College of the Holy Cross, Fall 2018
 Math 244, Midterm 3

1. Let $A=\left[\begin{array}{ccc}2 & 1 & 4 \\ -2 & 4 & 1\end{array}\right], B=\left[\begin{array}{cc}4 & 2 \\ 0 & 3 \\ 7 & -1\end{array}\right], C=\left[\begin{array}{cc}2 & 2 \\ -1 & 5\end{array}\right]$.
(a) Which of the following matrix products are defined? Compute those that are.
(i) $A B$
(ii) $A C$
(iii) $B A$
(iv) $B C$
(v) $C A$
(vi) $C B$
(b) Let

$$
\begin{aligned}
S\left(x_{1}, x_{2}, x_{3}\right) & =\left(2 x_{1}+x_{2}+4 x_{3},-2 x_{1}+4 x_{2}+x_{3}\right) \\
T\left(y_{1}, y_{2}\right) & =\left(4 y_{1}+2 y_{2}, 3 y_{2}, 7 y_{1}-y_{2}\right) .
\end{aligned}
$$

Which of the matrices in part (a) is the matrix for $T \circ S$ with respect to the standard basis for \mathbf{R}^{3} ?
2. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear transformations.
(a) Prove that if S and T are surjective, then $T \circ S$ is surjective.
(b) Prove that if $T \circ S$ is surjective, then T is surjective.
3. Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 4 & 0 \\ -2 & 1 & 1\end{array}\right]$.
(a) Find A^{-1}.
(b) Find the solution of $A \mathbf{x}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
(c) Suppose $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is the linear transformation such that

$$
T\left(\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{c}
-2 \\
4 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

Let B be the matrix for T with respect to the standard basis. Find B.
4. (a) Complete the following definition. The matrices A and B are similar if
(b) Suppose A and B are invertible matrices that are similar. Prove that A^{-1} and B^{-1} are similar.
5. Let $\alpha=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where $\mathbf{a}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, $\mathbf{b}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$. The reflection across the plane spanned by \mathbf{a} and \mathbf{b} is the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ defined by

$$
T(\mathbf{v})=2\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+2\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}-\mathbf{v} .
$$

(a) Find $[T]_{\alpha}^{\alpha}$.
(b) Find $[I]_{\alpha}^{\beta}$ and $[I]_{\beta}^{\alpha}$, where β is the standard basis for \mathbf{R}^{3}.
(c) Find $[T]_{\beta}^{\beta}$.
6. Find the determinant of each matrix. Is either matrix invertible?
(a) $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 17 & 9 & 8 & -3 \\ 2 & 4 & 6 & 8 \\ 15 & -8 & 7 & 19\end{array}\right]$
(b) $B=\left[\begin{array}{llll}5 & 1 & 2 & 5 \\ 1 & 6 & 2 & 0 \\ 7 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0\end{array}\right]$
7. Let A and B be $n \times n$ matrices.
(a) Show that if $A B$ is an invertible matrix, then A and B must both be invertible.
(b) Show by example that $A+B$ could be invertible even if neither A nor B is invertible.

