Math 375, Spring 2018 **Professor Levandosky** Midterm Exam 2 Solutions

- 1. For each random variable, write a formula for its probability distribution function p(y), and find its mean μ and standard deviation σ .
 - (a) Binomial with n = 12 and p = 0.3. **Solution.** $p(y) = {\binom{12}{y}} (0.3)^y (0.7)^{12-y}, E(Y) = 12(0.3) = 3.6 \text{ and } \sigma = \sqrt{12(0.3)(0.7)} \approx$ 1.587
 - (b) Negative binomial with p = 4/5 and r = 4. Solution. $p(y) = {\binom{y-1}{3}} (4/5)^4 (1/5)^{y-4}, E(Y) = r/p = 5 \text{ and } V(Y) = r(1-p)/p^2 = \frac{5}{4}$ (c) Poisson with $\lambda = 6$.
 - **Solution.** $p(y) = \frac{6^y e^{-6}}{y!}, E(Y) = 6 \text{ and } \sigma = \sqrt{6}.$
 - (d) Hypergeometric with N = 10, n = 7 and r = 6.

Solution.
$$p(y) = \frac{\binom{6}{y}\binom{4}{7-y}}{\binom{10}{7}}, E(Y) = \frac{nr}{N} = 4.2 \text{ and } \sigma = \sqrt{7 \cdot \frac{6}{10} \cdot \frac{4}{10} \cdot \frac{3}{9}} = \sqrt{0.56} \approx 0.748$$

- 2. Suppose Lisa is an 80% free-throw shooter.
 - (a) First suppose Lisa takes 5 free-throws.
 - (i) What is the probability she makes at least 3 of them? **Solution.** Let Y denote the number of free-throws Lisa makes. Then Y is binomial with n = 5 and p = 0.8, so the probability she makes at least 3 free-throws is

$$P(Y \ge 3) = p(3) + p(4) + p(5)$$

= $\binom{5}{3} (0.8)^3 (0.2)^2 + \binom{5}{4} (0.8)^4 (0.2) + \binom{5}{5} (0.8)^5$
= 0.2048 + 0.4096 + 0.32768
= 0.94208

(ii) What is the probability she makes all 5 given that she makes at least 3? Solution.

$$P(Y = 5 | Y \ge 3) = \frac{P((Y = 5) \cap (Y \ge 3))}{P(Y \ge 3)}$$
$$= \frac{P(Y = 5)}{P(Y \ge 3)}$$
$$= \frac{0.32768}{0.94208}$$
$$\approx 0.3478$$

- (b) Now suppose Lisa takes free-throws until she makes 7.
 - (i) What is the expected number of shots she must take? Solution. Let Y denote the number of shots she must take to make 7. Then Y is negative binomial with r = 7 and p = 0.8, so E(Y) = r/p = 8.75.
 - (ii) What is the probability that it takes her exactly 10 shots to do this?

Solution.
$$P(Y = 10) = \binom{9}{6} (0.8)^7 (0.2)^3 \approx 0.141$$

- 3. In the game Scrabble there are 100 tiles, consisting of 54 consonants, 44 vowels, and two blank tiles. The game begins with each person drawing 7 tiles (without replacement). Suppose Katie draws first.
 - (a) What is the probability that she will draw 5 or more consonants? (You don't need to simplify your answer.)

Solution. Let Y denote the number of consonants Katie draws. Then Y is hypergeometric with N = 100, n = 7 and r = 54, so

$$P(Y \ge 5) = p(5) + p(6) + p(7) = \frac{\binom{54}{5}\binom{46}{2} + \binom{54}{6}\binom{46}{1} + \binom{54}{7}\binom{46}{0}}{\binom{100}{7}}$$

(b) If it is known that Katie drew at least 5 consonants what is the probability that all 7 of her tiles are consonants?

Solution.

$$P(Y=7|Y \ge 5) = \frac{P(Y=7)}{P(Y \ge 5)} = \frac{\begin{pmatrix} 54\\7 \end{pmatrix} \begin{pmatrix} 46\\0 \end{pmatrix}}{\begin{pmatrix} 54\\2 \end{pmatrix} + \begin{pmatrix} 54\\6 \end{pmatrix} \begin{pmatrix} 46\\1 \end{pmatrix} + \begin{pmatrix} 54\\7 \end{pmatrix} \begin{pmatrix} 46\\0 \end{pmatrix}}$$

- (c) What is the expected number of consonants Katie draws? Solution. $E(Y) = \frac{nr}{N} = \frac{(7)(54)}{100} = 3.78.$
- 4. Suppose Sarah receives an average of 2.6 texts per hour.
 - (a) Let Y be the number of texts Sarah receives in a given hour. What distribution best models Y? Write a formula for the distribution function p(y). Solution. Poisson with $\lambda = 2.6$, $p(y) = \frac{(2.6)^y e^{-2.6}}{y!}$.
 - (b) What is the probability that Sarah receives **exactly 3** texts between 2PM and 3PM? Solution. $p(3) = \frac{(2.6)^3 e^{-2.6}}{3!} \approx 0.2175.$
 - (c) What is the probability there she receives at least 5 texts between 3PM and 5PM? Solution. Let Y denote the number of texts received in a 2 hour window. Then Y is Poisson with $\lambda = 5.2$. Using Table 3, $P(Y \le 5) = 0.581$, so $P(Y \ge 5) = 0.419$.
- 5. Suppose a random variable Y has moment generating function $m(t) = (\frac{1}{3}e^t + \frac{2}{3})^7$.

(a) Find P(Y = 3).

Solution. This is the moment generating function for a binomial random variable with n = 7 and $p = \frac{1}{3}$, so $P(Y = 3) = \binom{7}{3} (1/3)^3 (2/3)^4 \approx 0.256$.

- (b) Find E(Y) and $E(Y^2)$. Solution. $E(Y) = \frac{7}{3}$ and $E(Y^2) = V(Y) + E(Y)^2 = \frac{14}{9} + \left(\frac{7}{3}\right)^2 = 7$.
- 6. Suppose a random variable Y has mean 50 and variance 16.
 - (a) Find a lower bound on P(40 < Y < 60). Solution. Since $\sigma = 4$ and $10 = 2.5\sigma$, Chebyshev's inequality implies

$$P(40 < Y < 60) = P(|Y - 50| < 10) = P(|Y - \mu| < 2.5\sigma) \ge 1 - \frac{1}{(2.5)^2} = 0.84$$

- (b) For what C is $P(|Y 50| < C) \ge 0.99$? **Solution.** Since $0.99 = 1 - \frac{1}{10^2}$, Checbyshev's inequality implies $P(|Y - 50| < 10\sigma) \ge 0.99$, so $C = 10\sigma = 40$.
- 7. Suppose Y has geometric distribution with probability of success p, so $p(y) = pq^{y-1}$, where q = 1 p.
 - (a) Show that the probability generating function of Y is $P(t) = \frac{pt}{1-qt}$. Solution.

$$P(t) = E(t^{y}) = \sum_{y=1}^{\infty} t^{y} p q^{y-1} = \sum_{y=1}^{\infty} p q^{-1} (tq)^{y}.$$

This is a geometric series with ratio r = tq and first term a = pt, so (provided |t| < 1/q) its sum is

$$\frac{a}{1-r} = \frac{pt}{1-qt}$$

and thus $P(t) = \frac{pt}{1-qt}$.

- (b) Show that the moment generating function of Y is $m(t) = \frac{pe^t}{1 qe^t}$. Solution. Using part (a), $m(t) = P(e^t) = \frac{pe^t}{1 - ae^t}$.
- (c) Show that $E(Y(Y-1)(Y-2)) = \frac{6q^2}{p^3}$, where q = 1 p. Solution. Since $P'(t) = p(1-qt)^{-2}$, $P''(t) = 2qp(1-qt)^{-3}$, and $P'''(t) = 6q^2p(1-qt)^{-4}$, it follows that

$$E(Y(Y-1)(Y-2)) = P'''(1) = 6q^2p(1-q)^{-4} = 6q^2p(p)^{-4} = 6q^2p^{-3}.$$

(d) Find $E(Y^3)$.

Solution. By part (c) we know $\frac{6q^2}{p^3} = E(Y(Y-1)(Y-2)) = E(Y^3) - 3E(Y^2) + 2E(Y)$, so $E(Y^3) = \frac{6q^2}{n^3} + 3E(Y^2) - 2E(Y) = \frac{6q^2}{n^3} + 3E(Y(Y-1)) + E(Y)$ Now $E(Y) = P'(1) = \frac{1}{p}$ and $E(Y(Y-1)) = P''(1) = \frac{2q}{p^2}$, so

$$E(Y^{3}) = \frac{6q^{2}}{p^{3}} + 3 \cdot \frac{2q}{p^{2}} + \frac{1}{p}$$
$$= \frac{6q^{2} + 6qp + p^{2}}{p^{3}}$$
$$= \frac{p^{2} - 6p + 6}{p^{3}}$$