
Math 375, Spring 2018
Professor Levandosky

Midterm Exam 3 Solutions

1. Suppose Y is a random variable with probability density function

f(y) =

{
cy−5 y ≥ 1

0 otherwise

(a) Find c.

Solution. Since ∫ ∞
−∞

f(y) dy =

∫ ∞
1

cy−5 dy =
1

4
c,

c must be 4.

(b) Find the distribution function F (y) for Y .

Solution. F (y) =
∫ y
−∞ f(t) dt, so for y < 1, F (y) =

∫ y
−∞ 0 dt = 0, and for y ≥ 1,

F (y) =
∫ y
1

4t−5 dt = 1− y−4. So

F (y) =

{
0 y < 1

1− y−4 y ≥ 1

(c) Find P (Y ≤ 3).

Solution. This is just F (3) = 1− (3)−4 = 80
81

.

(d) Find the median of Y .

Solution. The median φ1/2 satisfies F (φ1/2) = 1
2
, so solving 1 − (φ1/2)

−4 = 1
2

gives
φ1/2 = 21/4.

(e) Find E(Y ).

Solution. E(Y ) =
∫∞
−∞ yf(y) dy =

∫∞
1

4y−4 dy = 4
3
.

(f) Find V (Y ).

Solution. E(Y 2) =
∫∞
−∞ y

2f(y) dy =
∫∞
1

4y−3 dy = 2, so V (Y ) = E(Y 2)− E(Y )2 = 2
9
.

2. Suppose the life span of a type of electronic component has exponential distribution with
mean 100 hours.

(a) Find the probability such a component lasts at least 100 hours.

Solution. The probability density for the life span Y is f(y) = 1
100
e−y/100 for y ≥ 0.

Thus

P (Y ≥ 100) =

∫ ∞
100

1

100
e−y/100 dy = e−1.

(b) Suppose two identical components have independent life spans Y1 and Y2 with exponential
distributions with mean 100 hours, and one is used as a backup for the other. Find the
probability that their total life span Y1 + Y2 exceeds 200 hours.

Solution. The joint density for Y1 and Y2 is

f(y1, y2) =

{
1

10000
e−y1/100e−y2/100 y1 ≥ 0, y2 ≥ 0

0 otherwise

To find P (Y1 + Y2 > 200) directly, one could integrate f over the region in the first
quadrant above the line y1 + y2 = 200.
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200

200

Since this must be split up into two integrals∫ 200

0

∫ ∞
200−y1

f(y1, y2) dy2 dy1 +

∫ ∞
200

∫ ∞
0

f(y1, y2) dy2 dy1

it is simpler to first compute P (Y1+Y2 ≤ 200), which is the integral of f over the triangle
below the line y1 + y2 = 200 in the first quadrant.

P (Y1 + Y2 ≤ 100) =

∫ 200

0

∫ 200−y1

0

f(y1, y2) dy2 dy1

=

∫ 200

0

− 1

100
e−y1/100e−y2/100

∣∣∣∣200−y1
0

dy1

=

∫ 200

0

− 1

100
e−y1/100

(
e−2+y1/100 − 1

)
dy1

=

∫ 200

0

1

100

(
e−y1/100 − e−2

)
dy1

= 1− e−2 − 2e−2 = 1− 3e−2.

Thus P (Y1 + Y2 > 200) = 3e−2.

3. According to marathonguide.com, the average marathon time among all marathons in the
United States was 4 hours and 38 minutes, with a standard deviation of 1 hour and 2 minutes.
For this question, assume marathon times are normally distributed.

(a) Find the probability that a randomly selected marathon finisher ran under four hours.

Solution. Let Y be the finishing time in minutes. Then Z = Y−278
62

is standard normal,
so

P (Y < 240) = P (Z < −38

62
= P (Z < −0.61) = P (Z > 0.61) = 0.2709

(b) What time (to the nearest minute) would someone need to run to be in the fastest 5%
of marathon times?

Solution. P (Z ≤ z0) = 0.5 when z0 = −1.65, and solving Y−278
62

= −1.65 gives
Y = 175.7, or about 2 hours and 56 minutes.

4. Two friends agree to meet at the park for a run between 6:00 and 6:30. Their arrival times
are independent and uniform during this time period. Each will wait up to 10 minutes for the
other. What is the probability that they will meet?
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Solution. Let Y1 and Y2 denote the number of minutes after 6:00 that each person arrives.
Then the joint density for Y1 and Y2 is f(y1, y2) = 1

900
on the square [0, 30]× [0, 30]. They will

meet if Y1 − 10 ≤ Y2 ≤ Y1 + 10. This event corresponds to the shaded region in the figure
below.

10

10

30

30

R

Thus the probability that they meet is

P (Y1 − 10 ≤ Y2 ≤ Y1 + 10) =

∫∫
R

1

900
dA =

1

900
area(R) =

1

900
(500) =

5

9
.

5. Suppose Y1 and Y2 have joint density function defined by f(y1, y2) = y1 + y2 on the domain
D = {(y1, y2) : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}, and f(y1, y2) = 0 elsewhere.

(a) Find P (Y1 ≤ 1
2
).

Solution.

P

(
Y1 ≤

1

2

)
) =

∫ 1

0

∫ 1/2

0

y1 + y2 dy1 dy2 =

∫ 1

0

1

8
+

1

2
y2 dy2 =

1

8
+

1

4
=

3

8
.

(b) Find the marginal densities f1(y1) and f2(y2).

Solution.

f1(y1) =

∫ 1

0

y1 + y2 dy2 = y1 +
1

2

f2(y2) =

∫ 1

0

y1 + y2 dy1 =
1

2
+ y2

(c) Find P (Y2 ≤ 2Y1).

Solution. The event Y2 ≤ 2Y1 corresponds to the region inside the square [0, 1]× [0, 1]
below the line y2 = 2y1.
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1

1

It is simpler to find P (Y2 ≥ 2Y1) since the event Y2 ≥ 2Y1 corresponds to the triangular
region above the line y2 = 2y1. This triangle is {(y1, y2) : 0 ≤ y2 ≤ 1, 0 ≤ y1 ≤ 1

2
y2}.

Thus

P (Y2 ≥ 2Y1) =

∫ 1

0

∫ y2/2

0

y1 + y2 dy1 dy2 =

∫ 1

0

1

8
y22 +

1

2
y22 dy2 =

∫ 1

0

5

8
y22 dy2 =

5

24

and P (Y2 ≤ 2Y1) = 19
24

.

(d) Find P (Y1 ≤ 1
2
|Y2 = 1).

Solution. The conditional density of Y1 given Y2 is f(y1|y2) = f(y1,y2)
f2(y2)

= y1+y2
1
2
+y2

. Thus

P

(
Y1 ≤

1

2
|Y2 = 1

)
=

∫ 1

0

f(y1|1) dy1 =

∫ 1/2

0

y1 + 1
3
2

dy1 =
5/8

3/2
=

10

24
.

(e) Find E(Y1) and E(Y2).

Solution.

E(Y1) =

∫ 1

0

∫ 1

0

y1(y1+y2) dy2 dy1 =

∫ 1

0

∫ 1

0

y21+y1y2 dy2 dy1 =

∫ 1

0

y21+
1

2
y1 dy1 =

1

3
+

1

4
=

7

12

Likewise E(Y2) = 7
12

.

(f) Are Y1 and Y2 independent? Explain.

Solution. By part (b) f1(y1)f2(y2) = (1
2
+y1)(

1
2
+y2). Since this is not equal to f(y1, y2),

Y1 and Y2 are not independent.

6. Suppose E(Y1) = 5, V (Y1) = 2, E(Y2) = 6, V (Y2) = 1, and E(Y1Y2) = 3. Let Z = 3Y1 − Y2.

(a) Find Cov(Y1, Y2).

Solution. Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = 3− 30 = −27

(b) Find E(Z).

Solution. E(Z) = 3E(Y1)− E(Y2) = 9.

(c) Find V (Z).

Solution. V (Z) = V (3Y1−Y2) = 9V (Y1)−6 Cov(Y1, Y2) +V (Y2) = 9(2)−6(−27) + 1 =
181
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7. Suppose an archery target has radius 40 centimeters. Within it are concentric circles with
radii 10cm, 20cm and 30cm. An arrow scores 30 points if it hits the inner most circle, 20 points
if hits the next ring, 10 points for the next ring, and 0 points for the outer ring. Suppose each
shot hits a point uniformly distributed on the target, and that the shots are independent of
one another.

20

30

10
0

(a) Find the expected value of the score after one shot.

Solution. The possible score after one shot is a random variable Y with values 0, 10,
20, and 30. The area of the target is 1600π, so the uniform density over this target is
f(y1, y2) = 1

1600π
. The inner circle C has area 100π. Thus the probability of hitting it is∫∫

C

1

1600π
dy1 dy2 =

1

1600π
area(C) =

100π

1600π
=

1

16

and thus p(30) = 1
16

. The 20 point ring R has area 400π−100π = 300π, so the probability
of hitting it is ∫∫

R

1

1600π
dy1 dy2 =

1

1600π
area(R) =

300π

1600π
=

3

16

and thus p(20) = 3
16

. Similarly, p(10) = 5
16

and p(0) = 7
16

. Thus the expected value of Y
is

E(Y ) = 0p(0) + 10p(10) + 20p(20) + 30p(30) =
140

16
= 8.75

(b) Find the probability that the score after two shots is 20.

Solution. The score can be 20 after two shots in three ways: (0,20), (20,0) or (10,10)
Since the shots are independent, p(0, 20) = p(20, 0) = p(0)p(20) = 21

256
and p(10, 10) =

p(10)2 = 25
256

. Thus the probability of a total score of 20 after two shots is 2· 21
256

+ 25
256

= 67
256

.

8. Recall that the moment generating function for a standard normal random variable Z is
m(t) = et

2/2.

(a) Find E(Z3).
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Solution. We know E(Y 3) = m′′′(0). One could calculate this by computing m′′′(t) and
evaluating at t = 0. Instead, notice that the Taylor series for ex at x = 0 is

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+ · · ·

This implies that the Taylor series for m(t) at t = 0 is

m(t) = et
2/2 =

∞∑
n=0

t2n

2nn!
= 1 +

1

2
t2 +

1

8
t4 +

1

48
t6 + · · ·

By definition of a Taylor series, the coefficient of t3 in this series must be m′′′(0)/3!. But
there is no t3 term, so this coefficient is zero, hence E(Y 3) = m′′′(0) = 0.

(b) Find E(Z4).

Solution. In the series for m(t) above, the coefficient of t4 must be m′′′′(0)/4!. This
coefficient is 1

8
, and thus E(Y 4) = m′′′′(0) = 4!

8
= 3.

(c) Bonus: Find a general formula for E(Zn).

Solution. Since the series for m(t) only contains even powers of t, all of the odd

moments will be zero. The coefficient of t2n is 1
2nn!

, but this coefficient is also f (2n)(0)
(2n)!

, so

E(Y 2n) = f (2n)(0) = (2n)!
2nn!

.
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