College of the Holy Cross, Fall 2018
 Math 244, Midterm 2 Solutions

1. Let

$$
W_{1}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
3 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right) \quad W_{2}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right)
$$

Find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$ and $W_{1} \cap W_{2}$. Prove your assertions.
Solution. Let

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
3 \\
1 \\
3
\end{array}\right] \quad \mathbf{w}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right] \quad \mathbf{w}_{3}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right] \quad \mathbf{w}_{4}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Clearly $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is linearly independent, so it is a basis for W_{1} and thus $\operatorname{dim}\left(W_{1}\right)=2$. Likewise, $\left\{\mathbf{w}_{3}, \mathbf{w}_{4}\right\}$ is a basis for W_{2}, so $\operatorname{dim}\left(W_{2}\right)=2$.
Since

$$
\operatorname{rref}\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
3 & 1 & 1 & 0 \\
1 & -1 & 2 & 1 \\
3 & 1 & 2 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

the set of vectors $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is linearly independent, and $\mathbf{w}_{4}=-\frac{1}{2} \mathbf{w}_{1}+\frac{1}{2} \mathbf{w}_{2}+\mathbf{w}_{3}$. Thus $W_{1}+W_{2}=\operatorname{Span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\right)=\operatorname{Span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right)$. This implies $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is a basis for $W_{1}+W_{2}$, so $\operatorname{dim}\left(W_{1}+W_{2}\right)=3$. By the dimension theorem,

$$
\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1}+W_{2}\right)=2+2-3=1 .
$$

2. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be defined by $T\left(v_{1}, v_{2}\right)=\left(v_{1} v_{2}, v_{1}+v_{2}\right)$. Is T a linear transformation? Prove your assertion.
Solution. T is not linear. Let $\mathbf{v}=(1,1)$. Then $T(\mathbf{v})=(1,2)$, so $2 T(\mathbf{v})=(2,4)$. But $T(2 \mathbf{v})=T(2,2)=(4,4)$, so $T(2 \mathbf{v}) \neq 2 T(\mathbf{v})$.
3. Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be the linear transformation whose matrix with respect to the standard bases is $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & -1 & 1 & -1 \\ 1 & -10 & -5 & -16\end{array}\right]$.
(a) Find $T\left(2 \mathbf{e}_{2}+3 \mathbf{e}_{4}\right)$.

Solution. $T\left(2 \mathbf{e}_{2}+3 \mathbf{e}_{4}\right)=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & -1 & 1 & -1 \\ 1 & -10 & -5 & -16\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 3\end{array}\right]=\left[\begin{array}{c}16 \\ -5 \\ -68\end{array}\right]$
(b) Find bases for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.

Solution. Since

$$
\operatorname{rref}(A)=\left[\begin{array}{cccc}
1 & 0 & \frac{5}{3} & \frac{2}{3} \\
0 & 1 & \frac{2}{3} & \frac{5}{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

the first two columns of A are linearly independent, and the last two are linear combinations of the first two. Thus $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ -10\end{array}\right]\right\}$ is a basis for $\operatorname{Im}(T)$.
From the echelon form we also see that the solution of $A \mathbf{x}=\mathbf{0}$ is given by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{3} x_{3}-\frac{2}{3} x_{4} \\
-\frac{2}{3} x_{3}-\frac{5}{3} x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-\frac{5}{3} \\
-\frac{2}{3} \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-\frac{2}{3} \\
-\frac{5}{3} \\
0 \\
1
\end{array}\right],
$$

so $\left\{\left[\begin{array}{c}-\frac{5}{3} \\ -\frac{2}{3} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-\frac{2}{3} \\ -\frac{5}{3} \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Ker}(T)$.
(c) Is T injective? Is T surjective? Explain.

Solution. T is not injective since $\operatorname{dim}(\operatorname{Ker}(T))=2>0 . T$ is not surjective since $\operatorname{dim}(\operatorname{Im}(T))=2<3$.
(d) Find the set of solutions of the equation $T(\mathbf{x})=\left[\begin{array}{c}3 \\ 1 \\ -5\end{array}\right]$.

Solution. Since $T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{c}3 \\ 1 \\ -5\end{array}\right], \mathbf{x}_{p}=\mathbf{e}_{3}$ is one particular solution of the equation. Thus the set of solutions is $\left\{\mathbf{e}_{3}\right\}+\operatorname{Ker}(T)$. In parametric form

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-\frac{5}{3} \\
-\frac{2}{3} \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-\frac{2}{3} \\
-\frac{5}{3} \\
0 \\
1
\end{array}\right]
$$

4. Let $\mathbf{a}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]$, and define a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by

$$
T(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}
$$

(This is the projection onto the plane spanned by \mathbf{a} and \mathbf{b}.)
(a) Show that T is a linear transformation.

Solution. Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{2}$, and $c \in \mathbf{R}$. Then

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =\left(\frac{(\mathbf{u}+\mathbf{v}) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{(\mathbf{u}+\mathbf{v}) \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}=\left(\frac{\mathbf{u} \cdot \mathbf{a}+\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{u} \cdot \mathbf{b}+\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \\
& =\left(\frac{\mathbf{u} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{u} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}+\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \\
& =\left(\frac{\mathbf{u} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{u} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}+\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}=T(\mathbf{u})+T(\mathbf{v})
\end{aligned}
$$

and

$$
\begin{aligned}
T(c \mathbf{v}) & =\left(\frac{(c \mathbf{v}) \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{(c \mathbf{v}) \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \\
& =\left(\frac{c(\mathbf{v} \cdot \mathbf{a})}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{c(\mathbf{v} \cdot \mathbf{b})}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \\
& =c\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+c\left(\frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \\
& =c T(\mathbf{v})
\end{aligned}
$$

so T is linear.
(b) Compute $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)$ and $T\left(\mathbf{e}_{3}\right)$.

Solution.

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left(\frac{\mathbf{e}_{1} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{e}_{1} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}=2 \mathbf{a}+\mathbf{b}=\left[\begin{array}{c}
5 \\
2 \\
4
\end{array}\right] \\
& T\left(\mathbf{e}_{2}\right)=\left(\frac{\mathbf{e}_{2} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{e}_{2} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}=2 \mathbf{a}-2 \mathbf{b}=\left[\begin{array}{c}
2 \\
8 \\
-2
\end{array}\right] \\
& T\left(\mathbf{e}_{3}\right)=\left(\frac{\mathbf{e}_{3} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}+\left(\frac{\mathbf{e}_{3} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}=\mathbf{a}+2 \mathbf{b}=\left[\begin{array}{c}
4 \\
-2 \\
5
\end{array}\right]
\end{aligned}
$$

(c) Find the matrix for T with respect to the standard basis for \mathbf{R}^{3}.

Solution. The columns of the matrix for T with respect to the standard basis are the vectors found in part (b). Thus the matrix for T is $A=\left[\begin{array}{ccc}5 & 2 & 4 \\ 2 & 8 & -2 \\ 4 & -2 & 5\end{array}\right]$.
(d) Find a basis for $\operatorname{Ker}(T)$.

Solution. Since $\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0\end{array}\right], \operatorname{Ker}(T)=\operatorname{Span}\left(\left[\begin{array}{c}-1 \\ \frac{1}{2} \\ 1\end{array}\right]\right)$.
5. Suppose $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for V and $\beta=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is a basis for W, and $T: V \rightarrow W$ is a linear transformation such that $[T]_{\alpha}^{\beta}=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$.
(a) Let $\mathbf{x}=4 \mathbf{v}_{1}-3 \mathbf{v}_{2}$. Find the following:

- $[\mathbf{x}]_{\alpha}$

Solution. $[\mathbf{x}]_{\alpha}=\left[\begin{array}{c}4 \\ -3\end{array}\right]$

- $[T(\mathbf{x})]_{\beta}$

Solution. $[T(\mathbf{x})]_{\beta}=[T]_{\alpha}^{\beta}[\mathbf{x}]_{\alpha}=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{c}4 \\ -3\end{array}\right]=\left[\begin{array}{l}9 \\ 5\end{array}\right]$

- $T(\mathbf{x})$

Solution. $T(\mathbf{x})=9 \mathbf{v}_{1}+5 \mathbf{v}_{2}$.
(b) Find a vector $\mathbf{y} \in V$ such that $T(\mathbf{y})=\mathbf{w}_{2}$.

Solution. Let $[\mathbf{y}]_{\alpha}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. Then since $[T(\mathbf{y})]_{\beta}=[T]_{\alpha}^{\beta}[\mathbf{y}]_{\alpha}$ and $[T(\mathbf{y})]_{\beta}=\left[\mathbf{w}_{2}\right]_{\beta}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, we need to solve

$$
\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The solution of this system is $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$, so $\mathbf{y}=-3 \mathbf{v}_{1}+\mathbf{v}_{2}$.
6. Let $T: P_{2}(\mathbf{R}) \rightarrow P_{2}(\mathbf{R})$ be defined by $T(p(x))=p^{\prime \prime}(x)+p^{\prime}(x)+p(x)$.
(a) Show that T is linear.

Solution. Let p and q be in $P_{2}(\mathbf{R})$ and let $c \in \mathbf{R}$. Then

$$
\begin{aligned}
T(p+q)(x) & =(p+q)^{\prime \prime}(x)+(p+q)^{\prime}(x)+(p+q)(x) \\
& =p^{\prime \prime}(x)+q^{\prime \prime}(x)+p^{\prime}(x)+q^{\prime}(x)+p(x)+q(x) \\
& =p^{\prime \prime}(x)+p^{\prime}(x)+p(x)+q^{\prime \prime}(x)+q^{\prime}(x)+q(x) \\
& =T(p)(x)+T(q)(x)
\end{aligned}
$$

and

$$
T(c p)(x)=(c p)^{\prime \prime}(x)+(c p)^{\prime}(x)+(c p)(x)=c p^{\prime \prime}(x)+c p^{\prime}(x)+c p(x)=c T(p)(x)
$$

so T is linear.
(b) Find the matrix for T with respect to the basis $\alpha=\left\{1, x, x^{2}\right\}$.

Solution.

$$
\begin{aligned}
T(1) & =1=1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
T(x) & =1+x=1 \cdot 1+1 \cdot x+0 \cdot x^{2} \\
T\left(x^{2}\right) & =2+2 x+x^{2}=2 \cdot 1+2 \cdot x+2 \cdot x^{2}
\end{aligned}
$$

so the matrix for T with respect to α is

$$
[T]_{\alpha}^{\alpha}=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

(c) Is T injective? Is T surjective? Prove your assertions.

Solution. Suppose $p(x)=a+b x+c x^{2}$ is in $\operatorname{Ker}(T)$. Then $T(p)=0$, so $[T(p)]_{\alpha}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
But

$$
[T(p)]_{\alpha}=[T]_{\alpha}^{\alpha}[p]_{\alpha}=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a+b+2 c \\
b+2 c \\
c
\end{array}\right]
$$

so we have $a+b+2 c=0, b+2 c=0$ and $c=0$, which implies $a=b=c=0$ and thus $p=0$. Thus $\operatorname{Ker}(T)=\{0\}$ and T is injective. Since $V=W=P_{2}(\mathbf{R}), T$ is also surjective.
7. Suppose $T: V \rightarrow W$ is a linear transformation.
(a) Show that if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
Solution. Suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent. Then there exist scalars c_{1}, c_{2} and c_{3}, not all of which are zero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0} .
$$

Thus by linearity of T,

$$
c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)+c_{3} T\left(\mathbf{v}_{3}\right)=T\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=T(\mathbf{0})=\mathbf{0}
$$

so $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent.
(b) Let U be a subspace of W and define $Y=\{\mathbf{v} \in V: T(\mathbf{v}) \in U\}$. Show that Y is a subspace of V.
Solution. Let $\mathbf{y}_{1}, \mathbf{y}_{2} \in Y$ and $c \in \mathbf{R}$. Then $T\left(\mathbf{y}_{1}\right) \in U$ and $T\left(\mathbf{y}_{2}\right) \in U$. Since U is a subspace of $W, c T\left(\mathbf{y}_{1}\right)+T\left(\mathbf{y}_{2}\right) \in U$. By linearity, $c T\left(\mathbf{y}_{1}\right)+T\left(\mathbf{y}_{2}\right)=T\left(c \mathbf{y}_{1}+\mathbf{y}_{2}\right)$, so $T\left(c \mathbf{y}_{1}+\mathbf{y}_{2}\right) \in U$, which by definition of Y implies $c \mathbf{y}_{1}+\mathbf{y}_{2} \in Y$. Thus Y is a subspace of V.
8. Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ be a linear transformation.
(a) What are the possible dimensions of $\operatorname{Ker}(T)$? Explain.

Solution. By the dimension theorem $\operatorname{dim}(\operatorname{Im}(T))+\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{dim}\left(\mathbf{R}^{4}\right)=4$, so $\operatorname{dim}(\operatorname{Ker}(T)) \leq 4$. But $\operatorname{Im}(T)$ is a subspace of \mathbf{R}^{2}, so $\operatorname{dim}(\operatorname{Im}(T)) \leq 2$, and thus $\operatorname{dim}(\operatorname{Ker}(T)) \geq 2$. Therefore $\operatorname{dim}(\operatorname{Ker}(T))$ could be 2,3 , or 4 .
(b) Give an example of such a transformation for which $\operatorname{dim}(\operatorname{Ker}(T))=3$.

Solution. Let T be the linear transformation whose matrix with respect to the standard basis is $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Then $\operatorname{Ker}(T)=\operatorname{Span}\left(\mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right)$, so $\operatorname{dim}(\operatorname{Ker}(T))=3$.

