College of the Holy Cross, Fall 2018 Math 244, Midterm 3 Solutions

1. Let
$$A = \begin{bmatrix} 2 & 1 & 4 \\ -2 & 4 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 2 \\ 0 & 3 \\ 7 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 2 \\ -1 & 5 \end{bmatrix}$.

(a) Which of the following matrix products are defined? Compute those that are.

(i)
$$AB = \begin{bmatrix} 36 & 3 \\ -1 & 7 \end{bmatrix}$$

(ii) AC is undefined
(iii) $BA = \begin{bmatrix} 4 & 12 & 18 \\ -6 & 12 & 3 \\ 16 & 3 & 27 \end{bmatrix}$
(iv) $BC = \begin{bmatrix} 6 & 18 \\ -3 & 15 \\ 15 & 9 \end{bmatrix}$
(v) $CA = \begin{bmatrix} 0 & 10 & 10 \\ -12 & 19 & 1 \end{bmatrix}$
(vi) CB is undefined

(b) Let

$$S(x_1, x_2, x_3) = (2x_1 + x_2 + 4x_3, -2x_1 + 4x_2 + x_3)$$

$$T(y_1, y_2) = (4y_1 + 2y_2, 3y_2, 7y_1 - y_2).$$

Which of the matrices in part (a) is the matrix for $T \circ S$ with respect to the standard basis for \mathbf{R}^3 ?

Solution. With respect to the standard basis, the matrix for S is A and the matrix for T is B, so the matrix for $T \circ S$ is BA, (iii).

- 2. Let $S: U \to V$ and $T: V \to W$ be linear transformations.
 - (a) Prove that if S and T are surjective, then T ∘ S is surjective.
 Solution. Since T ∘ S is a mapping from U to W, we need to show that for any w ∈ W there exists some u ∈ U such that (T ∘ S)(u) = w.
 Let w ∈ W. Since T is surjective, there is some v ∈ V such that T(v) = w. Since S is surjective, there is some u ∈ U such that S(u) = v. Thus (T ∘ S)(u) = T(S(u)) = T(v) = w, as desired.
 - (b) Prove that if $T \circ S$ is surjective, then T is surjective.

Solution. Let $\mathbf{w} \in W$. Since $T \circ S$ is surjective, there is some $\mathbf{u} \in U$ such that $(T \circ S)(\mathbf{u}) = \mathbf{w}$. But $(T \circ S)(\mathbf{u}) = T(S(\mathbf{u}))$, so define $\mathbf{v} = S(\mathbf{u})$. Then $\mathbf{v} \in V$ and $T(\mathbf{v}) = \mathbf{w}$. This proves T is surjective.

3. Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 4 & 0 \\ -2 & 1 & 1 \end{bmatrix}$$
.

(a) Find A^{-1} .

Solution. By the usual Gaussian elimination process,

$$\begin{bmatrix} 1 & -2 & 1 & | & 1 & 0 & 0 \\ 2 & 4 & 0 & | & 0 & 1 & 0 \\ -2 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 & | & 1 & 0 & 0 \\ 0 & 8 & -2 & | & -2 & 1 & 0 \\ 0 & -3 & 3 & | & 2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{4} & | & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & -3 & 3 & | & 2 & 0 & 1 \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} & | & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 1 & -\frac{1}{4} & | & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{9}{4} & | & \frac{5}{4} & \frac{3}{8} & 1 \\ 0 & 0 & \frac{9}{4} & | & \frac{5}{4} & \frac{3}{8} & 1 \\ \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & \frac{2}{9} & \frac{1}{6} & -\frac{2}{9} \\ 0 & 1 & 0 & | & \frac{2}{9} & \frac{1}{6} & -\frac{2}{9} \\ 0 & 0 & 1 & | & \frac{5}{9} & \frac{1}{6} & \frac{4}{9} \end{bmatrix} \\ \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & \frac{2}{9} & \frac{1}{6} & \frac{2}{9} \\ 0 & 1 & 0 & | & -\frac{1}{9} & \frac{1}{6} & \frac{1}{9} \\ 0 & 0 & 1 & | & \frac{5}{9} & \frac{1}{6} & \frac{4}{9} \end{bmatrix} \\ \text{so } A^{-1} = \begin{bmatrix} \frac{2}{9} & \frac{1}{6} & -\frac{2}{9} \\ -\frac{1}{9} & \frac{1}{6} & \frac{1}{9} \\ \frac{1}{5} & \frac{1}{9} & \frac{1}{6} & \frac{1}{9} \\ \frac{1}{1} & \frac{1}{5} & \frac{1}{9} & \frac{1}{6} \\ \frac{1}{1} \end{bmatrix} .$$

(b) Find the solution of $A\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} .$
(c) Suppose $T : \mathbf{R}^3 \to \mathbf{R}^3$ is the linear transformation such that

$$T\left(\begin{bmatrix}1\\2\\-2\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\end{bmatrix}, \quad T\left(\begin{bmatrix}-2\\4\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\\-1\end{bmatrix}, \quad \text{and} \quad T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\3\\2\end{bmatrix}.$$

Let B be the matrix for T with respect to the standard basis. Find B.

Solution. The information given implies that BA = C, where $C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Thus

$$B = CA^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} \end{bmatrix}.$$

- 4. (a) Complete the following definition. The matrices A and B are similar if there exists an invertible matrix C such that $B = C^{-1}AC$.
 - (b) Suppose A and B are invertible matrices that are similar. Prove that A^{-1} and B^{-1} are similar.

Solution. Since A and B are similar, $B = C^{-1}AC$ for some invertible matrix C. If we left-multiply by C, we get CB = AC. Right-multiply by B^{-1} to get $C = ACB^{-1}$. Left-multiply by A^{-1} to get $A^{-1}C = CB^{-1}$. Finally, left multiply by C^{-1} to get $C^{-1}A^{-1}C = B^{-1}$. Therefore A^{-1} and B^{-1} are similar.

5. Let $\alpha = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where $\mathbf{a} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$. The reflection across the plane spanned by \mathbf{a} and \mathbf{b} is the linear transformation $T : \mathbf{R}^3 \to \mathbf{R}^3$ defined by

$$T(\mathbf{v}) = 2\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right)\mathbf{a} + 2\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right)\mathbf{b} - \mathbf{v}.$$

(a) Find $[T]^{\alpha}_{\alpha}$.

Solution. Since $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} = 0$, we have

$$T(\mathbf{a}) = 2\mathbf{a} - \mathbf{a} = \mathbf{a} = 1 \cdot \mathbf{a} + 0 \cdot \mathbf{b} + 0 \cdot \mathbf{c}$$

$$T(\mathbf{b}) = 2\mathbf{b} - \mathbf{b} = \mathbf{b} = 0 \cdot \mathbf{a} + 1 \cdot \mathbf{b} + 0 \cdot \mathbf{c}$$

$$T(\mathbf{c}) = -\mathbf{c} = 0 \cdot \mathbf{a} + 0 \cdot \mathbf{b} + (-1) \cdot \mathbf{c},$$

and thus $[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

(b) Find $[I]^{\beta}_{\alpha}$ and $[I]^{\alpha}_{\beta}$, where β is the standard basis for \mathbb{R}^3 .

Solution.
$$[I]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$
 and $[I]_{\beta}^{\alpha} = ([I]_{\alpha}^{\beta})^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{6} & \frac{1}{6} & -\frac{2}{6} \end{bmatrix}$.

(c) Find $[T]^{\beta}_{\beta}$. Solution.

$$[T]^{\beta}_{\beta} = [I]^{\beta}_{\alpha}[T]^{\alpha}_{\alpha}[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{6} & \frac{1}{6} & -\frac{2}{6} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$

6. Find the determinant of each matrix. Is either matrix invertible?

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 17 & 9 & 8 & -3 \\ 2 & 4 & 6 & 8 \\ 15 & -8 & 7 & 19 \end{bmatrix}$$

Solution.

$$\det(A) = 2 \det \begin{bmatrix} 1 & 2 & 3 & 4\\ 17 & 9 & 8 & -3\\ 1 & 2 & 3 & 4\\ 15 & -8 & 7 & 19 \end{bmatrix} = 0$$

since this matrix has a repeated row. $\begin{bmatrix} F & 1 & 0 \\ 0 & 5 \end{bmatrix}$

(b)
$$B = \begin{bmatrix} 5 & 1 & 2 & 5 \\ 1 & 6 & 2 & 0 \\ 7 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 \end{bmatrix}$$

Solution. Swapping rows gives

$$\det(B) = -\det \begin{bmatrix} 3 & 4 & 0 & 0 \\ 1 & 6 & 2 & 0 \\ 7 & 0 & 0 & 0 \\ 5 & 1 & 2 & 5 \end{bmatrix} = +\det \begin{bmatrix} 7 & 0 & 0 & 0 \\ 1 & 6 & 2 & 0 \\ 3 & 4 & 0 & 0 \\ 5 & 1 & 2 & 5 \end{bmatrix} = -\det \begin{bmatrix} 7 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 1 & 6 & 2 & 0 \\ 5 & 1 & 2 & 5 \end{bmatrix} = -7 \cdot 4 \cdot 2 \cdot 5 = -280$$

- 7. Let A and B be $n \times n$ matrices.
 - (a) Show that if AB is an invertible matrix, then A and B must both be invertible. **Solution.** Since AB is invertible, $\det(AB) \neq 0$. But $\det(AB) = \det(A) \det(B)$ so both $\det(A)$ and $\det(B)$ must also be nonzero, which implies that A and B are both invertible.
 - (b) Show by example that A + B could be invertible even if neither A nor B is invertible. **Solution.** Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then $\det(A) = \det(B) = 0$, so neither A nor B is invertible, but A + B = I is invertible.