College of the Holy Cross, Fall 2018
 Math 244, Midterm 2

1. Let

$$
W_{1}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right) \quad W_{2}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right)
$$

Find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$ and $W_{1} \cap W_{2}$. Prove your assertions.
2. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be defined by $T\left(v_{1}, v_{2}\right)=\left(v_{1} v_{2}, v_{1}+v_{2}\right)$. Is T a linear transformation? Prove your assertion.
3. Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be the linear transformation whose matrix with respect to the standard bases is $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & -1 & 1 & -1 \\ 1 & -10 & -5 & -16\end{array}\right]$.
(a) Find $T\left(2 \mathbf{e}_{2}+3 \mathbf{e}_{4}\right)$.
(b) Find bases for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.
(c) Is T injective? Is T surjective? Explain.
(d) Find the set of solutions of the equation $T(\mathbf{x})=\left[\begin{array}{c}3 \\ 1 \\ -5\end{array}\right]$.
4. Let $\mathbf{a}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$, and define a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by

$$
T(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} .
$$

(This is the projection onto the plane spanned by \mathbf{a} and \mathbf{b}.)
(a) Show that T is a linear transformation.
(b) Compute $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)$ and $T\left(\mathbf{e}_{3}\right)$.
(c) Find the matrix for T with respect to the standard basis for \mathbf{R}^{3}.
(d) (Bonus) Find a basis for $\operatorname{Ker}(T)$.
5. Suppose $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for V and $\beta=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is a basis for W, and $T: V \rightarrow W$ is a linear transformation such that $[T]_{\alpha}^{\beta}=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$.
(a) Let $\mathbf{x}=4 \mathbf{v}_{1}-3 \mathbf{v}_{2}$. Find the following:

- $[\mathbf{x}]_{\alpha}$
- $[T(\mathbf{x})]_{\beta}$
- $T(\mathbf{x})$
(b) Find a vector $\mathbf{y} \in V$ such that $T(\mathbf{y})=\mathbf{w}_{2}$.

6. Let $T: P_{2}(\mathbf{R}) \rightarrow P_{2}(\mathbf{R})$ be defined by $T(p(x))=p^{\prime \prime}(x)+p^{\prime}(x)+p(x)$.
(a) Show that T is linear.
(b) Find the matrix for T with respect to the basis $\alpha=\left\{1, x, x^{2}\right\}$.
(c) Is T injective? Is T surjective? Prove your assertions.
7. Suppose $T: V \rightarrow W$ is a linear transformation.
(a) Show that if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
(b) Let U be a subspace of W and define $Y=\{\mathbf{v} \in V: T(\mathbf{v}) \in U\}$. Show that Y is a subspace of V.
8. Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ be a linear transformation.
(a) What are the possible dimensions of $\operatorname{Ker}(T)$? Explain.
(b) Give an example of such a transformation for which $\operatorname{dim}(\operatorname{Ker}(T))=3$.
