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1 Introduction

The equation
utt + ∆2u + u = f(u) on Rn+1 (1.1)

may be thought of as a nonlinear beam equation. In this paper we obtain both Lp-Lq

estimates and space-time integrability estimates on solutions to the linear equation. We also
use these estimates to study the local existence and asymptotic behavior of solutions to the
nonlinear equation, for nonlinear terms which grow like a certain power of u.

The main Lp-Lq estimate (Theorem 2.1) states that solutions of the linear equation with
initial data (u(0), ut(0)) in W 2,q′(Rn) ⊕ Lq′(Rn) are bounded in Lq(Rn) ⊕ W−2,q(Rn) for
2 ≤ q ≤ 2∗∗ for all time and that their norm in this space decays at the (optimal) rate t

n
2q
−n

4 .
Here and throughout

2∗∗ =

{
2n

n−4
for n ≥ 5

∞ for 1 ≤ n ≤ 4
(1.2)

denotes the critical exponent q in the Sobolev embedding H2(Rn) ↪→ Lq(Rn). The space-time
integrability estimate (Theorem 3.1) states that solutions of the linear equation with initial
data in the energy space X = H2(Rn)⊕L2(Rn) lie in the space Lq(Rn+1)⊕W−2,q(Rn+1) for
all q between 2 + 8/n and 2 + 12/(n− 4).

The local well-posedness result (Theorem 4.1) states that for nonlinearities f(u) which
satisfy

|f ′(s)| ≤ C|s|p−1. (1.3)

with 1 < p < 2∗∗ − 1, there exist strongly continuous finite energy solutions of (1.1) which
exist locally in time with arbitrary initial data in X. Finally, in Theorem 5.1 we prove that,
for nonlinear terms f(u) which satisfy (1.3) with p > 1 + 8/n, low energy scattering states
exist. That is, given g− ∈ X small enough, there exists a solution w(t) = (u(t), ut(t)) of
(1.1) and g+ ∈ X such that ‖U0(t)g± − w(t)‖X → 0 as t → ±∞, where U0 is the solution
operator for the linear equation.

We remark here that the local well-posedness result verifies an important assumption
used in [5] in the stability analysis of solitary wave solutions of (1.1). Using the method
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of concentrated compactness [6] it was shown that traveling wave solutions of (1.1) exist.
The variational characterization of the traveling waves was then used to show that there is
a function d(c) of the wave velocity c such that, modulo local well- posedness, the stability
of the traveling waves is determined by the convexity of d(c). In particular there exist stable
solitary waves of arbitrarily small norm in X when p < 1 + 4/n. We also remark that the
low energy scattering result is complementary to the stability result, in the sense that it
excludes the possibility of small stable solitary waves for these values of p.

In Section 2 we prove the Lp-Lq estimate following the ideas used by Marshall, Strauss
and Wainger [9] to obtain estimates for the Klein-Gordon equation. We find estimates on
an analytic family of operators and use complex interpolation ([14],[2]). The main difference
is that the oscillatory term in the kernel (2.28) is sin(tr2), where r2 = (1 + r4)1/2, while in
[9] the oscillatory term is sin(tr1), with r1 = (1 + r2)1/2. The difference in the behavior of
the derivatives of r1 and r2, for both large and small r, affects both the decay rate and the
values of q for which they hold. While the decay rates for (1.1) are slower than those for
the Klein-Gordon equation, the range of q for which an Lq′-Lq estimate holds includes the
interval [2, 2∗∗].

In Section 3 we prove the space-time integrability estimate. The proof is based on the
ideas of Strichartz [20], with one major exception. In [20] an explicit formula for the Fourier
transform of a quadratic form is used to obtain the estimate, while in the case of equation
(1.1) the Fourier transform of a quartic form must be estimated. Without an explicit formula
available this is quite difficult. However, as (1.1) is still second order in time, the symbol of
the differential operator is quadratic in τ and, since the symbol is radial in ξ, the explicit
relation for quadratic forms may be used to reduce the problem to estimating a one dimen-
sional integral very similar to the integral (2.28) associated with the time decay estimate.
The difference is that sin(tr2) is replaced with a Bessel function of complex order. Thus the
result follows using techniques similar to those in Section 2, along with a careful analysis of
the dependence of Bessel functions of complex order.

In Section 4 we prove the local well-posedness theorem. We remark that the difficulty
lies in proving well-posedness for p up to the critical number 2∗∗ − 1. For 1 < p < 2∗∗/2
nonlinearities satisfying (1.3) are locally Lipschitz on X and therefore well-posedness is a
consequence of standard semi-group arguments. For higher values of p we first use the time
decay estimates to establish existence in a weaker space X3 = Lp+1(Rn) ⊕ W−2,p+1(Rn).
Approximating the nonlinearity by Lipschitz functions produces a sequence of solutions in
X which converges to the solution of (1.1). Using the decay estimates again, we show that
these solutions are uniformly Hölder continuous in time with values in X3. Together with
arguments from [16] and [17] we then show that the original solution is in fact in X.

In Section 5 we prove the existence of low energy scattering states. The key ingredients
in the proof are the local existence result in X, along with the time decay and space-time
integrability estimates on U0(t) established in Sections 2 and 3. Once these are established,
the result is an application of the abstract framework developed by Strauss [17].

Notation
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F − Fourier transform on Rn+1 (ξ and τ)
ˆ − Fourier transform on Rn (ξ)
Fτ − Fourier transform on R (τ)
∗ − convolution on Rn

2 Time Decay Estimates

In this section we establish time decay estimates from Lq′ to Lq on solutions to the linear
equation

utt + ∆2u + u = 0. (2.1)

The main result is the following Theorem.

Theorem 2.1 For any n let q satisfy 2 ≤ q ≤ 2∗∗, where 2∗∗ is defined as in (1.2). Let u(t)
be the solution of (2.1) with initial data u(0) = u0 and ut(0) = v0. Then

‖u(t)‖Lq(Rn) ≤ Ct
n
2q
−n

4

(
‖u0‖W 2,q′ (Rn) + ‖v0‖Lq′ (Rn)

)
for t > 0. (2.2)

Furthermore, if u0 = 0 then

‖u(t)‖Lq(Rn) ≤ Ct1+n
q
−n

2 ‖v0‖Lq′ (Rn) for t < 1 (2.3)

where 1/q′ + 1/q = 1. The rates of decay in (2.2) and (2.3) are optimal.

To prove these results we introduce the following notation. Taking the Fourier transform of
(2.1) we obtain

ûtt + (1 + |ξ|4)û = 0 (2.4)

which has solution

û(ξ, t) = û0(ξ) cos(1 + |ξ|4)1/2t + v̂0(ξ)
sin(1 + |ξ|4)1/2t

(1 + |ξ|4)1/2
. (2.5)

The solution of (2.1) is therefore given by

u(t) = Kc(t) ∗ (1 + ∆2)1/2u0 + Ks(t) ∗ v0, (2.6)

where

K̂c(ξ, t) =
cos(1 + |ξ|4)1/2t

(1 + |ξ|4)1/2
K̂s(ξ, t) =

sin(1 + |ξ|4)1/2t

(1 + |ξ|4)1/2
. (2.7)

We next embed the operators T c,s(t) = Kc,s(t)∗ in families of operators T c,s
α (t) = Kc,s

α (t)∗
where

K̂s
α(t)(ξ) =

sin(1 + |ξ|4)1/2t

(1 + |ξ|4)α/2
, K̂c

α(t)(ξ) =
cos(1 + |ξ|4)1/2t

(1 + |ξ|4)α/2
. (2.8)
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We denote by ‖·‖p,q the operator norm on the space of bounded linear operators from Lp(Rn)
to Lq(Rn). Theorem 2.1 is equivalent to showing that the operators T c,s(t) = T c,s

1 (t) satisfy

‖T s(t)‖q′,q ≤ C min
(
t

n
2q
−n

4 , t1+n
q
−n

2

)

‖T c(t)‖q′,q ≤ Ct
n
2q
−n

4 .
(2.9)

It can be seen immediately that for all t > 0 we have

‖T s
α(t)‖2,2 ≤ 1 and ‖T c

α(t)‖2,2 ≤ 1 (2.10)

for Re(α) = 0 and

‖T s(t)‖2,2 ≤ min(1, t) and ‖T c(t)‖2,2 ≤ 1. (2.11)

We will establish (2.9) using Stein’s interpolation theorem, which we state here. See [14].

Theorem 2.2 (Stein) Let S be the strip 0 ≤ Re(α) ≤ 1 and let Tα be an analytic family of
linear operators satisfying

‖TiIm(α)‖p0,q0 ≤ M0(Im(α)) ‖T1+iIm(α)‖p1,q1 ≤ M1(Im(α)) (2.12)

where 1 ≤ pj, qj ≤ ∞ for j = 0, 1 and

sup
−∞<Im(α)<∞

e−b|Im(α)| log Mj(Im(α)) < ∞ (2.13)

for some b < π. Then if 0 ≤ s ≤ 1 there is a constant Ms so that ‖Ts‖ps,qs ≤ Ms for

1

ps

=
1− s

p0

+
s

p1

1

qs

=
1− s

q0

+
s

q1

. (2.14)

Furthermore we may replace q1 = ∞ with BMO.

The heart of the proof of Theorem 2.1 lies in the following estimates.

Lemma 2.3 There exists a constant C so that for n ≥ 4 we have

‖Ks
n/4(t)‖L∞(Rn) ≤ Ct−n/4 for t > 0 (2.15)

‖Kc
n/4(t)‖L∞(Rn) ≤ Ct−n/4 for t > 0 (2.16)

and for n < 4 we have

‖Ks(t)‖L∞(Rn) ≤ Ct−n/4 for t > 1 (2.17)

‖Ks(t)‖L∞(Rn) ≤ Ct1−n/2 for t < 1 (2.18)

‖Kc(t)‖L∞(Rn) ≤ Ct−n/4 for t > 0. (2.19)
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Proof of Theorem 2.1 For n < 4 it follows from (2.17) and (2.18) that

‖T s(t)‖1,∞ ≤ C min(t−n/4, t1−n/2) (2.20)

for all t > 0 and therefore interpolation between (2.20) and (2.11) yields the first estimate
in (2.9). By (2.19) we have

‖T c(t)‖1,∞ ≤ Ct−n/4 (2.21)

and interpolation between (2.21) and (2.11) proves the second estimate in (2.9). In dimension
n ≥ 4 we set Re(α) = n/4 and write

Ks
α(t) = Ks

n/4(t)Mα where M̂α(ξ) = (1 + |ξ|4)−iIm(α)/2. (2.22)

It follows from ([2] p151, Cor.2) that ‖Mα‖BMO,BMO ≤ C(1 + |Im(α)|k) for any integer
k > n/4. Together with (2.15) this implies that for Re(α) = n/4

‖T s
α(t)‖1,BMO ≤ Ct−n/4(1 + |Im(α)|k). (2.23)

By applying Theorem 2.2 with p0 = q0 = 2, p1 = 1, q1 = BMO and s = 4/n to (2.10) and
(2.23), it follows that

‖T s(t)‖q′,q ≤ Ct−1 where q = 2∗∗. (2.24)

Similarly, (2.16) may be used to establish

‖T c(t)‖q′,q ≤ Ct−1 where q = 2∗∗. (2.25)

Interpolating between (2.11) and (2.24),(2.25) yields (2.9) for n ≥ 4. ¥

The remainder of this section is devoted to the proof of Lemma 2.3. We consider only
the estimates on Ks

α, since the estimates for Kc
α may be obtained by applying the identi-

cal arguments with cos(tr2) instead of sin(tr2). We first write the formula for the Fourier
transform of a radial function

f̂(R) = (2π)nR1−n/2

∫ ∞

0

f(r)Jn/2−1(Rr)rn/2dr (2.26)

where R = |x|, r = |ξ|, and Jν(s) is the Bessel function of order ν. We shall denote

J̃ν(s) =
Jν(s)

sν
. (2.27)

In terms of J̃ν we can use (2.26) to express the kernel Ks
α(t) as

Ks
α(t)(R) = (2π)n

∫ ∞

0

sin(tr2)r
−α
2 rn−1J̃n/2−1(Rr)dr (2.28)

where r2 = (1 + r4)1/2.
The following properties of Bessel functions of complex order ν are proved in the ap-

pendix.
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Lemma 2.4 If Re(µ) is fixed, then

|J̃µ(s)| ≤ Ceπ|Im(µ)| for |s| < 1. (2.29)

Also
Jµ(s) = Cs−1/2 cos(s− µπ/2− π/4) + O

(
e2π|Im(µ)||s|−3/2

)
(2.30)

and
|J̃µ(s)| ≤ Ce2π|Im(µ)|s−Re(µ)−1/2 for |s| > 1. (2.31)

It follows from Lemma 2.4 that ‖J̃µ‖L∞(R+) = O
(
e2π|Im(µ)|) for Re(µ) ≥ −1/2. The

derivative of J̃ν for any complex ν is given by the formulas

J̃ ′ν(s) =
1

s
(J̃ν−1(s)− 2νJ̃ν(s)) (2.32)

J̃ ′ν(s) = −sJ̃ν+1(s) (2.33)

Estimates for n ≥ 4.

The decay estimate for n ≥ 4 is obtained by integrating (2.28) by parts multiple times.

Lemma 2.5 Suppose ν > 0, σ > 3 and 2τ + σ − ν − 1/2 < 0. Then

∫ ∞

0

sin(tr2)r
τ
2r

σJ̃ν(Rr)dr =
−1

2t

∫ ∞

0

sin(tr2 − π/2)Pνστ (r)dr (2.34)

where

Pνστ (r) =
d

dr
[rτ+1

2 rσ−3J̃ν(Rr)] = rτ+1
2 rσ−4[(σ − 2ν − 3)J̃ν(Rr) + J̃ν−1(Rr)]

+ 2(τ + 1)rτ−1
2 rσJ̃ν(Rr).

(2.35)

Proof. Since

sin(tr2) =
r2

2tr3

d

dr
sin(tr2 − π/2), (2.36)

integration by parts gives

∫ ∞

0

sin(tr2)r
τ
2r

σJ̃ν(Rr)dr =
1

2t
sin(tr2 − π/2)rτ+1

2 rσ−3J̃ν(Rr)
∣∣∣
∞

0

− 1

2t

∫ ∞

0

sin(tr2 − π/2)
d

dr
[rτ+1

2 rσ−3J̃ν(Rr)]dr.

(2.37)

By (2.29) and the hypothesis σ > 3 the first term vanishes at r = 0. It vanishes at infinity
as well since r2 = O (r2) as r → ∞ and 2(τ + 1) + σ − 3 − ν − 1

2
= 2τ + σ − ν − 3

2
< 0 by

assumption. The expansion of the derivative follows from (2.32). ¥
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In order to prove Lemma 2.3 we fix α = n/4. The integral in (2.28) is the same as that
in Lemma 2.5 with τ = −n/4, σ = n− 1 and ν = n/2− 1. Thus we may apply Lemma 2.5
to (2.28) N times to deduce that

Ks
n/4(t)(R) = (2π)n

(−1

2t

)N ∫ ∞

0

sin
(
tr2 −N

π

2

) ∑

j+k+l=N

Cjklfjkldr (2.38)

where
fjkl(r,R) = r

−n/4+j+l−k
2 rn−1−4j−4lJ̃n

2
−1−j(Rr) (2.39)

or, using the fact that j + k + l = N

fjk(r, R) = r
N−n/4−2k
2 rn−1−4N+4kJ̃n/2−1−j(Rr) 0 ≤ j + k ≤ N. (2.40)

Thus we need to estimate terms of the form

Ijk(R) =

∫ ∞

0

sin
(
tr2 −N

π

2

)
fjk(r, R)dr (2.41)

Since J̃n/2−1−j(s) is bounded, fj0(r) = O
(
rn−1−4N

)
for r near zero. Hence if gj0 is to be

integrable at r = 0 we require N < n/4. So let N = bn−1
4
c. In view of (2.38) and (2.41), the

first part of Lemma 2.3 is equivalent to the following.

Lemma 2.6 For n ≥ 4 and α = n/4 we have ‖Ijk‖∞ = O
(
tN−n/4

)
for t > 0.

Proof. For ease of notation we now fix κ = n/2 − 1 − j. We first consider the case t < 1.
We shall estimate Ijk(R) over the intervals [0, 1], [1, t−1/2] and [t−1/2,∞] separately. Since
J̃κ(Rr) is bounded, the integral over [0, 1] is O(1) in t for all R. Over the second interval we
get

∫ t−1/2

1

sin
(
tr2 −N

π

2

)
fjk(r, R)dr ≤ C

∫ t−1/2

1

rn/2−1−2Ndr

= rn/2−2N

∣∣∣∣
t−1/2

1

= O(1) + O
(
tN−n/4

)
.

(2.42)

Finally over the last interval, we integrate by parts to get

∫ ∞

t−
1
2

sin(tr2)fjk(r, R)dr = − 1

2t
cos(tr2)r

N−n/4+1−2k
2 rn−4−4N+4kJ̃κ(Rr)

∣∣∣∣
∞

t−1/2

+
1

2t

∫ ∞

t−
1
2

cos(tr2)Pj(r)dr

(2.43)

where
Pjk(r, R) = Pνστ (r, R) (2.44)
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is defined by (2.35) with ν = κ, σ = n− 1− 4N + 4k and τ = N − n/4− 2k. Since ν ≥ 1/2
implies Pνστ (r) = O (r2τ+σ−2) for r > 1, it follows that Pjk(r) = O

(
rn/2−3−2N

)
for r > 1,

and therefore the last expression is of order

O
(
tN−n/4

)
+ O

(
t−1

∫ ∞

t−1/2

rn/2−3−2Ndr

)
= O

(
tN−n/4

)
. (2.45)

For t > 1 the estimates on Ijk are established according to the congruence of the dimen-
sion n mod 4. There are two cases.

Case 1: n ≡ 0(4). When n ≡ 0(4), N = n−4
4

and we need to show ‖Ijk‖L∞(Rn) = O (t−1).
For k = 0 integrating by parts gand using (2.33) gives

Ijk(R) =

∫ ∞

0

sin
(
tr2 −N

π

2

)
r3r−1

2 J̃κ(rR)dr =
−1

2t

∫ ∞

0

d

dr
cos

(
tr2 −N

π

2

)
J̃κ(rR)dr

= − 1

2t
cos

(
tr2 −N

π

2

)
J̃κ(rR)

∣∣∣∣
∞

0

+
1

2t

∫ ∞

0

cos
(
tr2 −N

π

2

)
rR2J̃κ+1(rR)dr

= O
(
t−1

)
+

1

2t

∫ ∞

0

cos
(
tr2 −N

π

2

)
rR2J̃κ+1(rR)dr.

(2.46)

By making the change of variable s = rR the remaining integral may be written as

C

∫ ∞

0

cos
(
t
(
1 + s4/R4

)1/2 −N
π

2

)
sJ̃κ+1(s)ds (2.47)

which is bounded independently of R since κ ≥ n/2− 1−N = n/4 ≥ 1.
For k ≥ 1 we have κ ≥ 2 and we may apply Lemma 2.5 with ν = κ, σ = 3 + 4k and

τ = −1− 2k to obtain

Ijk(R) =

∫ ∞

0

sin
(
tr2 −N

π

2

)
r3+4kr−1−2k

2 J̃κ(rR) =
−1

2t

∫ ∞

0

cos
(
tr2 −N

π

2

)
Pjk(rR)dr

(2.48)
where

Pjk(r, R) = r−2k
2 r4k−1[CJ̃κ(Rr) + J̃κ−1(Rr)] + Cr−2−2k

2 r3+4kJ̃κ(Rr) (2.49)

On the interval [0, 1] the function Pjk(r,R) is bounded and thus we only need to estimate
the integral over the interval [1,∞). We integrate by parts once again to find

∫ ∞

1

cos
(
tr2 −N

π

2

)
Pjk(r,R)dr = Ct−1 sin

(
tr2 −N

π

2

) Pjk(r,R)r2

r3

∣∣∣∣
∞

1

+ Ct−1

∫ ∞

1

sin
(
tr2 −N

π

2

) d

dr

(
Pjk(r,R)r2

r3

)
dr

(2.50)

where
Pjk(r, R) = r−2k

2 r4k−1(CJ̃κ(Rr) + J̃κ−1(Rr)) + r−2k−2
2 r4k+3J̃κ(Rr). (2.51)

Since Pjk is bounded and vanishes as r → ∞ the first term is of order O (t−1). A simple
computation, using the fact that κ ≥ 2 shows that the derivative in the integrand is of order
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O (r−3) for r > 1 and therefore the last integral is bounded. This shows that, for k ≥ 1, we
have Ijk(R) ≤ Ct−1. Hence the lemma is proved for n ≡ 0(4).

Case 2: n 6≡ 0(4). In this case we will estimate Ijk over [0, t−1/4] and [t−1/4,∞] separately.
On the interval [0, t−1/4], fjk(r, R) is of order O

(
rn−1−4N+4k

)
so that

∫ t−1/4

0

sin
(
tr2 −N

π

2

)
fjk(r, R)dr ≤ C

∫ t−1/4

0

rn−1−4N+4kdr

= CtN−n/4−l ≤ CtN−n/4.

(2.52)

On the interval [t−1/4,∞] we may integrate by parts using (2.36) to get

∫ ∞

t−1/4

sin
(
tr2 −N

π

2

)
fjk(r, R)dr =

1

2t

∫ ∞

t−1/4

cos
(
tr2 −N

π

2

)
Pjk(r, R)dr

= − 1

2t
cos

(
tr2 −N

π

2

)
r

N+1−n/4
2 rn−4−4N J̃κ(Rr)

∣∣∣∣
∞

t−1/4

(2.53)

where Pjk(r, R) is defined as in (2.44). By (2.31), the second term vanishes at the upper
limit r = +∞, while at the lower limit (2.29) implies that this term is of order O

(
tN−n/4−l

)
.

As above it follows that Pjk(r) = O
(
rn/2−3−2N

)
for r > 1. For r < 1, Pνστ (r) = O (rσ−4) and

therefore Pjk(r, R) = O
(
rn−5−4N+4k

)
. Since 2N ≥ n−3

2
for n 6≡ 0(4) we have n/2− 3− 2N ≤

−3/2 and therefore the remaining integral is of order

O

(
t−1

∫ 1

t−1/4

rn−5−4N+4kdr + t−1

∫ ∞

1

r−3/2dr

)
= O

(
tN−n/4

)
. (2.54)

Hence

Ijk(x) = O
(
tN−

n
4

)
(2.55)

for n 6≡ 0(4). This completes the proof of Lemma 2.6. ¥

Estimates for n < 4.

The second part of Lemma 2.3 is proven in the following Lemma.

Lemma 2.7 For 1 ≤ n ≤ 3 we have

‖Ks(t)‖L∞(Rn) ≤ Ct−n/4 for t > 1 (2.56)

‖Ks(t)‖L∞(Rn) ≤ Ct1−n/2 for t < 1. (2.57)

Proof. We will first consider the case t < 1, and prove (2.57) for dimensions n = 1, 2 and 3
separately.

For n = 1, J̃−1/2(s) = cos(s) and therefore

Ks(t)(R) = 2π

∫ ∞

0

sin(tr2)r
−1
2 cos(Rr)dr. (2.58)
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We need to show ‖Ks(t)‖L∞(Rn) ≤ Ct1/2. Over the interval [0, t−1/2] we use the estimate
sin(s)s−1 ≤ C to get

∫ t−1/2

0

sin(tr2)r
−1
2 cos(Rr)dr ≤ C

∫ t−1/2

0

tdr = Ct1/2. (2.59)

On the remaining interval
∫ ∞

t−1/2

sin(tr2)r
−1
2 cos(Rr)dr ≤ C

∫ ∞

t−1/2

r−2dr = Ct1/2. (2.60)

For n = 2,

Ks(t)(R) = (2π)2

∫ ∞

0

sin(tr2)r
−1
2 rJ0(Rr)dr (2.61)

and we need to show ‖Ks(t)‖L∞(Rn) = O(1) in t. On [0, t−1/2] we have

∫ t−1/2

0

sin(tr2)r
−1
2 rJ0(Rr)dr ≤ C

∫ t−1/2

0

trdr = C. (2.62)

On [t−1/2,∞] we first consider R < t1/2 and integrate by parts to obtain
∫ ∞

t−1/2

sin(tr2)r
−1
2 rJ0(Rr)dr =

−1

2t
cos(tr2)r

−2J0(Rr)

∣∣∣∣
∞

t−1/2

− 1

2t

∫ ∞

t−1/2

cos(tr2)[2r
−3J0(Rr) + r−2RJ1(Rr)]dr

≤ O(1) + Ct−1

∫ ∞

t−1/2

r−2(r−1 + R)dr

= O(1) + O
(
t−1/2R

)
= O(1).

(2.63)

Finally if R > t1/2 we use the estimate J0(s) = O
(
s−1/2

)
for s > 1 to obtain

∫ ∞

t−1/2

sin(tr2)r
−1
2 rJ0(Rr)dr ≤ CR−1/2

∫ ∞

t−1/2

r−3/2dr = O
(
R−1/2t1/4

)
= O(1). (2.64)

If n = 3

Ks(t)(R) = (2π)3

∫ ∞

0

sin(tr2)r
−1
2 r2J̃1/2(Rr)dr (2.65)

and we need to show ‖Ks(t)‖L∞(Rn) ≤ Ct−1/2. On the interval [0, t−1/2] we estimate

∫ t−1/2

0

sin(tr2)r
−1
2 r2J̃1/2(Rr)dr ≤ C

∫ t−1/2

0

tr2dr = O
(
t−1/2

)
. (2.66)

On [t−1/2,∞] we integrate by parts once again to find
∫ ∞

t−1/2

sin(tr2)r
−1
2 r2J̃1/2(Rr)dr =

−1

2t
cos(tr2)r

−1J̃1/2(Rr)

∣∣∣∣
∞

t−1/2

+
1

2t

∫ ∞

t−1/2

cos(tr2)r
−2

(
cos(Rr)− 2

sin(Rr)

Rr

)
dr

= O
(
t−1/2

)
+ O

(
t−1

∫ ∞

t−1/2

r−2

)
= O

(
t−1/2

)
.

(2.67)

10



We remark here that the estimate (2.19) on Kc(t) for t < 1 follows in exactly the same way
as just shown. The only difference is that an estimate on sin(tr2) was used on the interval
[0, t−1/2]. Using the fact that n− 3 < n/2− 1 for n < 4 we see that

Kc(t)(R) = O

(∫ t−1/2

0

r−1
2 rn−1dr

)
= O(1) + O

(∫ t−1/2

1

rn/2−1

)
= O

(
t−n/4

)
(2.68)

Next, for t > 1 we again use a different argument in each dimension. For n = 1, we need
to show that ‖Ks(t)‖L∞(Rn) = O

(
t−1/4

)
. Define H ′(r) = sin(tr2) cos(Rr) with H(0) = 0.

Then by Corollary 2.9 below,
|H(r)| ≤ Ct−1/4 (2.78)

and (2.65) implies

Ks(t)(x) = 2πH(r)r−1
2

∣∣∣∣
∞

0

+ 4π

∫ ∞

0

H(r)

(
r

r2

)3

dr

= O

(
t−1/4

∫ ∞

0

(
r

r2

)3

dr

)
= O

(
t−1/4

)
.

(2.69)

For n = 2 we need to show ‖Ks(t)‖L∞(Rn) ≤ Ct−1/2. On the interval [0, t−1/4] we write

∫ t−1/4

0

sin(tr2)r
−1
2 rJ0(Rr)dr ≤ C

∫ t−1/4

0

rdr = Ct−1/2 (2.70)

On the remaining interval, we first consider the case R < t1/4 to obtain

∫ ∞

t−1/4

sin(tr2)r
−1
2 rJ0(Rr)dr = −cos(tr2)

2tr2
J0(Rr)

∣∣∣∣
∞

t−1/4

+
1

2t

∫ ∞

t−1/4

cos(tr2)[r
−3J0(Rr) + r−2RJ1(Rr)]dr

= O
(
t−1/2

)
+ O

(
t−1

∫ ∞

t−1/4

r−3 + Rr−2dr

)
= O

(
t−1/2

)
.

(2.71)

Next, if t > R > t1/4 we first consider the interval [t−1/4, (R/t)1/3] and use the estimate
(2.19) on J0(s) for large s to get

∫ (R/t)1/3

t−1/4

sin(tr2)r
−1
2 rJ0(Rr)dr = O

(∫ (R/t)1/3

t−1/4

r−1
2 r1/2R−1/2dr

)

= O
(
R−1/2(R/t)1/2

)
= O

(
t−1/2

)
.

(2.72)

11



On the interval [(R/t)1/3,∞) we integrate by parts and use the estimate (2.31) once again
to obtain

∫ ∞

(R/t)1/3

sin(tr2)r
−1
2 rJ0(Rr)dr = −cos(tr2)

2tr2
J0(Rr)

∣∣∣∣
∞

(R/t)1/3

+
1

2t

∫ ∞

(R/t)1/3

cos(tr2)[r
−3J0(Rr) + r−2RJ1(Rr)]dr

= O
(
t−1(R/t)−2/3

)
+ O

(
1

2t

∫ ∞

(R/t)1/3

r−5/2R1/2dr

)

= O
(
t−1(R/t)−2/3

)
+ O

(
t−1(R/t)−1/2R1/2

)
= O

(
t−1/2

)

(2.73)

for t1/4 < R < t. Finally, for R > t we use the asymptotic expansion (2.30) of J0 again to
conclude

∫ ∞

t−1/4

sin(tr2)r
−1
2 rJ0(Rr)dr = O

(
R−1/2

∫ ∞

t−1/4

r−1
2 r1/2dr

)
= O

(
t−1/2

)
. (2.74)

For n = 3 we must show ‖Ks(t)‖L∞(Rn) ≤ Ct−3/4. On the interval [0, t−1/4] we have

∫ t−1/4

0

sin(tr2)r
−1
2 r2J̃1/2(Rr)dr ≤ C

∫ t−1/4

0

r2dr = Ct−3/4. (2.75)

On the remaining interval we can use (2.34) to compute

∫ ∞

t−1/4

sin(tr2)r
−1
2 r2J̃1/2(Rr)dr =

−1

2t
cos(tr2)r

−1J̃1/2(Rr)

∣∣∣∣
∞

t−1/4

+
1

2t

∫ ∞

t−1/4

cos(tr2)r
−2

(
cos(Rr)− 2

sin(Rr)

Rr

)
dr

= O
(
t−3/4

)
+ O

(
t−1

∫ ∞

t−1/4

r−2

)
= O

(
t−3/4

)
.

(2.76)

This completes the proof of Lemma 2.7. ¥

Lemma 2.8 Let f ∈ Ck(a, b), k ≥ 2, and define

G =

∫ b

a

eif(r)dr. (2.77)

If |f ′(x)| ≥ λ and f ′′(x) 6= 0 on [a, b] then |G| ≤ Cλ−1. If |f (k)(x)| ≥ λ on [a, b] then
|G| ≤ Cλ−1/k, where the constant C depends only on k.

Corollary 2.9 Define H(r) by H ′(r) = sin(tr2) cos(Rr) and H(0) = 0. Then

|H(r)| ≤ Ct−1/4 (2.78)
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Proof. We apply Lemma 2.8 to the function G±(r) defined by G′
±(r) = ei(tr2±Rr), G±(0) = 0.

The derivatives of f(r) = tr2 ±Rr up to fourth order are

f ′(r) =
2tr3

r2

±R

f ′′′(r) =
12tr(1− r4)

r5
2

f ′′(r) =
2tr2(3 + r4)

r3
2

f ′′′′(r) =
12t(1− 14r4 + 5r8)

r7
2

(2.79)

Since f ′′(r) > t for r ≥ 1/2 and f ′′′′(r) > t for r ≤ 1/2 we have

|G±(r)| ≤ C1t
− 1

2 + C2t
− 1

4 (2.80)

Since sin(tr2) cos(Rr) is a linear combination of terms of the form e±i(tr2±Rr), this proves
(2.78). ¥

Proof of Lemma 2.8. The first statement follows by writing G =
∫ b

a
d
dr

[eif(r)] −i
f ′(r)dr and

integrating by parts to get

G =
eif(r)

f ′(r)

∣∣∣∣
b

a

+ i

∫ b

a

eif(r) f ′′(r)
[f ′(r)]2

dr (2.81)

The modulus of the first term is bounded by 2/λ, while the second term is bounded by
∣∣∣∣
∫ b

a

f ′′(r)
[f ′(r)]2

dr

∣∣∣∣ =

∣∣∣∣
1

f ′(b)
− 1

f ′(a)

∣∣∣∣ ≤
2

λ
(2.82)

since f ′′(x) does not change sign on [a, b]. Proceeding inductively, suppose that f (k+1)(x) ≥
λ > 0 on [a, b]. We may also suppose that f (k)(x) ≤ 0 on [a, c] and f (k)(x) ≥ 0 on [c, b] for
some c ∈ [a, b]. If c < b, then for any γ ∈ (c, b) we have f (k)(x) ≥ (γ − c)λ on [γ, b], so that
the induction hypothesis implies

G1 =

∣∣∣∣
∫ b

c

eif(r)dr

∣∣∣∣ ≤
∫ γ

c

1dr +

∣∣∣∣
∫ b

γ

eif(r)dr

∣∣∣∣ ≤ (γ − c) +
C

(γ − c)1/kλ1/k
(2.83)

Choosing γ − c = C ′λ1/(k+1) minimizes the last expression. Hence G1 ≤ C ′′λ−1/(k+1). Simi-

larly G2 =

∣∣∣∣
∫ c

a
eif(r)dr

∣∣∣∣ ≤ Cλ−1/(k+1) and the lemma is proved. ¥

Optimality

We next obtain lower bounds for the rate of decay which, along the line of duality, agree
with the decay rates in Theorem 2.1.

Lemma 2.10 There exists a constant C such that for any 0 < t < 1 we have

‖T s(t)‖p,q ≥ Ct1−
n
2p

+ n
2q (2.84)

and there is a sequence tk → +∞ such that

‖T s(tk)‖p,q ≥ Ct
n
4q
− n

4p

k . (2.85)
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We remark that Lemma 2.10 shows that the estimates of Theorem 2.1 are sharp since

n

4q
− n

4p
=

n

2q
− n

4
and 1− n

2p
+

n

2q
= 1 +

n

q
− n

2
(2.86)

on the line of duality.

Proof. We first consider the case t > 1. Let ψ(x) be a function with Fourier transform
ψ̂(ξ) = φ(|ξ|), where φ(r) is C∞ with support on [0, 1] and satisfies φ ≥ 0 and φ(r) = 1 for

r ≤ 1/2. Then define ψt(x) = t−
n
4p ψ(x/t1/4). It follows that ψ̂t(ξ) = t

n
4p′ ψ̂(ξt1/4) and we

have the formula

T s(t)ψt(R) = t
n

4p′
∫ ∞

0

sin(tr2)r
−1
2 J̃n/2−1(Rr)φ(t1/4r)rn−1dr. (2.87)

Since the integral takes place only over the interval [0, t−1/4] we may use the expansion

tr2 = t(1 + r4)1/2 = t +
1

2
tr4 + O

(
tr8

)
(2.88)

to get

sin(tr2) = sin

(
t +

1

2
tr4

)
+ O

(
tr8

)
. (2.89)

Thus we may break up the integral in (2.87) as T s(t)ψt(R) = I1(R) + I2(R) where the main
term is

I1(R) = t
n

4p′
∫ t−1/4

0

sin

(
t +

1

2
tr4

)
r−1
2 J̃n/2−1(Rr)φ(t1/4r)rn−1dr. (2.90)

Making the change of variable s = t1/4r gives

I1(R) = t
n

4p′−
n
4

∫ 1

0

sin(t + s4/2)

(1 + s4/t)−1/2
J̃n/2−1(Rst−1/4)φ(s)sn−1ds. (2.91)

Since the Bessel function J̃n/2−1 is positive on some interval [0, a], we can choose constants

c1, c2 so that if c1t
1/4 ≤ R ≤ c2t

1/4 then J̃n/2−1(Rst−1/4) > 0 for s ∈ (0, 1). Also, for any
t > 1 we have (1 + s4/t)−1/2 > 1/2. Finally, for tk = (4k + 1)π

2
we have sin(tk + s4/2) > 1/2

for s ∈ (0, 1). So for R and tk chosen in this way we have

I1(R) ≥ Ct
n

4p′−
n
4

k = Ct
− n

4p

k . (2.92)

Next we must show that the term

I2(R) = O

(
t
1+ n

4p′
∫ t−1/4

0

r−1
2 J̃n/2−1(Rr)φ(t1/4r)rn+7dr

)
(2.93)

is really an error term. Making the same change of variable as above, we get

I2(R) = O

(
t

n
4p′−

n
4
−1

∫ 1

0

(
1 +

s4

t

)−1/2

J̃n/2−1(Rst−1/4)sn+7ds

)
. (2.94)
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Since the integral is bounded independently of t and R we have I2(R) = O
(
t

n
4p′−

n
4
−1

)
and

therefore

T s(tk)ψtk(R) ≥ Ct
n

4p′−
n
4

k = Ct
− n

4p

k . (2.95)

Since this holds for R in a set of measure t
n/4
k we have

‖T s(tk)ψtk‖Lq(Rn) ≥ Ct
− n

4p

k t
n
4q = Ct

n
4q
− n

4p

k for tk =
(4k + 1)π

2
. (2.96)

This proves (2.85) since ‖ψtk‖Lp(Rn) = ‖ψ‖Lp(Rn) for all k.

Next, for t < 1 we define ψt(x) = t−
n
2p ψ(x/t

1
2 ) where ψ is defined as above. We then

have ψ̂t(ξ) = t
n

2p′ ψ̂(ξt
1
2 ) and therefore

T s(t)ψt(R) = t
n

2p′
∫ ∞

0

sin(tr2)r
−1
2 J̃n/2−1(Rr)φ(t

1
2 r)rn−1dr. (2.97)

Since φ is supported on [0, 1] we can make the change of variable s = t1/2r to get

T s(t)ψt(R) = t
n

2p′−
n
2

∫ 1

0

sin(
√

t2 + s4)

(1 + s4/t2)1/2
J̃n/2−1(Rst−1/2)φ(s)sn−1ds (2.98)

Now, for s ≤ 1 and t < 1 we have
√

t2 + s4 <
√

2 and therefore

sin(
√

t2 + s4)(1 + s4/t2)−1/2 ≥ t/2. (2.99)

Also, there is some c1 such that for R < c1t
1/2 we have J̃n/2−1(Rst−1/2) > 0 for s ∈ (0, 1).

Hence
T s(t)ψt(R) ≥ Ct

1+ n
2p′−

n
2 = Ct1−

n
2p . (2.100)

Since this holds for R in a set of measure c2t
n/4 we have

‖T s(t)ψt‖q ≥ Ct1−
n
2p

+ n
2q . (2.101)

This proves (2.84) since ‖ψt‖Lp(Rn) = ‖ψ‖Lp(Rn) for all t. ¥

3 Space-Time Integrability

In this section we again consider solutions of the linear equation

utt + ∆2u + u = 0 (2.1)

with arbitrary initial data in X and show that they are integrable in both space and time.
The main result is the following.
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Theorem 3.1 For any n let q satisfy

2 +
8

n
≤ q < qn =

{
2(n+2)

n−4
for n ≥ 5

∞ for 1 ≤ n ≤ 4.
(3.1)

Then the solution of (2.1) with initial data (u0, v0) ∈ X ≡ H2(Rn)⊕ L2(Rn) satisfies

‖u‖Lq(Rn+1) ≤ C‖(u0, v0)‖X (3.2)

and
‖ut‖W−2,q(Rn+1) ≤ C‖(u0, v0)‖X . (3.3)

Theorem 3.1 is a consequence of the following theorem.

Theorem 3.2 For any n choose q so that

2 +
8

n
≤ q <

{
2(n+2)

n−2
for n ≥ 3

∞ for n = 1, 2
(3.4)

Let u(t) be the solution of (2.1) with initial data u(0) = u0 and ut(0) = v0, where (u0, v0) ∈
Y ≡ H1(Rn)⊕H−1(Rn). Then

‖u‖Lq(Rn+1) ≤ C‖(u0, v0)‖Y . (3.5)

We prove Theorems 3.1 and 3.2 by using the method of Strichartz [20] to reduce the
estimate to an estimate on the Fourier transform of a certain quartic function (3.17). The
theorems then follow from the main estimate in Lemma 3.4. For completeness we first repeat
here the reduction to the integral estimate.

By taking the Fourier transform of (2.1) in the spatial variable, we obtain the solution

u(x, t) =

∫

Rn

e−ix·ξ (
eir2t(r2û0 − iv̂0) + e−ir2t(r2û0 + iv̂0)

) dξ

2
√

1 + |ξ|4 . (3.6)

This formula may then be considered as the Fourier transform of a function on a surface in
Rn+1. More precisely, we define

S = {(ξ, τ) : τ 2 − |ξ|4 − 1 = 0} (3.7)

and define a measure on S by

dµ =
δ0(τ

2 − |ξ|4 − 1)dξdτ

2
√

1 + |ξ|4 (3.8)

where δ0 denotes the delta function centered at 0. If we then let

g(ξ) =

{
(r2û0(ξ)− iv̂0(ξ)) on S−
(r2û0(ξ) + iv̂0(ξ)) on S+

(3.9)

where S− = S ∩ {τ < 0} and S+ = S ∩ {τ > 0}, we have

u(x, t) = F−1(gdµ) (3.10)

where F denotes the Fourier transform in Rn+1 and F−1 denotes its inverse. We will prove
the following result regarding the measure dµ.
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Lemma 3.3 Let q be chosen as is Theorem 3.1 and let 1/p+1/q = 1. If g ∈ Lp(Rn+1), then
Fg

∣∣
S
∈ L2(S, dµ) and ‖Fg‖L2(S,dµ) ≤ C‖g‖Lp(Rn+1). Also if g ∈ L2(S, dµ), then F(gdµ) ∈

Lq(Rn+1) and ‖F(gdµ)‖Lq(Rn+1) ≤ C‖g‖L2(S,dµ).

Proof of Theorem 3.2 By (3.10) and the second part of Lemma 3.3

‖u‖2
Lq(Rn) ≤ C‖g‖2

L2(S,dµ) =

∫

Rn

r2|û0(ξ)|2 + r−1
2 |û1(ξ)|2dξ

= ‖(u0, u1)‖2
H1(Rn)⊕H−1(Rn)

(3.11)

where r2 = (1 + |ξ|4)1/2 as in Chapter 1. ¥

Proof of Theorem 3.1 By (3.6) it is easily seen that ∇xu =F−1(ξgdµ). We also have

|∂t|1/2u =F−1(r
1/2
2 gdµ). As in the proof of Theorem 3.2, it follows from Lemma 3.3 that

‖∇xu‖Lq(Rn+1) ≤ C‖(u0, v0)‖X

‖|∂t|1/2u‖Lq(Rn+1) ≤ C‖(u0, v0)‖X

(3.12)

for q chosen as in Theorem 3.2. Hence

u ∈ Lq([0, T ],W 1,q(Rn)) ⊂ Lq([0, T ], L
nq

n−q (Rn)) (3.13)

and
u ∈ W 1/2,q([0, T ], Lq(Rn)) ⊂ L

2q
2−q ([0, T ], Lq(Rn)). (3.14)

Interpolating between (3.13) and (3.14), with s = n
n+2

shows that u ∈ Lq̄(Rn+1) where

q̄ = (n+2)q
n+2−q

. This proves the first statement since by the choice of q in Theorem 3.2 we have

q̄ < 2(n+2)
n−4

. The second statement follows since (1 + ∆2)−1/2ut =F−1(g̃dµ), where g̃ = ig on
S− and g̃ = −ig on S+. ¥

Proof of Lemma 3.3 We first note that by duality the two statements are identical. Also
the first statement is implied by

‖F(dµ) ∗ g‖Lq(Rn+1) ≤ C‖g‖Lp(Rn+1) (3.15)

where 1/p + 1/q = 1. For if we assume (3.15) holds, then
∫

S

|Fg|2dµ =

∫

S

FgFgdµ =

∫

Rn

ḡF−1(Fgdµ)

=

∫

Rn

ḡ(F(dµ) ∗ g) ≤ C‖g‖Lp(Rn)‖F(dµ) ∗ g‖Lq(Rn)

≤ C‖g‖2
Lp(Rn).

(3.16)

Hence it suffices to show that the operator T = F(dµ)∗ is bounded from Lp(Rn+1) to Lq(Rn+1)
for p and q as above.

Let
G(z) = Γ(z + 1)−1(1− τ 2 + |ξ|4)z

+. (3.17)
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If we define Sσ = {(ξ, τ) : τ 2 − |ξ|4 − σ = 0} with the corresponding measure

dµσ =
δ0(τ

2 − |ξ|4 − σ)dξdτ

2
√

σ + |ξ|4 (3.18)

then for any test function ϕ(ξ, τ) we may make the change of variable σ = τ 2 + |ξ|4 to obtain

∫

Rn+1

G(z)ϕ(ξ, τ)dξdτ = Γ(z + 1)−1

∫

R

(∫

Sσ

ϕdµσ

)
(1− σ)z

+dσ. (3.19)

Since
(1− σ)z

+

Γ(z + 1)

∣∣∣∣
z=−1

= δ0(1− σ) (3.20)

(see [3] p57) it follows that

lim
z→−1

∫

Rn+1

G(z)ϕ(ξ, τ)dξdτ = C

∫

S

ϕ(ξ, τ)dµ. (3.21)

So if we define the family of linear operators

Tz(g) = F−1G(z) ∗ g (3.22)

then Lemma 3.3 is equivalent to the statement that T−1 is a bounded operator from Lp(Rn+1)
to Lq(Rn+1).

Now, for Re(z) = 0, G(z) is bounded by Ce|Im(z)| and therefore ‖Tz‖2,2 ≤ Ce|Im(z)|.
According to Lemma 3.4 below we also have ‖Tz‖1,∞ ≤ CeC|Im(z)|. Therefore Lemma 3.3
follows from Theorem 2.2. ¥

Lemma 3.4 Let G(z) be defined as is (3.17). Then F(G(z)) ∈ L∞(Rn+1) and for |Im(z)|
large we have

‖F(G(z))‖L∞(Rn) ≤ Ce2π|Im(z)| (3.23)

where z satisfies

−n/4− 1 ≤ Re(z) <

{−n/4− 1/2 for n ≥ 3
−1 for n = 1, 2.

(3.24)

The rest of this section is spent proving Lemma 3.4. We first observe that, for fixed ξ, the
quantity in (3.17) is quadratic in τ and therefore its Fourier transform in τ may be explicitly
computed using Lemma 3.5 below. Since the result is a radial function of ξ we may then
use the formula from Section 2 (2.26) for the Fourier transform of a radial function. The
problem is then reduced to bounding an integral (2.23) in the same way as in Section 2. We
let Fτ denote the Fourier transform with respect to τ .

Lemma 3.5 Let f(τ) = (a2 − τ 2)z
+. Then

Fτf(t) =
√

πΓ(z + 1)a2z+1

(
at

2

)−z−1/2

Jz+1/2(at). (3.25)
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Proof. This follows by making the dilation τ → τ/a in the formula

Fτ (1− τ 2)z
+ =

√
πΓ(z + 1)

(
t

2

)−z−1/2

Jz+1/2(t), (3.26)

which can be found in [3], p185. ¥

Using Lemma 3.5 with a2 = 1 + |x|4 gives

Fτ (G(z)) =
√

π(1 + |ξ|4)z/2+1/4

(
t

2

)−z−1/2

Jz+1/2(t(1 + |ξ|4)1/2) (3.27)

where Jν once again denotes the Bessel function of (complex) order ν. Since the result is a
radial function of the variable ξ, we can use (2.26) to obtain

F(G(z)) = CR1−n/2

(
2

t

)z+1/2 ∫ ∞

0

r
z+1/2
2 Jz+1/2(tr2)Jn/2−1(Rr)rn/2dr. (3.28)

With J̃ν(s) = s−νJν(s) defined as in Chapter 1 we may write

F(G(z)) = C2z+1/2

∫ ∞

0

r2z+1
2 J̃z+1/2(tr2)J̃n/2−1(Rr)rn−1dr. (3.29)

We next prove the analog of Lemma 2.5.

Lemma 3.6 Suppose −2Re(µ) + 2Re(τ) + σ − ν − 5/2 < 0 and σ > 3. Then

irJ̃µ(tr2)r
τ
2r

σJ̃ν(rR)dr = −1

2

∫ ∞

0

J̃µ+1(tr2)Pνστµ(r, R)dr (3.30)

where

Pνστµ(r, R) =
d

dr

(
rτ+2
2 rσ−3J̃ν(Rr)

)
− 4(µ + 1)rτ

2r
σJ̃ν(Rr)

= rτ+2
2 rσ−4[(σ − 2ν − 3)J̃ν(Rr) + J̃ν−1(Rr)]

+ 2(τ − 2µ− 2)rτ
2r

σJ̃ν(Rr).

(3.31)

Proof. By Lemma 2.4 (2.32) we have

d

dr

(
J̃ν(tr2)

)
=

2r3

r2
2

(J̃ν−1(tr2)− 2νJ̃ν(tr2)) (3.32)

and consequently

J̃ν(tr2) = 2(ν + 1)J̃ν+1(tr2) +
r2
2

2r3

d

dr

(
J̃ν+1(tr2)

)
(3.33)
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Using (3.33) we have
∫ ∞

0

J̃µ(tr2)r
τ
2r

σJ̃ν(Rr)dr =

∫ ∞

0

2(µ + 1)J̃µ+1(tr2)r
τ
2r

σJ̃ν(Rr)dr

+
1

2
J̃µ+1(tr2)r

τ+2
2 rσ−3J̃ν(Rr)

∣∣∣∣
∞

0

− 1

2

∫ ∞

0

J̃µ+1(tr2)
d

dr

(
rτ+2
2 rσ−3J̃ν(Rr)

)
dr.

(3.34)

By Lemma 2.4 the second term in (3.34) is of order O
(
r−2Re(µ)+2Re(τ)+σ−ν−5/2

)
for large r

and therefore vanishes as r →∞. It vanishes at r = 0 as well since σ > 3. The result follows
by expanding the derivative inside the integrand, using (2.32). ¥

Estimates for n ≤ 2.

Define gn(r, R, t, z) = r2z+1
2 J̃z+1/2(tr2)J̃n/2−1(Rr)rn−1 for n = 1, 2. Then (3.29) implies

F(G(z)) = Cz

∫ ∞

0

gn(r,R, t, z)dr. (3.35)

For n = 1
g1(r, R, t, z) = r2z+1

2 J̃z+1/2(tr2) cos(Rr). (3.36)

If t < 1, g1 is bounded by CeC|Im(z)| for r ∈ [0, 1] independently of R and t and thus
∫ 1

0

g1(r,R, t, z)dr = O
(
eC|Im(z)|) . (3.37)

On the interval [1, t−1/2] we have tr2 ≤ 2, and for such arguments the Bessel function bounded
by CeC|Im(z)|. Thus

∫ t−1/2

1

g1(r, R, t, z)dr = O

(
eC|Im(z)|

∫ t−1/2

1

r4Re(z)+2dr

)

= O
(
eC|Im(z)|)

(3.38)

since Re(z) ≤ −1. Finally, on [t−1/2,∞] the estimate (3.33) implies that
∫ ∞

t−1/2

g1(r, R, t, z)dr = O

(
eC|Im(z)|

∫ ∞

t−1/2

t−Re(z)−1r2Re(z)dr

)

= O
(
eC|Im(z)|t−2Re(z)−3/2

)
= O

(
eC|Im(z)|)

(3.39)

since Re(z) ≤ −1.

If t > 1 we use (2.30) to obtain

F(G(z)) = Cz

∫ ∞

0

rz
2t
−z−1 cos(tr2 + Cz) cos(Rr)dr

+ O

(
eC|Im(z)|

∫ ∞

0

r
Re(z)−1
2 t−Re(z)−2dr

)
.

(3.40)
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Since −5/4 ≤ Re(z) ≤ −1 the last integral is bounded. To estimate the first integral we
define H(r) by H ′(r) = cos(tr2 + Cz) cos(Rr) with H(0) = 0. Lemma 2.8 then implies that

|H(r)| ≤ Ct−1/4eC|Im(z)| (3.41)

and therefore integration by parts yields

F(G(z)) = CzH(r)rz
2t
−z−1

∣∣∣∣
∞

0

+ O
(
eC|Im(z)|)

− 2zt−z−1

∫ ∞

0

H(r)rz−2
2 r3dr

(3.42)

The first term vanishes since Re(z) < 0 and H(0) = 0. Finally, the estimate (3.24) shows
that the integral is of order

O

(
eC|Im(z)|t−Re(z)−5/4

∫ ∞

0

r
2Re(z)−2
2 r3dr

)
. (3.43)

Since Re(z) < 0 the integral is bounded, and since Re(z) ≥ −5/4 this term is of order
O

(
eC|Im(z)|). This proves the estimate in dimension one.

For n = 2, g2(r, R, t, z) = r2z+1
2 J̃z+1/2(tr2)rJ0(Rr). When t < 1 (2.29) implies

∫ 1

0

g2(r,R, t, z)dr = O
(
eC|Im(z)|) (3.44)

and

∫ t−1/2

1

g2(r, R, t, z)dr = O

(
eC|Im(z)|

∫ t−1/2

1

r4Re(z)+3dr

)

= O
(
eC|Im(z)|t−2Re(z)−2

)
= O

(
eC|Im(z)|)

(3.45)

if Re(z) < −1. Over [t−1/2,∞] it follows from (2.31) that

∫ ∞

t−1/2

g2(r, R, t, z)dr = O

(
eC|Im(z)|

∫ ∞

t−1/2

t−Re(z)−1r2Re(z)+1dr

)

= O
(
eC|Im(z)|t−2Re(z)−2

)
= O

(
eC|Im(z)|)

(3.46)

since Re(z) < −1. Next, if t > 1 we can use (2.30) to obtain

Ĝ(z) = C

∫ ∞

0

t−z−1rz
2 cos(tr2 + Cz)rJ0(Rr)dr

+ O

(
eC|Im(z)|t−Re(z)−2

∫ ∞

0

r
Re(z)−1
2 rdr

)
.

(3.47)

For Re(z) < −1/2 the second integral is bounded. Therefore, since Re(z) ≥ −3/2 this
term is of order O

(
eC|Im(z)|). We bound the remaining integral first on [0, tβ] where β =
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Re(z)/2 + 1/2. Using (2.31) we obtain
∫ tβ

0

t−z−1rz
2 cos(tr2 + Cz)rJ0(Rr)dr = O

(
eC|Im(z)|t−2β

∫ tβ

0

rdr

)

= O
(
eC|Im(z)|) .

(3.48)

On [tβ,∞] first consider R < t3β+1. Integration by parts yields
∫ ∞

tβ
t−z−1rz

2 cos(tr2+Cz)rJ0(Rr)dr = t−z−2 sin(tr2)

2r2
rz+1
2 J0(Rr)

∣∣∣∣
∞

tβ

− t−z−2

∫ ∞

tβ
sin(tr2)J0(Rr)[Crz−1

2 r + Crz+1
2 r−3]dr

− t−z−2

∫ ∞

tβ
sin(tr2)J0(Rr)rz+1

2 r−2RJ1(Rr)dr.

(3.49)

The first term vanishes at infinity, while at r = tβ it is of order O
(
eC|Im(z)|t−2Re(z)−3

)
=

O
(
eC|Im(z)|) since Re(z) ≥ −3/2. The second term is also of order O

(
eC|Im(z)|t−2Re(z)−3

)
while the last term is order

O
(
eC|Im(z)|t−3β−1R

)
= O

(
eC|Im(z)|) (3.50)

for R < t3β+1.

For t3β+1 < R < t we first consider the interval [tβ, (R/t)1/3]. Since rR > 1 on this
interval,we may use (2.31) to see that

∫ (R/t)1/3

tβ
t−z−1rz

2 cos(tr2)rJ0(Rr)dr = O

(
eC|Im(z)|t−2β

∫ (R/t)1/3

tβ
r1/2R−1/2dr

)

= O
(
eC|Im(z)|t−2β(R/t)1/2R−1/2

)

= O
(
eC|Im(z)|t−Re(z)−3/2

)
= O

(
eC|Im(z)|)

(3.51)

for Re(z) ≥ −3/2. On [(R/t)1/3,∞] integration by parts gives
∫ ∞

(R/t)1/3

t−z−1rz
2 cos(tr2)rJ0(Rr)dr = t−z−2 sin(tr2)

2r2
rz+1
2 J0(Rr)

∣∣∣∣
∞

(R/t)1/3

− t−z−2

∫ ∞

(R/t)1/3

sin(tr2)J0(Rr)[Crz−1
2 r + Crz+1

2 r−3]dr

− t−z−2

∫ ∞

(R/t)1/3

sin(tr2)J0(Rr)rz+1
2 r−2RJ1(Rr)dr.

(3.52)

Using the estimate (2.31) again, this reduces to∫ ∞

(R/t)1/3

t−z−1rz
2 cos(tr2)rJ0(Rr)dr = O

(
eC|Im(z)|t−Re(z)−2(R/t)−2/3

)

+ O

(
eC|Im(z)|t−Re(z)−2

∫ ∞

(R/t)1/3

r−5/2R1/2dr

)

= O
(
eC|Im(z)|t−Re(z)−4/3R−2/3

)
+ O

(
eC|Im(z)|t−Re(z)−3/2

)

= O
(
eC|Im(z)|) .

(3.53)
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Finally, for R > t we use (2.31) again to obtain

∫ ∞

t−1/4

cos(tr2)t
−z−1rz

2rJ0(Rr)dr = O

(
eC|Im(z)|

R1/2tRe(z)+1

∫ ∞

t−1/4

r1/2r
Re(z)
2 dr

)

= O
(
eC|Im(z)|t−Re(z)−1R−1/2

)

= O
(
eC|Im(z)|t−Re(z)−3/2

)
= O

(
eC|Im(z)|)

(3.54)

for Re(z) ≥ −3/2. This proves Lemma 3.4 in dimensions n ≤ 2.

Estimates for n ≥ 3.

In dimension n ≥ 3 we apply Lemma 3.6 multiple times. After N iterations we arrive at

F(G(z)) = C

∫ ∞

0

J̃z+1/2+N(tr2)
∑

j+k+l=N

hjkl(r, R)dr (3.55)

where
hjkl(r,R) = Cjklr

2z+1+2j+2l
2 rn−1−4j−4lJ̃n/2−1−j(Rr) (3.56)

Once again, since j + k + l = N we must consider terms of the form

Ijk(R, t) =

∫ ∞

0

hjk(r, R, t)dr 0 ≤ j + k ≤ N (3.57)

where
hjk(r, R, t) = J̃z+1/2+N(tr2)r

2z+1+2N−2k
2 rn−1−4N+4kJ̃n/2−1−j(Rr). (3.58)

In order for Lemma 3.6 to apply in the Nth stage of iteration it is necessary that σ =
n + 3− 4N > 3, or N < n/4. We define N = bn−1

4
c as in Section 2 and let κ = n/2− 1− j.

For N chosen in this way it is shown below in Lemma 3.7 that ‖Ijk‖L∞(Rn) ≤ CeC|Im(z)|.
Since N < n/4 this proves Lemma 3.4.

Lemma 3.7 Suppose n ≥ 3 and −n/4− 1 ≤ Re(z) < −n/4− 1/2. Then

‖Ijk‖L∞(Rn) ≤ Ce2π|Im(z)|. (3.59)

Proof. We first prove the estimate for n ≡ 0(4). In this case

hjk(r, R, t) = J̃z+n/4−1/2(tr2)r
2z+n/2−1−2k
2 r3+4kJ̃κ(Rr) (3.60)

When k = 0 we may integrate by parts once again and use (2.29) to get

Ijk(R, t) =
1

2
J̃z+n/4+1/2(tr2)r

2z+n/2+1
2 J̃κ(Rr)

∣∣∣∣
∞

0

+
1

2

∫ ∞

0

J̃z+n/4+1/2(tr2)r
2z+n/2+1
2 R2rJ̃κ+1(Rr)dr.

(3.61)
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Since κ ≥ 1 and Re(z) + n/4 + 1/2 ≥ −1/2, Lemma 2.4 shows that the first term on the
right is bounded at r = 0 by Ceπ|Im(z)|. Since 2Re(z) + n/2 + 1 < 0 this term vanishes at
r = ∞. In the remaining integral we make the change of variable u = Rr to obtain

∫ ∞

0

J̃z+n/4+1/2(tu2)u
2z+n/2+1
2 uJ̃κ+1(u)du (3.62)

where u2
2 = 1 + u4R−4. Since Lemma 2.4 implies that J̃z+n/4+1/2(tu2) is bounded, and since

κ ≥ 1 and 2Re(z) + n/2 + 1 < 0, this integral is bounded independently of both R and t by
Ceπ|Im(z)|.

For k ≥ 1 we have κ ≥ 2 and we may apply Lemma 3.6 with ν = κ, σ = 3 + 4k and
τ = 2z + n/2− 1− 2k and µ = z + n/4− 1/2 to obtain

Ijk(R, t) =

∫ ∞

0

J̃z+n/4+1/2(tr2)H̃jk(r, R)dr (3.63)

where

H̃jk(r,R) = −1

2
Pνστµ(r, R). (3.64)

Since Re(z) + n/4 + 1/2 ≥ −1/2 it follows from Lemma 2.4 that

|J̃z+n/4+1/2(tr2)| ≤ CeC|Im(z)| (3.65)

for all t and r. Also, since σ − 4 = 4k − 1 ≥ 3, 2Re(τ) + σ = 4Re(z) + n + 1 < −1 and

|H̃jk(r, R)| ≤ C(rσ−4 + rσrτ
2) (3.66)

it follows that H̃jk is integrable. Hence Lemma 3.7 holds for n ≡ 0(4).

For n 6≡ 0(4) we first consider the interval [1,∞]. Using (2.33) we obtain

∫ ∞

1

hjk(r,R, t)dr =

∫ ∞

1

J̃z+1/2+N(tr2)r
2z+1+2N−2k
2 rn−1−4N+4kJ̃κ(Rr)dr

= (2z + 3 + 2N)

∫ ∞

1

J̃z+3/2+N(tr2)r
2z+1+2N−2k
2 rn−1−4N+4kJ̃κ(Rr)dr

+
1

2

∫ ∞

1

d

dr

(
J̃z+3/2+N(tr2)

)
r2z+3+2N−2k
2 rn−4−4N+4kJ̃κ(Rr)dr.

(3.67)

Integrating by parts gives

∫ ∞

1

hjk(r, R, t)dr = J̃z+3/2+N(tr2)r
2z+3+2N−2k
2 rn−4−4N+4kJ̃κ(Rr)

∣∣∣∣
∞

1

− 1

2

∫ ∞

1

J̃z+3/2+N(tr2)h̃jk(r, R)dr

(3.68)

where
h̃jk(r, R) = r2z+3+2N−2k

2 rn−5−4N+4k[CJ̃κ(Rr) + J̃κ−1(Rr)]. (3.69)
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By Lemma 2.4 the first term is of order O
(
r2Re(z)+n/2−3/2−2N+j

)
for large r. Since 2Re(z) +

n/2 − 3/2 − 2N + j ≤ −5/2 − N it follows that this term vanishes at r = ∞. At r = 1,
Lemma 2.4 implies that its norm in L∞(Rn) is bounded exponentially in Im(z). Next we
observe that since κ ≥ 1/2 each term in h̃jk(r,R) is of order O

(
r4Re(z)+n+1

)
on [1,∞] for

every R. Since Re(z) + 3/2 + N ≥ −1/2 Lemma 2.4 implies that the remaining integral is
bounded by

Ce2π|Im(z)|
∫ ∞

1

r4Re(z)+n+1dr = Ce2π|Im(z)| (3.70)

for 4Re(z) + n + 1 < −1.

On [0, 1] we consider the cases t < 1 and t > 1 separately. When t < 1, Lemma 2.4
implies that hjk(r,R, t) ≤ Ceπ|Im(z)| for all R and for all r ∈ [0, 1]. Hence

∫ 1

0

hjk(r, R, t)dr ≤ Ceπ|Im(z)|. (3.71)

When t > 1 we divide the interval [0, 1] into [0, t−1/4] and [t−1/4, 1] and estimate, using
Lemma 2.4, as follows:

∫ t−1/4

0

hjk(r, R, t)dr ≤ Ceπ|Im(z)|t−Re(z)−1−N

∫ t−1/4

0

rn−1−4N+4kdr

= Ceπ|Im(z)|t−Re(z)−1−Nrn−4N+4k

∣∣∣∣
t−1/4

0

≤ Ceπ|Im(z)|

(3.72)

as long as Re(z) ≥ −n/4 − 1. On the remaining interval we integrate by parts once again
to obtain

∫ 1

t−1/4

hjk(r, R, t)dr = J̃z+3/2+N(tr2)r
2z+3+2N−2k
2 rn−4−4N+4kJ̃κ(Rr)

∣∣∣∣
1

t−1/4

− 1

2

∫ 1

t−1/4

J̃z+3/2+N(tr2)h̃jk(r, R)dr.

(3.73)

As above, the first term has norm in L∞(Rn+1) bounded exponentially in |Im(z)| at r = 1,
while at r = t−1/4 we have tr2 = O(t) and Lemma 2.4 shows that this term is of order
O

(
t−Re(z)−1−n/4−keπ|Im(z)|) = O

(
eπ|Im(z)|) if Re(z) ≥ −n/4 − 1. Finally, for r ∈ [t−1/4, 1],

h̃jk(r,R) is of order O
(
rn−5−4N+4k

)
and therefore of order O

(
rn−5−4N

)
. Since n− 5− 4N 6=

−1 for n 6≡ 0(4), we have
∫ 1

t−1/4

hjk(r,R, t)dr = O
(
eπ|Im(z)|) + O

(
eπ|Im(z)|

∫ 1

t−1/4

t−Re(z)−2−Nrn−5−4Ndr

)

= O

(
eπ|Im(z)|

(
1 + t−Re(z)−2−Nrn−4−4N

∣∣∣∣
1

t−1/4

))

= O
(
eπ|Im(z)|)

(3.74)

since Re(z) ≥ −n+4
4

. This completes the proof of Lemma 3.7. ¥
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4 Local Existence

In this section we find precise conditions on f so that for arbitrary initial data in the energy
space X = H2(Rn)⊕ L2(Rn) solutions of the nonlinear equation

utt + ∆2u + u = f(u) (1.1)

exist locally in time and are strongly continuous with values in X. We assume the nonlin-
earity satisfies the following hypotheses.

(i) f(0) = 0

(ii) f ∈ C1(R) and |f ′(s)| ≤ C|s|p−1.
(4.1)

We first write (1.1) in the form of a system as

ut = v

vt = −∆2u− u + f(u)
(4.2)

If we denote w = (u, v) then the functionals

E(w) =

∫

Rn

1

2
|∆u|2 +

1

2
|v|2 +

1

2
|u|2 − F (u)dx

Q(w) =

∫

Rn

v∇udx

(4.3)

where F ′(s) = f(s) and F (0) = 0, are formally invariants of (4.2). We now state the main
result of this chapter.

Theorem 4.1 For any n let p satisfy 1 < p < 2∗∗−1. Given initial data g ∈ X, there exists
T > 0 which depends only on ‖g‖X and a unique solution w = (u, v) of (4.2) in C([0, T ), X)
such that w(0) = g and E(w(t)) = E(g) for all t ∈ [0, T ].

We prove the theorem directly in dimension n ≤ 4 using standard semigroup techniques,
while for higher dimensions we proceed by first establishing existence in a weaker space
using the decay estimates from Chapter 1 and then approximating the nonlinear term with
Lipschitz functions. The system (4.2) may be rewritten as

dw

dt
= Bw + P (w) (4.4)

where

B =

(
0 I

−∆2 − I 0

)
P (w) = (0, f(u)). (4.5)

The theorem then follows using standard semi-group results (see [13],[11]) once we show that
B is the infinitesimal generator of a C0-semigroup of bounded linear operators on X and
that P is locally Lipschitz on X. This is the content of the following two Lemmas.
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Lemma 4.2 The operator B is the infinitesimal generator of a C0-semigroup of unitary
operators on X.

Proof. Define an inner product on X by

((u1, v1), (u2, v2)) =

∫

Rn

(∆u1∆u2 + u1u2 + v1v2)dx. (4.6)

Then for w ∈ D(B) = H4(Rn)⊕H2(Rn),

(Bw, w) =
(
(v,−∆2u− u), (u, v)

)

=

∫

Rn

(∆v∆u + vu− v∆2u− vu)dx = 0
(4.7)

and therefore B is skew adjoint. The lemma follows from Stone’s theorem. ¥

Lemma 4.3 Let 1 ≤ n ≤ 4 and let f satisfy the hypotheses in (4.1) with 1 < p < ∞. Then
the map P : X → X given by P (w) = (0, f(u)) is locally Lipschitz.

Proof. For 1 ≤ n ≤ 4 the Sobolev inequality implies that H2(Rn) ⊂ Lp(Rn) for 2 ≤ p < ∞.
So let w1, w2 ∈ X and compute

‖P (w1)− P (w2)‖2
X =

∫

Rn

∣∣f(u1)− f(u2)
∣∣2dx

=

∫

Rn

|f ′(λ(x)u1 + (1− λ(x))u2)(u1 − u2)|2dx

≤ C

∫

Rn

∣∣|u1|+ |u2|
∣∣2(p−1)|u1 − u2|2dx

≤ C‖|u1|+ |u2|‖2(p−1)

L2p(Rn)‖u1 − u2‖2
L2p(Rn)

≤ C(‖w1‖X + ‖w2‖X)2(p−1)‖w1 − w2‖2
X .

(4.8)

and therefore P is locally Lipschitz. ¥

For n > 4 we proceed as follows. Let U0(t) denote the solution operator for the linear
equation (2.1) at time t. Then clearly the map U0(t) : X → X is unitary for all t. If we
denote by w = (u, ut) then (1.1) may be written as an integral equation

w(t) = U0(t)g +

∫ t

0

U0(t− τ)P (w(τ))dτ (4.9)

where w(0) = g ∈ X is the initial data. We define the following spaces in which to solve
(4.9). Let

X1 = {0} ⊕ L1+1/p(Rn)

X3 = Lp+1(Rn)⊕W−2,p+1(Rn)

Z̃ = Lr([0, T ], X3)

(4.10)
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where

r =
p− 1

1− d
d =

n(p− 1)

4(p + 1)
. (4.11)

Lemma 4.4 For any p > 1
‖P (w)‖X1 ≤ C‖w‖p

X3
(4.12)

and
‖P (w1)− P (w2)‖X1 ≤ C(‖w1‖p−1

X3
+ ‖w2‖p1

X3
)‖w1 − w2‖X3 . (4.13)

Proof. This follows immediately from (4.1) and the definitions of X1 and X3. ¥

Lemma 4.5 Let n ≥ 5 and suppose 1 ≤ p ≤ 2∗∗ − 1. Then

‖U0(t)‖X1,X3 ≤ Ct−d. (4.14)

Proof. Let w0 = (0, v0) ∈ X1. Then

U0(t)w0 = (u(t), v(t)) (4.15)

where u(t) is the solution of (2.1) with initial data u(0) = 0, ut(0) = v0 and v(t) is the
solution of (2.1) with initial data v(0) = v0, vt(0) = 0. Since (1 + ∆2)−1/2v(t) is the solution
of (2.1) with initial data ((1 + ∆2)−1/2v0, 0) it follows from Theorem 2.1 with q = p + 1 that

‖u(t)‖Lp+1(Rn) ≤ Ct−d‖v0‖L1+1/p(Rn) (4.16)

and
‖(1 + ∆2)−1/2v(t)‖Lp+1(Rn) ≤ Ct−d‖v0‖L1+1/p(Rn). (4.17)

This proves the Lemma. ¥

We now define the space
Z̃(δ) = {v : ‖v‖Z̃ < δ} (4.18)

and prove that for small enough δ solutions to (4.9) exist in Z̃(δ).

Lemma 4.6 For n ≥ 5 suppose that 1 < p ≤ 2∗∗− 1. Then for any g ∈ X there exists some
T > 0 depending only on ‖g‖X , some δ > 0 and a unique solution w ∈ Z̃(δ) of (4.9).

Proof. First define

N(w)(t) =

∫ t

0

U0(t− τ)P (w(τ))dτ (4.19)

Lemma 4.4 and Lemma 4.5 imply that

‖N(w)(t)‖X3 ≤ C

∫ t

0

|t− τ |−d‖w(τ)‖p
X3

dτ. (4.20)

Using the singular integral inequality this implies

‖N(w)‖Z̃ ≤ C‖w‖p

Z̃
(4.21)
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since 1 + 1/r = p/r + d. Next we choose δ so that Cδp−1 < 1/2. It follows that N maps
Z̃(δ) to itself. Also since

‖N(w1)−N(w2)‖Z̃ ≤ C(‖w1‖p−1

Z̃
+ ‖w2‖p−1

Z̃
)‖w1 − w2‖Z̃ (4.22)

this implies that N is a contraction mapping on Z̃(δ). Since U0(·) is unitary on X, we have
U0(·)g ∈ L∞(R, X) ⊂ L∞(R, X3) ⊂ Z̃ and therefore

‖U0(·)g‖r
Z̃
≤ C

∫ T

0

‖U0(τ)g‖r
X3

dτ

≤ CT‖U0(·)g‖r
L∞(R,X3).

(4.23)

Hence
U0(·)g ∈ Z̃(δ/2) (4.24)

if T is chosen small enough. So Ñ(w) = U0(·)g + N(w) is also a contraction on Z̃(δ) and
there exists a unique fixed point w which solves (4.9). ¥

We now show that the solution obtained above is continuous with values in X and satisfies
the energy equality. We first prove a Lemma which will be needed later.

Lemma 4.7 Given an interval I denote Y = Lr(I, X3) ∩ L∞(I, X3). Suppose w ∈ Y ∩
B(I, X3) is a solution of

w(t) = U0(t)g +

∫ t

s

U0(t− τ)P (w(τ))dτ (4.25)

where s ∈ I and g ∈ X. Then w ∈ C0,1−d(I, X3) and ‖w‖C0,1−d(I,X3) ≤ C‖w‖p
Y .

Proof. For t1 < t2 we subtract to obtain

w(t2)− w(t1) = (U0(t2)− U0(t1))g +

∫ t2

t1

U0(t2 − τ)P (w(τ))dτ

+

∫ t1

s

(U0(t2 − τ)− U0(t1 − τ))P (w(τ))dτ

= A1 + A2 + A3.

(4.26)

We then notice that

(U0(t2)− U0(t1))g = (Kc(t2)−Kc(t1)) ∗ (1 + ∆)1/2g1 + (Ks(t2)−Ks(t1)) ∗ g2 (4.27)

where Kc(t) and Ks(t) are defined in (2.7). By (2.7) it follows that

‖(U0(t2)− U0(t1))g‖X ≤ |t2 − t1|‖g‖X (4.28)

so that
‖A1‖X3 ≤ C|t2 − t1|. (4.29)
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To estimate the second term we use Lemma 4.4 and Lemma 4.5 and the fact that w ∈
L∞(I, X3) to obtain

‖A2‖X3 ≤ C

∫ t2

t1

|t2 − τ |−d‖w(τ)‖p
X3

dτ ≤ C‖w‖p
Y |t2 − t1|1−d. (4.30)

Finally, we notice that

(U0(t2 − τ)− U0(t1 − τ))(0, g2) = (Kt2−τ −Kt1−τ ) ∗ g2. (4.31)

So if we define
Lv = (Ks(t2 − τ)−Ks(t1 − τ)) ∗ v (4.32)

then L maps L2(Rn) to itself with norm

‖L‖2,2 ≤ |t2 − t1|. (4.33)

Also, since
L = T s(t2 − τ)− T s(t1 − τ) (4.34)

it follows from (2.9) that

‖L‖q′,q ≤ C(|t2 − τ |−1 + |t1 − τ |−1) (4.35)

where q = 2∗∗ > p + 1. Interpolating between (4.33) and (4.35) yields

‖L‖1+1/p,p+1 ≤ C|t2 − t1|1−d(|t2 − τ |−1 + |t1 − τ |−1)d (4.36)

Hence

‖A3‖X3 ≤ C

∫ t1

s

‖L(P (w(τ)))‖Lp+1(Rn)dτ

≤ C|t2 − t1|1−d‖w‖p
Y

∫ t1

s

(|t2 − τ |−d + |t1 − τ |−d) dτ

. (4.37)

Since 0 < d < 1, the last integral is bounded independently of s, t1 and t2 and the lemma is
proved. ¥

Lemma 4.8 For n ≥ 5 and 1 < p ≤ 2∗∗ − 1 the solution w(t) of (4.9) satisfies w ∈
C([0, T ], X) and E(w(t)) = E(g) for all t ∈ [0, T ].

Proof. We use arguments similar to those in [16] and [17] together with Lemma 4.7. We
first approximate the nonlinearity f by a sequence of Lipschitz functions fk, chosen so
that fk(s) → f(s) uniformly on compact subsets of R and |fk(s)| ≤ |f(s)|. Since the
operators Pk(u, v) = (0, fk(u)) are Lipschitz on X, it follows from the same argument given
in dimension n ≤ 4 that there exist solutions wk ∈ C([0, T ], X) of

wk(t) = U0(t)g +

∫ t

0

U0(t− τ)Pk(wk(τ))dτ (4.38)
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with constant energies

Ek =
1

2
‖wk(t)‖2

X −
∫

Rn

Fk(uk(t))dx. (4.39)

Since wk(0) = g for all k we have

Ek =
1

2
‖g‖2

X −
∫

Rn

Fk(g1)dx

≤ 1

2
‖g‖2

X + C‖g1‖Lp+1(Rn) ≤ C.

(4.40)

Hence Ek is a bounded sequence. To show that the nonlinear part of the energies is also
bounded, we define the space Yt = L∞([0, t], X3) and set Mk(t) = ‖wk‖Yt . Taking the X3

norm of both sides of equation (4.38) we obtain

Mk(t) ≤ ‖g‖X + CT 1−d(Mk(t))
p (4.41)

for all t ∈ [0, T ], where the constant C is independent of t, T and k. Now, for T chosen small
enough, the function h(M) = M−‖g‖X−CT 1−dMp is positive on some interval (a, b), where
‖g‖X < a < b < ∞. Since Mk(0) = ‖g‖X3 and Mk(t) is continuous in t (wk ∈ C([0, T ], X))
it follows that Mk(t) ≤ a for all t ∈ [0, T ] independently of k. Thus

∣∣∣∣
∫

Rn

Fk(uk(t))dx

∣∣∣∣ ≤ C‖wk‖YT
(4.42)

is bounded, and therefore (4.39) implies that ‖wk(t)‖X is bounded independently of t and
k. Hence there is some subsequence which converges weak-∗ in L∞([0, T ], X) to some w̃ =
(ũ, ṽ) ∈ L∞([0, T ], X). Also, since uk(t) ∈ H2(Rn) and u′k(t) = vk(t) ∈ L2(Rn) it follows that
uk ∈ H1(Rn × [0, T ]) and therefore for any compact subset K of Rn, uk converges strongly
in L2(K × [0, T ]) and thereby almost everywhere in Rn × [0, T ] to ũ. Thus fk(uk) → f(ũ)
a.e. in Rn × [0, T ] and since fk(uk) is bounded in L1+1/p(Rn) it follows that fk(uk) → f(ũ)
in L1

loc(Rn × [0, T ]) and therefore w̃ is a solution of (4.9). As in the proof of Lemma 4.6 the
condition (4.1) along with Lemmas 4.4 and 4.5 imply that w̃ ∈ Z̃(δ). By uniqueness, w̃ = w.

We next show that w(t) is weakly continuous on [0, T ] with values in X. First write

〈u′k, φ〉+ 〈uk, φ
′〉 = (uk(t0), φ(t0))− (g1, φ(0)) (4.43)

where 〈·, ·〉 and (·, ·) denote the inner products on L2(Rn × [0, t0]) and L2(Rn) respectively,
and φ is any test function. Since wk(t0) is bounded in X it has a subsequence which converges
weakly to some (ũ, ṽ) ∈ X. Taking the limit as k →∞ in (4.43) gives

〈u′, φ〉+ 〈u, φ′〉 = (ũ, φ(t0))− (g1, φ(0)). (4.44)

If we choose φ(x, t) = ϕ(t)ψ(x) in such a way that ϕ is zero for t < t0 − ε, one at t = t0 and
linear between, we obtain

lim
ε→0

1

ε

∫ t0

t0−ε

(u(t), ψ)dt = (ũ, ψ). (4.45)
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But since

u ∈ L∞([0, T ], H2(Rn)) ⊂ L2([0, T ], L2(Rn))

u′ ∈ L∞([0, T ], L2(Rn)) ⊂ L2([0, T ], L2(Rn))
(4.46)

and

u′′ = −∆2u− u + f(u) ∈ L∞([0, T ], H−2(Rn))

⊂ L2([0, T ], H−2(Rn))
(4.47)

it follows that w ∈ H1([0, T ], L2(Rn)⊕H−2(Rn)) ⊂ C([0, T ], L2(Rn)⊕H−2(Rn)) and therefore
the limit in (4.45) is (u(t0), ψ). Since this holds for all test functions ψ it follows that
ũ = u(t0) ∈ H2(Rn). Thus, letting t0 vary proves that u(t) is bounded in H2(Rn) for all
t ∈ [0, T ]. It follows similarly from the equation

(u′k(t0), φ(t0))− (g1, φ(0))− 〈u′k, φ′〉+ 〈∆uk, ∆φ〉 = 〈fk(uk), φ〉 (4.48)

that ṽ = u′(t0), and therefore u′(t) is bounded in L2(Rn) for all t ∈ [0, T ]. We next consider
a sequence tj → t. Since w(tj) is bounded, some subsequence converges weakly in X. By
the continuity of w in L2(Rn) ⊕H−2(Rn) it follows that the limit is in fact w(t) and hence
w(t) is weakly continuous in X.

Now fix t ∈ [0, T ]. Since wk(t) → w(t) weakly in X we have

‖w(t)‖X ≤ lim inf
k→∞

‖wk‖X . (4.49)

Also, since uk(t) is bounded in H2(Rn) it follows that uk(t) → u(t) strongly in L2(K) for
any compact subset K ⊂ Rn. Thus uk(x, t) → u(x, t) for a.e. x ∈ Rn. If we subtract (4.9)
from (4.38) and define ‖w‖B = sup{‖w(t)‖X3 : t ∈ [0, T ]} we find that

‖wk(t)− w(t)‖X3 ≤ C

∫ t

0

|t− τ |−d‖Pk(wk(τ))− Pk(w(τ))‖X1dτ

+ C

∫ t

0

|t− τ |−d‖Pk(w(τ))− P (w(τ))‖X1dτ

≤ CT 1−d‖wk − w‖B

+ C

∫ t

0

|t− τ |−d‖fk(u(τ))− f(u(τ))‖L1+1/p(Rn)dτ

(4.50)

since wk is a bounded sequence in L∞([0, T ], X). For T chosen so small that CT 1−d < 1/2
and for ε > 0 chosen so that d(1 + ε) < 1 we have

‖wk − w‖B ≤ CT
1−(1+ε)d

1+ε

(∫ T

0

‖fk(u(τ))− f(u(τ))‖1+1/ε

L1+1/p(Rn)
dτ

)ε/(1+ε)

(4.51)

We now show that the last term vanishes as k →∞. Define

gk(τ) = ‖fk(u(τ))− f(u(τ))‖1+1/ε

L1+1/p(Rn)
(4.52)
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Since fk → f we have fk(u(x, τ))− f(u(x, τ)) → 0 for a.e. x ∈ Rn, for any fixed τ ∈ [0, T ].
Since |fk(s)| ≤ |f(s)| for all s it follows that

|fk(u(x, τ))− f(u(x, τ))|1+1/p ≤ |2f(u(x, τ))|1+1/p ∈ L1(Rn). (4.53)

Thus the dominated convergence theorem implies that

lim
k→∞

gk(τ) = 0 for all τ ∈ [0, T ]. (4.54)

Next, if we choose ε so that p(1 + 1/ε) > r it follows that

u ∈ L∞([0, T ], Lp+1(Rn)) ∩ Lr([0, T ], Lp+1(Rn))

⊂ Lp(1+1/ε)([0, T ], Lp+1(Rn)).
(4.55)

Thus since
‖f(u(τ))‖1+1/ε

L1+1/p(Rn)
≤ C‖u(τ)‖p(1+1/ε)

Lp+1(Rn) (4.56)

we have
gk(τ) ≤ ‖2f(u(τ))‖1+1/ε

L1+1/p ∈ L1([0, T ]). (4.57)

Thus we may conclude using the dominated convergence theorem again that
∫ T

0

gk(τ)1+1/εdτ → 0 as k →∞ (4.58)

By (4.51) this shows that
lim
k→∞

‖wk − w‖B = 0 (4.59)

In particular wk(t) → w(t) in X3, so that uk(t) → u(t) in Lp+1(Rn), and therefore

lim
k→∞

∫

Rn

Fk(uk(t))dx =

∫

Rn

F (u(t))dx. (4.60)

Hence
1

2
‖w(t)‖2

X −
∫

Rn

F (u(t))dx ≤ 1

2
‖g‖2

X −
∫

Rn

F (g1)dx (4.61)

for all t ∈ [0, T ]. To obtain the opposite inequality we consider the solution y(s) of

y(s) = U0(s)(w(t)) +

∫ s

0

U0(s− τ)P (y(τ))dτ. (4.62)

The solution exists on an interval [−T, 0] (since the existence time depends only on ‖w(t)‖X ≤
‖g‖X) and satisfies y(0) = w(t). By uniqueness, y(−s) = w(t− s) and therefore y(−t) = g.
The same arguments as above therefore imply that

1

2
‖g‖2

X −
∫

Rn

F (g1)dx =
1

2
‖y(−t)‖2

X −
∫

Rn

F (y1(−t))dx

≤ 1

2
‖y(0)‖2

X −
∫

Rn

F (y1(0))dx

=
1

2
‖w(t)‖2

X −
∫

Rn

F (u(t))dx.

(4.63)
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This proves the equality

1

2
‖w(t)‖2

X −
∫

Rn

F (u(t))dx =
1

2
‖g‖2

X −
∫

Rn

F (g1)dx. (4.64)

To show that w(t) is in fact strongly continuous, we apply Lemma 4.7 with I = [0, T ]
and s = 0 to conclude that w is strongly continuous with values in X3. Hence

∫

Rn

F (u(t))dx (4.65)

is a continuous function of t. Together with (4.64) this shows that the norm ‖w(t)‖X is
continuous on [0, T ]. Since w(t) is weakly continuous from [0, T ] to X, this proves the strong
continuity. ¥

5 Low Energy Scattering

In this section we consider the asymptotic behavior of solutions of

utt + ∆2u + u = f(u) (1.1)

with small initial data. As in Section 4 we write this as

dw

dt
= Bw + P (w) (4.4)

where

B =

(
0 1

−∆2 − I 0

)
P (u, v) = (0, f(u)). (4.5)

This may be written as the integral equation

w(t) = U0(t)g +

∫ t

s

U0(t− τ)P (w(τ))dτ (5.1)

where the initial data is w(s) = U0(s)g. The main result of this section is the following
theorem. It can be interpreted as saying that the scattering operator maps a neighborhood
of the energy space X into X.

Theorem 5.1 For any n choose p so that 1 + 8/n ≤ p < 2∗∗ − 1. Then there exists a δ > 0
such that for g− ∈ X with ‖g−‖X ≤ δ there exists a unique solution w of (5.1) which is
continuous in t with values in X and satisfies

‖w(t)− U0(t)g−‖X → 0 as t → −∞ (5.2)

Also there exists a unique g+ ∈ X so that

‖w(t)− U0(t)g+‖X → 0 as t → +∞ (5.3)

and
E(w(t)) = ‖g−‖X = ‖g+‖X . (5.4)
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The space in which we shall solve (5.1) is

Z = Lr(R, X3) ∩ L∞(R, X3) (5.5)

where r and X3 are defined as in Section 4:

X3 = Lp+1(Rn)⊕W−2,p+1(Rn) (5.6)

r =
p− 1

1− d
d =

n(p− 1)

4(p + 1)
(5.7)

In addition we define
X1 = {0} ⊕ L1+1/p(Rn) (5.8)

X4 = W−k,p+1(Rn)⊕W−k−2,p+1(Rn) (5.9)

Theorem 5.1 is a consequence of the results in [17] and [18] once we verify the following
hypotheses.

(I) The space X is a Hilbert space and the solution operator U0(t) of the linear equation
is untary on X.

(II) The operator P (see (4.5)) maps X3 into X1 with P (0) = 0 and

‖P (w1)− P (w2)‖X1 ≤ C(‖w1‖p−1
X3

+ ‖w2‖p1

X3
)‖w1 − w2‖X3 (5.10)

(III) The spaces X, X1 and X3 are continuously embedded in X4. Furthermore X is
continuously and densely embedded into X3.

(IV) For each g ∈ X the function U0(·)g is contained in Lr(R, X3).
(V) The restriction of U0(t) to X ∩X1 can be extended to all of X1 in such a way that

it maps X1 to X3 with norm
‖U0(t)‖X1,X3 ≤ Ct−d. (5.11)

and 0 < 1/p < d < 1. Furthermore, the restriction of U0(t) to X∩X3 extends to a continuous
linear map from X3 to X4.

(VI) The functional

G(u) =

∫

Rn

F (u)dx (5.12)

is continuous on X3.
(VII) Whenever I is a time interval, s ∈ I, g ∈ X, w ∈ Z with ‖w‖Z sufficiently small,

and w satisfies

w(t) = U0(t)g +

∫ t

s

U0(t− τ)P (w(τ))dτ (5.13)

for t in the interval I, then u ∈ C(I, X).

Hypothesis (I) is trivial and hypothesis (II) was proven in Lemma 4.4. The embeddings
in hypothesis (III) are obvious. Hypothesis (IV) is proved using the following Lemma.
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Lemma 5.2 For any n choose p such that 1 + 8/n ≤ p ≤ 2∗∗− 1. If g ∈ X then U0(·)g ∈ Z
with ‖U0(·)g‖Z ≤ C‖g‖X .

Proof. Since ‖U0(t)g)‖X3 ≤ C‖U0(t)g‖X = C‖g‖X we have U0(·)g ∈ L∞(R, X3). If we now
define Zq1,q2 = Lq1(R, Lq2(Rn) ⊕W−2,q2), then Lr(R, X3) = Zr,p+1 and Theorem 2.1 implies
that

‖U0(·)g‖Zq,q ≤ C‖g‖X (5.14)

where

2 +
8

n
≤ q <

2(n + 2)

n− 4
for n ≥ 5 (5.15)

2 +
8

n
≤ q < ∞ for 1 ≤ n ≤ 4. (5.16)

Along with energy conservation, this shows that

‖U0(·)g‖Zq1,q2
≤ C‖g‖X (5.17)

for q1 and q2 with (1/q2, 1/q1) lying inside the quadrilateral shown below.

Region on which U0 is bounded (shown for n = 5).

1

q1

1

q21

2

(
1

2
− 2

n + 4
,
1

2
− 2

n + 4

)

1

2
− 2

n

The points (1/(p + 1), 1/r) which satisfy r = p−1
1−d

lie on the curve

1

q1

=
1− n

4
+ n

2q2

q2 − 2
(5.18)

which is contained inside this region. Hence U0(·)g ∈ Lr(R, X3) and therefore U0(·)g ∈ Z
with norm bounded by ‖g‖X . ¥

The first part of hypothesis (V) follows from Lemma 4.5 and the definition of d. For the
second part we need the following Lemma, whose proof is left for the reader.
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Lemma 5.3 Let r2 = (1 + |ξ|4)1/2. Then for k large enough, the kernels r−k
2 sin(tr2) and

r−k
2 cos(tr2) are in W 1,n+1(Rn).

Hence (1 + ∆2)−k/2Kc(t) and (1 + ∆2)−k/2Ks(t) (see (2.7)) are in L1(Rn) for large enough
k. Consequently (2.6) implies that U0(t)(u0, v0) ∈ X4 if (u0, v0) ∈ X3. Next, since F ′ = f is
C1 and satisfies |f ′(s)| ≤ C|s|p−1, hypothesis (VI) follows. Finally we prove that hypothesis
(VII) holds.

Lemma 5.4 For any n choose p so that 1 + 8/n ≤ p < 2∗∗ − 1 and let Y = Lr(I, X3) ∩
L∞(I, X3) for some interval I. Then there is some δ > 0 such that if g ∈ X, s ∈ I and
w ∈ Y is the solution of (5.1) with ‖w‖Y < δ, then w ∈ C(I, X) and E(w(t)) is constant.

Proof. We proceed as in the proof of Lemma 4.8.

1. First let fk be a sequence of Lipschitz functions such that fk(s) → f(s) uniformly on
compact subsets of R and |fk(s)| ≤ |f(s)|. Then, since the functions Pk(u, v) = (0, fk(u)) are
Lipschitz from X to itself, it follows using standard semigroup arguments that there exist
solutions wk ∈ C(I, X) of the equations

wk(t) = U0(t)g +

∫ t

s

U0(t− τ)Pk(wk(τ))dτ (5.19)

with constant energies

Ek =
1

2
‖wk(t)‖2

X −
∫

Rn

Fk(uk)dx (5.20)

Since at t = s each of these solutions has the initial data U0(s)g we have

Ek =
1

2
‖U0(s)g‖2

X −
∫

Rn

Fk((U0(s)g)1)dx

≤ 1

2
‖U0(s)g‖2

X + C‖(U0(s)g)1‖Lp+1(Rn) ≤ C

(5.21)

Hence Ek is a bounded sequence.

2. We need to show that the nonlinear part of the energies is also a bounded sequence.
First define

N(w)(t) =

∫ t

s

U0(t− τ)P (w(τ))dτ (5.22)

By (5.1) we have
U0(·)g = w −N(w). (5.23)

Using Lemma 4.4 and Lemma 4.5 it follows that

‖N(w)(t)‖X3 ≤ C

∫ t

s

|t− τ |−d‖w(τ)‖p
X3

dτ. (5.24)

Since 1 + 1/r = p/r + d the Hardy-Littlewood-Sobolev inequality implies

‖N(w)‖Lr(I,X3) ≤ C‖w‖p
Y . (5.25)
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Next we let I1 = I ∩ [t− 1, t + 1] and I2 = I ∩ Ic
1 and write

∫

I1

|t− τ |−d‖w(τ)‖p
X3

dτ ≤ C‖w‖p
Y (5.26)

and ∫

I2

|t− τ |−d‖w(τ)‖p
X3

dτ ≤
(∫

I2

|t− τ |− rd
r−p dτ

)
‖w‖p

Lr(I,X3). (5.27)

Since rd > r− p the last integral is finite and bounded independently of I, so that, together
with (5.24) we have

‖N(w)‖Y ≤ C‖w‖Y (5.28)

If δ is chosen small enough, we then have

‖U0(·)g‖Y < 2δ. (5.29)

Now let t ∈ I and define Zt = Lr(It, X3)∩L∞(It, X3) where It = [s, t] if s ≤ t and It = [t, s]
if s > t. Set Mk(t) = ‖wk‖Zt . Then the same argument used to prove (5.28) shows that

Mk(t) ≤ 2δ + C (Mk(t))
p (5.30)

where C is independent of t and k. Since wk ∈ C(I, X) ⊂ C(I, X3) the norms Mk(t) are
continuous functions of t and since Mk(s) = ‖U0(s)g‖X3 < δ, this implies that if δ is chosen
sufficiently small, then Mk(t) is bounded on I by 3δ independent of k. Hence

‖wk‖Y < 3δ for all k (5.31)

and therefore ∣∣∣∣
∫

Rn

Fk(uk(t))dx

∣∣∣∣ ≤ C‖wk‖2
Y (5.32)

is bounded and therefore ‖wk(t)‖X is bounded independently of t and k.

3. It follows as in the Proof of Lemma 4.8 that there is a subsequence, renamed wk

which converges weak-∗ to some w in L∞(I, X), and that w is in fact bounded and weakly
continuous with values in X. It also follows using the argument in Lemma 4.8 that w is
strongly continuous with values in X3.

4. We claim that wk(t) converges to w(t) in X3. We subtract the equations satisfied by
wk and w and use Lemmas 4.4 and 4.5 to obtain

‖wk(t)− w(t)‖X3 ≤ C

∫ t

s

|t− τ |−d(‖w(τ)‖p−1
X3

+ ‖wk(τ)‖p−1
X3

)‖wk(τ)− w(τ)‖X3dτ

+ C

∫ t

s

|t− τ |−d‖Pk(w(τ))− P (w(τ))‖X1dτ

(5.33)

Using the Hardy-Littlewood-Soblev inequality again, it follows that

‖wk − w‖Lr(I,X3) ≤ C(‖w‖Lr(I,X3) + ‖wk‖Lr(I,X3))
p−1‖wk − w‖Lr(I,X3)

+ C‖Pk(w)− P (w)‖Lr(I,X1).
(5.34)
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By (5.31) and the hypothesis ‖w‖Y < δ in the statement of the Lemma the first term is
bounded by Cδp−1‖wk − w‖Lr(I,X3) and therefore if δ is chosen small enough we have

‖wk − w‖Lr(I,X3) ≤ C‖Pk(w)− P (w)‖Lr(I,X1)

=

(∫

I

‖fk(u(τ))− f(u(τ))‖r
L1+1/p(Rn)dτ

)1/r

.
(5.35)

If we now define
gk(τ) = ‖fk(u(τ))− f(u(τ))‖r

L1+1/p(Rn) (5.36)

it follows as in the the proof of Lemma 4.8 that the dominated convergence implies
∫

I

gk(τ)dτ → 0 as k →∞. (5.37)

Therefore (5.35) implies that wk → w in Lr(I, X3), and there is some subsequence, renamed
wk(t), which converges to w(t) in X3 for a.e. t ∈ I.

5. We now show that wk(t) converges to w(t) in X3 for every t in I. By (5.31) we may
apply Lemma 4.7 to conlude that the wk are Holder continuous from I to X3 with norms
bounded independently of k. For any t0 ∈ I let ε > 0 be given and choose any t such that
C|t0 − t|1−d < ε/3 and wk(t) → w(t) in X3. This is possible by the convergence of wk to w
for a.e. t in I. If we now choose k so large that ‖wk(t) − w(t)‖X3 ≤ ε/3 the claim above
implies that

‖wk(t0)− w(t0)‖X3 ≤ ‖wk(t0)− wk(t)‖X3 + ‖wk(t)− w(t)‖X3 + ‖w(t)− w(t0)‖X3

≤ ε/3 + ε/3 + ε/3 = ε
(5.38)

Hence wk(t0) → w(t0) in X3.

6. Since the solutions wk satisfy

1

2
‖wk(t)‖2

X −
∫

Rn

F (uk)dx = E(wk(t)) = E(g) (5.39)

for all t we may take the lim inf of both sides to obtain

1

2
‖w(t)‖2

X −
∫

Rn

F (u)dx ≤ E(g) (5.40)

for all t in I. Reversing the roles of t and s (see (4.63)) proves the opposite inequality, and
hence the equality

1

2
‖w(t)‖2

X −
∫

Rn

F (u)dx = E(g) (5.41)

7. Since w(t) is continuous with values in X3 the function
∫
Rn F (u(t))dx is continuous,

and therefore, by conservation of energy, ‖w(t)‖X is also continuous. Together with the weak
continuity of w(t) in X this proves that w ∈ C(I, X). ¥
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6 Appendix: Proofs of Technical Lemmas

Lemma 6.1 If Re(µ) is fixed, then

|J̃µ(s)| ≤ Ceπ|Im(µ)| (6.1)

for |s| < 1.

Proof. The series expansion of the Bessel function of order µ (valid for any µ) is

Jµ(s) =
∞∑

j=0

(−1)j(s/2)2j+µ

Γ(µ + j + 1)
(6.2)

If Re(µ) is not a negative integer then

Jµ(s) =
(s/2)µ

Γ(µ + 1)

∞∑
j=0

(−1)j(s/2)2j

∏j
k=0(µ + k)

(6.3)

Since Re(µ + k) 6= 0 for any 1 ≤ k ≤ j, it follows that there is a positive constant C
depending only on Re(µ) so that |∏j

k=0(µ + k)| ≥ C(1 + |Im(µ)|)j, and therefore

|J̃µ(s)| ≤ C|Γ(µ + 1)|−1eCs2/(1+|Im(µ)|) (6.4)

The result then follows by using the estimate

lim
|y|→∞

|Γ(x + iy)|eπ
2
|y||y| 12−x = (2π)1/2 (6.5)

in [8] p13. If Re(µ) is a negative integer we break up the sum as

−Re(µ)−1∑
j=0

(−1)j(s/2)2j+µ

Γ(µ + j + 1)
+

∞∑

j=−Re(µ)

(−1)j(s/2)2j+µ

Γ(µ + j + 1)
(6.6)

Since the Gamma function has simple poles at the negative integers, it follows that |Γ(µ+j+
1)|−1 ≤ C for 0 ≤ j ≤ −Re(µ)−1 and |Im(µ)| ≤ 1. By (6.5) we then have |Γ(µ+j+1)|−1 ≤
Ceπ|Im(µ)| for 0 ≤ j ≤ −Re(µ)− 1. We therefore have

∣∣∣∣∣
−Re(µ)−1∑

j=0

(−1)j(s/2)2j+µ

Γ(µ + j + 1)

∣∣∣∣∣ ≤ Ceπ|Im(µ)|sRe(µ) (6.7)

for |s| < 1. The second term is estimated as before to obtain

∞∑

j=−Re(µ)

(−1)j(s/2)2j+µ

Γ(µ + j + 1)
≤ Cs−Re(µ)eCs2/(c+|Im(µ)|) (6.8)

This proves the lemma. ¥
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Lemma 6.2 If Re(µ) is fixed, then

|J̃µ(s)| ≤ Ce2π|Im(µ)|s−µ−1/2 (6.9)

for |s| > 1.

Proof. We can express Jµ in terms of the Hankel functions as

Jµ =
H

(1)
µ + H

(2)
µ

2
(6.10)

As shown in Watson p168, if Re(µ) > −1/2 we have

H(1)
µ (s) =

(
2

πs

)1/2
ei(s−π

2
µ−π

4
)

Γ(µ + 1/2)

∫

γ

e−uuµ−1/2

(
1 +

iu

2s

)µ−1/2

du

H(2)
µ (s) =

(
2

πs

)1/2
e−i(s−π

2
µ−π

4
)

Γ(µ + 1/2)

∫

γ

e−uuµ−1/2

(
1− iu

2s

)µ−1/2

du

(6.11)

where γ(η) = ηe
π
4
i, r ∈ [0,∞). We repeat here the exposition in [21] Ch7.2, keeping careful

track of the dependence on Im(µ). Using the binomial expansion

(1− y)β =
m∑

j=0

(−β)jy
j

j!
+

(−β)m+1y
m+1

m!

∫ 1

0

(1− v)m(1− yv)β−m−1dv (6.12)

with β = µ− 1/2 and y = u
2is

and recalling that

Γ(ν) =

∫

γ

e−uuν−1du (6.13)

we obtain

H(1)
µ (s) =

(
2

πs

)1/2
ei(s−π

2
µ−π

4
)

Γ(µ + 1/2)

(
m∑

j=0

(1/2− µ)jΓ(µ + j + 1/2)

j!(2is)j
+

Im+1(µ, s)

(2is)m+1

)
(6.14)

where

Im+1(µ, s) =
(1/2− µ)m+1

m!

∫

γ

∫ 1

0

(1− v)m

eu
uµ+m−3/2

(
1− uv

2is

)µ−m−3/2

dvdu (6.15)

Since arg(u) = π/4 along γ and since s and v are real, it is easily verified that
∣∣∣∣1−

uv

2is

∣∣∣∣ ≥
1

2
and 0 ≤ arg

(
1− uv

2is

)
≤ 3π

4
(6.16)

Thus if m is chosen so that Re(µ)−m− 3/2 < 0 we have

∣∣∣∣
∫ 1

0

(1− v)m
(
1− uv

2is

)µ−m−3/2

dv

∣∣∣∣ ≤ Ce
3π
4
|Im(µ)| (6.17)
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where C does not depend on Im(µ). Also, since arg(u) = π/4 on γ it follows that
∣∣∣∣
∫

γ

e−uuµ+m−3/2du

∣∣∣∣ ≤ Ce
π
4
|Im(µ)| (6.18)

Thus
|Im+1(µ, s)| ≤ Pm(|Im(µ)|)eπ|Im(µ)| (6.19)

For large |Im(µ)| we then have

H(1)
µ (s) =

(
2

πs

)1/2
ei(s−π

2
µ−π

4
)

Γ(µ + 1/2)

m∑
j=0

(1/2− µ)jΓ(µ + j + 1/2)

j!(2is)j
+ O

(
e2π|Im(µ)|

sm+1

)
(6.20)

Similarly

H(2)
µ (s) =

(
2

πs

)1/2
e−i(s−π

2
µ−π

4
)

Γ(µ + 1/2)

m∑
j=0

(1/2− µ)jΓ(µ + j + 1/2)

(−1)jj!(2is)j
+ O

(
e2π|Im(µ)|

sm+1

)
(6.21)

Hence we can write

Jµ(s) =

(
2

πs

)1/2 (
Q1

m cos(s− cµ) + Q2
m sin(s− cµ)

)
+ O

(
e2π|Im(µ)|

sm+1

)
(6.22)

where cµ = π
2
(µ + 1

2
) and

Q1
m(µ, s) =

bm
2
c∑

k=0

(−1)k(1/2− µ)2kΓ(µ + 2k + 1/2)

(2k)!(2s)2kΓ(µ + 1/2)
(6.23)

Q2
m(µ, s) =

bm−1
2
c∑

k=0

(−1)k(1/2− µ)2k+1Γ(µ + 2k + 3/2)

(2k + 1)!(2s)2k+1Γ(µ + 1/2)
(6.24)

Ignoring all but the first term of this expression gives

Jµ(s) =

(
2

πs

)1/2

cos
(
s− π

2
µ− π

4

)
+ O

(
e2π|Im(µ)|s−3/2

)
(6.25)

for Re(µ) > −1/2. The same formula holds for Re(µ) ≤ −1/2 since

Jµ =
e−πµiH

(1)
µ + eπµiH

(2)
µ

2
(6.26)

This proves the lemma. ¥

Together Lemma 6.1 and Lemma 6.2 imply

Lemma 6.3 If Re(µ) ≥ −1/2 is fixed, then

‖J̃µ‖∞ = O
(
e2π|Im(µ)|) (6.27)

as |Im(µ)| → ∞.
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