ))

p+1
p−1 . (4.40)

It is thereby inferred from Lemma 2.7 and Theorem 2.5 that

lim
γ→0

γ

∫

R

(
D−1

x ϕ
)2

dx =

∫

R

cϕ2
0 − β (∂xϕ0)

2 dx + (m(β, c, 0))
p+1
p−1

= −I(ϕ0; β, c, 0) + (m(β, c, 0))
p+1
p−1 = 0,

(4.41)

where ϕ0 is the ground-state solution of (KdV) with c < 0 This in turn implies that,

lim
γ→0

〈L′′(ϕ)φ′, φ′〉 =
(p− 1)(5− p)

p + 1
(m(β, c, 0))

p+1
p−1 < 0

for c < 0 and p > 5. This proves (i). To prove (ii) and (iii), we use (4.38) to write

2γ

∫

R

(
D−1

x ϕ
)2

dx =
p + 3

2(p + 1)
K(ϕ) + c

∫

R

ϕ2 dx

=
p + 3

2(p + 1)
K(ϕ)−K(ϕ) +

∫

R

βϕ2
x + γ

(
D−1

x ϕ
)2

dx

≤
(

p + 3

2(p + 1)
− 1 + max

{
1,

2
√

βγ

2
√

βγ − c

})
K(ϕ).

(4.42)

Therefore it follows from formula (ii) in Lemma 4.11 that

〈L′′(ϕ)φ′, φ′〉 ≤
(

(p− 1)(5− p)

p + 1
+

4(p + 3)

p + 1
− 8(1− ρ)

)
K(ϕ) (4.43)

where ρ = max

{
1,

2
√

βγ

2
√

βγ − c

}
. If c ≤ 0, then ρ = 1 and it follows that

〈L′′(ϕ)φ′, φ′〉 ≤
(

(p− 1)(5− p)

p + 1
+

4(p + 3)

p + 1

)
K(ϕ)

= − 1

p + 1

(
p− (5− 4

√
2)

)(
p− (5 + 4

√
2)

)
K(ϕ) < 0

(4.44)
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under the assumption of p in (ii). If the assumption (iii) is satisfied, then

p2 − (10 + k)p− (7 + k) > 0

where k = 8(ρ− 1) > 0. It thus follows from (4.35) that

〈L′′(ϕ)φ′, φ′〉 = − 1

p + 1

(
p2 − (10 + k)p− (7 + k)

)
K(ϕ) < 0.

The proof of the Corollary is complete.

5 Numerical Results

We now present some numerical computations of d(c) for the nonlinearity f(u) = (−u)p

for p ≥ 3 an integer. The case p = 2 is equation (1.1), and was considered in [15]. The
strategy for computing d is to first compute numerically the solutions of the solitary wave
equation (2.1) using a shooting method. Then, using equation (3.3), we compute d(c) and
use a difference quotient to approximate d′′(c). The scaling property of d in Lemma 3.2 helps
to reduce the calculations from the domain c < 2

√
βγ to two finite line segments. To see

this, substitute r = 1/2
√

βγ and s = (4γ/β)1/4 in the relation in Lemma 3.2 to get

d(β, c, γ) = β
p+1

2(p−1)
+ 1

4 (4γ)
p+1

2(p−1)
− 1

4 d(1, c/2
√

βγ, 1/4). (5.1)

Thus the value of d along any surface of the form

Sα = {(β, c, γ) | c/2
√

βγ = α}

is determined by its value at any single point on that surface. We therefore need only
compute d along some set of paths which crosses every such surface. We make the following
choice. Let Γ1 = {(1, c, 1/4) | −1 ≤ c < 1} and Γ2 = {(1,−1, γ) | 0 < γ ≤ 1/4}. Then Γ1

crosses Sα for −1 ≤ α < 1, and Γ2 crosses Sα for α ≤ −1. The paths Γ1 and Γ2 are shown
below in the plane β = 1.

Γ1 : γ = 1/4

Γ2 : c = −1
c

γ

−2 −1 0 1 2

We now consider the sign of dcc along these curves.
Along Γ1. Differentiating (5.1) twice with respect to c gives

dcc(β, c, γ) = β
p+1

2(p−1)
− 3

4 (4γ)
p+1

2(p−1)
− 5

4 dcc(1, c/2
√

βγ, 1/4).
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Since β > 0 and γ > 0, it follows that the sign of dcc within Sα is determined by the sign of
dcc(1, α, 1/4).

Along Γ2. Using Lemma 3.2 again, we deduce that

d(1, c, γ) = (−c)
p+3

2(p−1) d(1,−1, γ/c2),

for c < 0, so setting q = p+3
2(p−1)

and differentiating with respect to c gives

dc(1, c, γ) = −q (−c)q−1 d(1,−1, γ/c2)− 2γ

c3
(−c)q dγ(1,−1, γ/c2)

= −q (−c)q−1 d(1,−1, γ/c2) + 2γ (−c)q−3 dγ(1,−1, γ/c2)

and

dcc(1, c, γ) = q(q − 1) (−c)q−2 d(1,−1, γ/c2) +
2qγ

c3
(−c)q−1 dγ(1,−1, γ/c2)

− 2γ(q − 3) (−c)q−4 dγ(1,−1, γ/c2)− 4γ2

c3
(−c)q−3 dγγ(1,−1, γ/c2)

= q(q − 1) (−c)q−2 d(1,−1, γ/c2)− 2γ(2q − 3) (−c)q−4 dγ(1,−1, γ/c2)

+ 4γ2 (−c)q−6 dγγ(1,−1, γ/c2).

Setting r = γ/c2, this simplifies to dcc(1, c, γ) = (−c)q−2g(r), where

g(r) = 4r2dγγ(1,−1, r)− 2(2q − 3)rdγ(1,−1, r) + q(q − 1)d(1,−1, r).

So it suffices to determine the sign of g(r) for 0 < r ≤ 1
4
.

Below we consider the nonlinearity f(u) = (−u)p for several values of p. We remark
that the case p = 2 is the classical Ostrovsky equation (1.1), for which it was shown by
the authors in [15] using the same numerical method that d′′(c) is positive for all β, γ and
c < 2

√
βγ.

dcc, p = 3, β = 1, γ = 0.25

c
1−1

5

g(r), p = 3, β = 1, c = −1

r
1/40

0.5
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dcc, p = 4, β = 1, γ = 0.25

c
1−1

0.5

−5

g(r), p = 4, β = 1, c = −1

r
1/40

0.12

dcc, p = 5, β = 1, γ = 0.25
c

1−1
0

−1

g(r), p = 5, β = 1, c = −1
r

1/40

−0.003

0

dcc, p = 6, β = 1, γ = 0.25
c

1−1
0

−4

g(r), p = 6, β = 1, c = −1
r

1/40

−0.06

0
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dcc, p = 7, β = 1, γ = 0.25
c

1−1
0

−5

g(r), p = 7, β = 1, c = −1
r

1/40

−0.1

0

Using Theorems (3.1) and (4.3), we arrive at the following conclusions.

• When p = 3, all solitary waves are stable for c < 2
√

βγ.

• When p = 4 there exists α0 (≈ 0.88) such that solitary waves are stable for c
2
√

βγ
< α0

and solitary waves are unstable for α0 < c
2
√

βγ
< 1.

• When p = 5, 6 or 7, all solitary waves are unstable for c < 2
√

βγ.

The case p = 4 seems most interesting due to the change of stability. We conjecture that for
all p ≥ 5, solitary waves are unstable.
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