College of the Holy Cross, Fall 2018 Math 244, Midterm 2 Solutions

1. Let

$$W_1 = \operatorname{Span}\left(\begin{bmatrix}1\\3\\1\\3\end{bmatrix}, \begin{bmatrix}-1\\1\\-1\\1\end{bmatrix}\right) \qquad W_2 = \operatorname{Span}\left(\begin{bmatrix}1\\1\\2\\2\end{bmatrix}, \begin{bmatrix}0\\0\\1\\1\end{bmatrix}\right)$$

Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$. Prove your assertions. Solution. Let

$$\mathbf{w}_1 = \begin{bmatrix} 1\\3\\1\\3 \end{bmatrix} \quad \mathbf{w}_2 = \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix} \quad \mathbf{w}_3 = \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \quad \mathbf{w}_4 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

Clearly $\{\mathbf{w}_1, \mathbf{w}_2\}$ is linearly independent, so it is a basis for W_1 and thus dim $(W_1) = 2$. Likewise, $\{\mathbf{w}_3, \mathbf{w}_4\}$ is a basis for W_2 , so dim $(W_2) = 2$. Since

$$\operatorname{rref} \begin{bmatrix} 1 & -1 & 1 & 0 \\ 3 & 1 & 1 & 0 \\ 1 & -1 & 2 & 1 \\ 3 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

the set of vectors $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent, and $\mathbf{w}_4 = -\frac{1}{2}\mathbf{w}_1 + \frac{1}{2}\mathbf{w}_2 + \mathbf{w}_3$. Thus $W_1 + W_2 = \text{Span}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4) = \text{Span}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$. This implies $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is a basis for $W_1 + W_2$, so dim $(W_1 + W_2) = 3$. By the dimension theorem,

$$\dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 + W_2) = 2 + 2 - 3 = 1$$

2. Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be defined by $T(v_1, v_2) = (v_1v_2, v_1 + v_2)$. Is T a linear transformation? Prove your assertion.

Solution. T is not linear. Let $\mathbf{v} = (1, 1)$. Then $T(\mathbf{v}) = (1, 2)$, so $2T(\mathbf{v}) = (2, 4)$. But $T(2\mathbf{v}) = T(2, 2) = (4, 4)$, so $T(2\mathbf{v}) \neq 2T(\mathbf{v})$.

- 3. Let $T : \mathbf{R}^4 \to \mathbf{R}^3$ be the linear transformation whose matrix with respect to the standard bases is $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 1 & -1 \\ 1 & -10 & -5 & -16 \end{bmatrix}$.
 - (a) Find $T(2e_2 + 3e_4)$.

Solution.
$$T(2\mathbf{e}_2 + 3\mathbf{e}_4) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -1 & 1 & -1 \\ 1 & -10 & -5 & -16 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ -5 \\ -68 \end{bmatrix}$$

(b) Find bases for Ker(T) and Im(T).Solution. Since

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & \frac{5}{3} & \frac{2}{3} \\ 0 & 1 & \frac{2}{3} & \frac{5}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

nations of the first two. Thus $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-10 \end{bmatrix} \right\}$ is a basis for $\operatorname{Im}(T)$. From the echelon form the first two columns of A are linearly independent, and the last two are linear combi-

From the echelon form we also see that the solution of $A\mathbf{x} = \mathbf{0}$ is given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -\frac{5}{3}x_3 - \frac{2}{3}x_4 \\ -\frac{2}{3}x_3 - \frac{5}{3}x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -\frac{5}{3} \\ -\frac{2}{3} \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -\frac{2}{3} \\ -\frac{5}{3} \\ 0 \\ 1 \end{bmatrix},$$

so
$$\left\{ \begin{bmatrix} -\frac{5}{3} \\ -\frac{2}{3} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{2}{3} \\ -\frac{5}{3} \\ 0 \\ 1 \end{bmatrix} \right\}$$
 is a basis for $\operatorname{Ker}(T)$.

- (c) Is T injective? Is T surjective? Explain. **Solution.** T is not injective since $\dim(\operatorname{Ker}(T)) = 2 > 0$. T is not surjective since $\dim(\operatorname{Im}(T)) = 2 < 3.$
- (d) Find the set of solutions of the equation $T(\mathbf{x}) = \begin{bmatrix} 3\\ 1\\ -5 \end{bmatrix}$.

Solution. Since $T(\mathbf{e}_3) = \begin{bmatrix} 3\\1\\-5 \end{bmatrix}$, $\mathbf{x}_p = \mathbf{e}_3$ is one particular solution of the equation. Thus the set of solutions is $\{\mathbf{e}_3\} + \operatorname{Ker}(T)$. In parametric form

$$\mathbf{x} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} -\frac{5}{3}\\-\frac{2}{3}\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} -\frac{2}{3}\\-\frac{5}{3}\\0\\1 \end{bmatrix}$$

4. Let $\mathbf{a} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1\\-2\\2 \end{bmatrix}$, and define a linear transformation $T : \mathbf{R}^3 \to \mathbf{R}^3$ by

$$T(\mathbf{v}) = \left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$

(This is the projection onto the plane spanned by **a** and **b**.)

(a) Show that T is a linear transformation. Solution. Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^2$, and $c \in \mathbf{R}$. Then

$$T(\mathbf{u} + \mathbf{v}) = \left(\frac{(\mathbf{u} + \mathbf{v}) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{(\mathbf{u} + \mathbf{v}) \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} = \left(\frac{\mathbf{u} \cdot \mathbf{a} + \mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{u} \cdot \mathbf{b} + \mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$
$$= \left(\frac{\mathbf{u} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{u} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} + \left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$
$$= \left(\frac{\mathbf{u} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{u} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} + \left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} = T(\mathbf{u}) + T(\mathbf{v})$$

and

$$T(c\mathbf{v}) = \left(\frac{(c\mathbf{v}) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{(c\mathbf{v}) \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$
$$= \left(\frac{c(\mathbf{v} \cdot \mathbf{a})}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{c(\mathbf{v} \cdot \mathbf{b})}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$
$$= c\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + c\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$$
$$= cT(\mathbf{v})$$

so T is linear.

(b) Compute $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$ and $T(\mathbf{e}_3)$. Solution.

$$T(\mathbf{e}_1) = \left(\frac{\mathbf{e}_1 \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{e}_1 \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} = 2\mathbf{a} + \mathbf{b} = \begin{bmatrix} 5\\2\\4 \end{bmatrix}$$
$$T(\mathbf{e}_2) = \left(\frac{\mathbf{e}_2 \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{e}_2 \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} = 2\mathbf{a} - 2\mathbf{b} = \begin{bmatrix} 2\\8\\-2 \end{bmatrix}$$
$$T(\mathbf{e}_3) = \left(\frac{\mathbf{e}_3 \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a} + \left(\frac{\mathbf{e}_3 \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} = \mathbf{a} + 2\mathbf{b} = \begin{bmatrix} 4\\-2\\5 \end{bmatrix}$$

- (c) Find the matrix for T with respect to the standard basis for \mathbf{R}^3 . **Solution.** The columns of the matrix for T with respect to the standard basis are the vectors found in part (b). Thus the matrix for T is $A = \begin{bmatrix} 5 & 2 & 4 \\ 2 & 8 & -2 \\ 4 & -2 & 5 \end{bmatrix}$.
- (d) Find a basis for Ker(T).

Solution. Since
$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$$
, $\operatorname{Ker}(T) = \operatorname{Span}\left(\begin{bmatrix} -1 \\ \frac{1}{2} \\ 1 \end{bmatrix} \right)$.

- 5. Suppose $\alpha = {\mathbf{v}_1, \mathbf{v}_2}$ is a basis for V and $\beta = {\mathbf{w}_1, \mathbf{w}_2}$ is a basis for W, and $T: V \to W$ is a linear transformation such that $[T]_{\alpha}^{\beta} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$.
 - (a) Let $\mathbf{x} = 4\mathbf{v}_1 3\mathbf{v}_2$. Find the following:
 - $[\mathbf{x}]_{\alpha}$ Solution. $[\mathbf{x}]_{\alpha} = \begin{bmatrix} 4\\ -3 \end{bmatrix}$ • $[T(\mathbf{x})]_{\beta}$
 - Solution. $[T(\mathbf{x})]_{\beta} = [T]_{\alpha}^{\beta}[\mathbf{x}]_{\alpha} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \end{bmatrix}$ • $T(\mathbf{x})$
 - Solution. $T(\mathbf{x}) = 9\mathbf{v}_1 + 5\mathbf{v}_2$.

(b) Find a vector $\mathbf{y} \in V$ such that $T(\mathbf{y}) = \mathbf{w}_2$. **Solution.** Let $[\mathbf{y}]_{\alpha} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then since $[T(\mathbf{y})]_{\beta} = [T]_{\alpha}^{\beta}[\mathbf{y}]_{\alpha}$ and $[T(\mathbf{y})]_{\beta} = [\mathbf{w}_2]_{\beta} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, we need to solve $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The solution of this system is $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$, so $\mathbf{y} = -3\mathbf{v}_1 + \mathbf{v}_2$.

6. Let $T: P_2(\mathbf{R}) \to P_2(\mathbf{R})$ be defined by T(p(x)) = p''(x) + p'(x) + p(x).

(a) Show that T is linear. Solution. Let p and q be in $P_2(\mathbf{R})$ and let $c \in \mathbf{R}$. Then

$$T(p+q)(x) = (p+q)''(x) + (p+q)'(x) + (p+q)(x)$$

= $p''(x) + q''(x) + p'(x) + q'(x) + p(x) + q(x)$
= $p''(x) + p'(x) + p(x) + q''(x) + q'(x) + q(x)$
= $T(p)(x) + T(q)(x)$

and

$$T(cp)(x) = (cp)''(x) + (cp)'(x) + (cp)(x) = cp''(x) + cp'(x) + cp(x) = cT(p)(x)$$

so T is linear.

(b) Find the matrix for T with respect to the basis $\alpha = \{1, x, x^2\}$. Solution.

$$T(1) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$
$$T(x) = 1 + x = 1 \cdot 1 + 1 \cdot x + 0 \cdot x^{2}$$
$$T(x^{2}) = 2 + 2x + x^{2} = 2 \cdot 1 + 2 \cdot x + 2 \cdot x^{2}$$

so the matrix for T with respect to α is

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

(c) Is T injective? Is T surjective? Prove your assertions.

Solution. Suppose $p(x) = a + bx + cx^2$ is in Ker(T). Then T(p) = 0, so $[T(p)]_{\alpha} = \begin{bmatrix} 0\\0\\0\end{bmatrix}$. But

$$[T(p)]_{\alpha} = [T]_{\alpha}^{\alpha}[p]_{\alpha} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a+b+2c \\ b+2c \\ c \end{bmatrix},$$

so we have a + b + 2c = 0, b + 2c = 0 and c = 0, which implies a = b = c = 0 and thus p = 0. Thus $\text{Ker}(T) = \{0\}$ and T is injective. Since $V = W = P_2(\mathbf{R})$, T is also surjective.

- 7. Suppose $T: V \to W$ is a linear transformation.
 - (a) Show that if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent then $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.

Solution. Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent. Then there exist scalars c_1, c_2 and c_3 , not all of which are zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3=\mathbf{0}.$$

Thus by linearity of T,

$$c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + c_3T(\mathbf{v}_3) = T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3) = T(\mathbf{0}) = \mathbf{0}$$

so $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.

(b) Let U be a subspace of W and define $Y = \{\mathbf{v} \in V : T(\mathbf{v}) \in U\}$. Show that Y is a subspace of V. Solution. Let $\mathbf{y}_1, \mathbf{y}_2 \in Y$ and $c \in \mathbf{R}$. Then $T(\mathbf{y}_1) \in U$ and $T(\mathbf{y}_2) \in U$. Since U is a

Solution. Let $\mathbf{y}_1, \mathbf{y}_2 \in Y$ and $c \in \mathbf{R}$. Then $T(\mathbf{y}_1) \in U$ and $T(\mathbf{y}_2) \in U$. Since U is a subspace of W, $cT(\mathbf{y}_1) + T(\mathbf{y}_2) \in U$. By linearity, $cT(\mathbf{y}_1) + T(\mathbf{y}_2) = T(c\mathbf{y}_1 + \mathbf{y}_2)$, so $T(c\mathbf{y}_1 + \mathbf{y}_2) \in U$, which by definition of Y implies $c\mathbf{y}_1 + \mathbf{y}_2 \in Y$. Thus Y is a subspace of V.

- 8. Let $T: \mathbf{R}^4 \to \mathbf{R}^2$ be a linear transformation.
 - (a) What are the possible dimensions of $\operatorname{Ker}(T)$? Explain. **Solution.** By the dimension theorem $\dim(\operatorname{Im}(T)) + \dim(\operatorname{Ker}(T)) = \dim(\mathbf{R}^4) = 4$, so $\dim(\operatorname{Ker}(T)) \leq 4$. But $\operatorname{Im}(T)$ is a subspace of \mathbf{R}^2 , so $\dim(\operatorname{Im}(T)) \leq 2$, and thus $\dim(\operatorname{Ker}(T)) \geq 2$. Therefore $\dim(\operatorname{Ker}(T))$ could be 2, 3, or 4.
 - (b) Give an example of such a transformation for which $\dim(\operatorname{Ker}(T)) = 3$. **Solution.** Let T be the linear transformation whose matrix with respect to the standard basis is $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Then $\operatorname{Ker}(T) = \operatorname{Span}(\mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$, so $\dim(\operatorname{Ker}(T)) = 3$.