
College of the Holy Cross, Fall 2018
Math 244, Linear Algebra

Midterm 2 Practice Problems

1. Let W1 = Span



1
0
1
0

 ,


1
1
1
1


 and W2 = Span



1
2
3
4

 ,


2
4
8
10


. Find bases for W1+W2

and W1 ∩W2 and verify that their dimensions satisfy Theorem 1.6.18.

Solution. Define

w1 =


1
0
1
0

 ,w2 =


1
1
1
1

 ,w3 =


1
2
3
4

 ,w4 =


2
4
8
10

 .

Then W1 +W2 = Span ({w1,w2,w3,w4}). Since

rref



1 1 1 2
0 1 2 4
1 1 3 8
0 1 4 10


 =


1 0 0 1
0 1 0 −2
0 0 1 3
0 0 0 0


the set {w1,w2,w3} is linearly independent, and w4 = w1 − 2w2 + 3w3. Thus
{w1,w2,w3} is a basis for W1 +W2.

To find W1 ∪ W2 we need to determine which linear combinations of w1 and w2 are
also linear combinations of w3 and w4. That is, we need to find c1, c2, c3 and c4 such
that c1w1+ c2w2 = c3w3+ c4w4, or equivalently c1w1+ c2w2− c3w3− c4w4 = 0. This
amounts to finding the kernel of the matrix above. From the echelon form, we see that

Ker



1 1 1 2
0 1 2 4
1 1 3 8
0 1 4 10


 = Span



−1
2
−3
1




This implies −w1 + 2w2 − 3w3 + w4 = 0, and thus w1 − 2w2 = −3w3 + w4 is in
W1 ∩ W2, and the only other vectors in W1 ∩ W2 are scalar multiples of this vector.
Thus {w1 − 2w2} is a basis for W1 ∩W2.

Therefore we have dim(W1) = dim(W2) = 2, dim(W1+W2) = 3 and dim(W1∩W2) = 1,
and we have dim(W1+W2) = dim(W1)+dim(W2)−dim(W1∩W2), in agreement with
Theorem 1.6.18.

2. Suppose dim(V ) = n. Show that a set of n vectors in V is linearly independent if and
only if it spans V .

Solution. Let S be a set of n elements in V , and let α be any basis for V . Since
dim(V ) = n, α has n elements.
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First suppose S is linearly independent. To show that S must span V , suppose to the
contrary that it does not. Then there exists some vector v that is not in the span of
S. This implies that the set S ′ = S ∪ {v} is a linearly independent set in V consisting
of n + 1 elements. Thus S ′ is a linearly independent set with more elements than the
spanning set α, which contradicts Theorem 1.6.10. Therefore S must span V .

Next suppose S spans V . To prove S is linearly independent, suppose it is not. Then
one of the elements of S is a linear combination of the other n− 1 vectors. Let S ′ be
the set consisting of these n − 1 vectors. Then S ′ still spans V . Thus α is a linearly
independent set with more elements than the spanning set S ′, again contradicting
Theorem 1.6.10. Therefore S must be linearly independent.

3. For each transformation below, determine (with proof) whether or not is is linear.

(a) T : P (R) → P (R) defined by T (p(x)) = xp′′(x) + 5x2p(x).

Solution. Let p1, p2 ∈ P (R) and c ∈ R. Then

T ((cp1 + p2)(x)) = x(cp1 + p2)
′′(x) + 5x2(cp1 + p2)(x)

= x(cp′′1(x) + p′′2(x)) + 5x2cp1(x) + 5x2p2(x)

= c(xp′′1(x) + 5x2p1(x)) + xp′′2(x) + 5x2p2(x)

= cT (p1(x)) + T (p2(x))

so T is linear.

(b) T : R2 → R2 defined by T (v1, v2) = (v1 + v2 + 3, 2v1 + 3v2).

Solution. T is not linear since T (1, 1) = (5, 5) and 2T (1, 1) = (10, 10), but
T (2(1, 1)) = T (2, 2) = (7, 10) ̸= 2T (1, 1).

(c) T : R2 → R2 defined by T (v1, v2) = (sin(v1 + v2), cos(v1 + v2)).

Solution. T is not linear, since T (0, 0) = (0, 1), 2T (0, 0) = (0, 2), and T (2(0, 0)) =
T (0, 0) = (0, 1), so T (2(0, 0)) ̸= 2T (0, 0).

(d) T : P2(R) → P3(R) defined by T (p(x)) =
∫ x

5
p(t) dt.

Solution. Let p1, p2 ∈ P2(R) and c ∈ R. Then

T ((cp1 + p2)(x)) =

∫ x

5

(cp1 + p2)(t) dt

=

∫ x

5

cp1(t) + p2(t) dt

=

∫ x

5

cp1(t) dt+

∫ x

5

p2(t) dt

= c

∫ x

5

p1(t) dt+

∫ x

5

p2(t) dt

= cT (p1(x)) + T (p2(x)),

so T is linear.
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4. The vertices of a triangle are (0, 0), (2, 1) and (1, 3). Find the vertices of the triangle
obtained by rotating the triangle about the origin through an angle of 60 degrees.

Solution. Let T : R2 → R2 denote the rotation through 60 degrees (π/3 radians). Its
matrix with respect to the standard basis is

A =

[
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

]
=

[
1
2

−
√
3
2√

3
2

1
2

]
.

Thus T (0, 0) = (0, 0), T (2, 1) = (1−
√
3
2
,
√
3− 1

2
) and T (1, 3) = (1

2
− 3

√
3

2
,
√
3
2
+ 3

2
).

5. Let a =

[
2
1

]
and let v =

[
1
2

]
. Find vectors v1 and v2 such that v1 is a scalar multiple

of a, v2 is perpendicular to a, and v = v1 + v2.

Solution. Let v1 = Pa(v) = 4
5
a =

[
8
5
4
5

]
and define v2 = v − v1 =

[
−3

5
6
5

]
. Then

v = v1 + v2, v1 is a multiple of a, and since v2 · a = 0, v2 is perpendicular to a.

6. Let a ̸= 0 be a fixed vector in R2, and define Ra : R2 → R2 by Ra(v) = 2Pa(v)− v,
where Pa is the projection onto the line spanned by a. This is called the reflection
across the line spanned by a.

(a) Show that Ra is a linear transformation.

Solution. Let v1 and v2 be in R2 and c ∈ R. Then, since Pa is a linear
transformation, we have

Ra(cv1 + v2) = 2Pa(cv1 + v2)− (cv1 + v2)

= 2(cPa(v1) + Pa(v2))− cv1 − v2

= c(2Pa(v1)− v1) + 2Pa(v2)− v2

= cRa(v1) +Ra(v2)

and thus Ra is linear.

(b) Find the matrix for Ra with respect to the standard basis.

Solution. Since

Ra(e1) = 2Pa(e1)− e1 = 2
(e1 · a
a · a

)
a− e1 =

2a1
a21 + a22

[
a1
a2

]
−

[
1
0

]
=

1

a21 + a22

[
a21 − a22
2a1a2

]
Ra(e2) = 2Pa(e2)− e2 = 2

(e2 · a
a · a

)
a− e2 =

2a2
a21 + a22

[
a1
a2

]
−

[
0
1

]
=

1

a21 + a22

[
2a1a2
a22 − a21

]

the matrix for Ra is 1
a21+a22

[
a21 − a22 2a1a2
2a1a2 a22 − a21

]
.

(c) Let b be any nonzero vector that is perpendicular to a. Find the matrix for Ra

with respect to the basis {a,b}.
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Solution. Since

Ra(a) = 2(a)− a = a = 1 · a+ 0 · b
Ra(b) = 2(0)− b = −b = 0 · a+ (−1) · b,

the matrix for Ra with respect to this basis is

[
1 0
0 −1

]
.

7. Suppose α = {v1,v2} is a basis for V and β = {w1,w2} is a basis for W . Let

T : V → W be a linear transformation such that [T ]βα =

[
3 −2
4 1

]
. Find T (2v1 − 3v2).

Solution. Let v = 2v1 − 3v2. Then [v]α =

[
2
−3

]
, so by Proposition 2.2.15

[T (v)]β = [T ]βα[v]α =

[
3 −2
4 1

] [
2
−3

]
=

[
12
5

]
,

which means T (v) = 12w1 + 5w2.

8. For each linear transformation T given, find bases for Ker(T ) and Im(T ), and determine
whether the transformation is injective, surjective, both or neither.

(a) T : R4 → R3 whose matrix with respect to the standard bases isA =

1 2 3 4
5 6 7 8
9 10 11 12


Solution. Since

rref(A) =

1 0 −1 −2
0 1 2 3
0 0 0 0


the kernel of T is the set of solutions of

x1 − x3 − 2x4 = 0
x2 + 2x3 + 3x4 = 0.

Solving for the basic variables x1 and x2 in terms of the free variables x3 and x4

gives 
x1

x2

x3

x4

 = x3


1
−2
1
0

+ x4


2
−3
0
1

 ,

and therefore




1
−2
1
0

 ,


2
−3
0
1


 is a basis for Ker(T ). Since the first two columns

of rref(A) are linearly independent, and the last two columns are linear combina-

tions of the first two, the same is true of the columns of A, and thus


15
9

 ,

 2
6
10
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is a basis for Im(T ). Since Ker(T ) ̸= {0}, T is not injective, and since Im(T ) ̸= R3,
T is not surjective.

(b) T : P3(R) → P3(R) defined by T (p(x)) = x2p′′ − 2p(x).

Solution. Suppose p(x) = a3x
3+a2x

2+a1x+a0 is in Ker(T ). Then T (p(x)) = 0,
so

x2(6a3x+ 2a2)− 2(a3x
3 + a2x

2 + a1x+ a0) = 0

which implies 4a3x
3 − 2a1x − 2a0 = 0. Since the set {1, x, x2, x3} is linearly

independent, this implies a0 = a1 = a3 = 0, and therefore p(x) = a2x
2. Hence

Ker(T ) = Span({x2}). To find Im(T ), apply T to the polynomials in the basis
{1, x, x2, x3} to get

T (1) = −2

T (x) = −2x

T (x2) = 0

T (x3) = 4x3

and thus Im(T ) = Span({1, x, x3}). Since Ker(T ) ̸= {0}, T is not injective, and
since Im(T ) ̸= P3(R), T is not surjective.

9. For each given pair of vector spaces V and W , list all possible pairs of dimensions
(dim(Ker(T )), dim(Im(T ))) that a linear transformation T : V → W could have. For
each possible pair of dimensions give an example of such a linear transformation.

(a) V = R2 and W = R3

Solution. By the dimension theorem, dim(Ker(T )) + dim(Im(T )) = 2, so there
are three possibilities: (0, 2), (1, 1), and (2, 0).

An example with dim(Ker(T )) = 0 and dim(Im(T )) = 2 is the transformation

with matrix A =

1 0
0 1
0 0

.
An example with dim(Ker(T )) = dim(Im(T )) = 1 is the transformation with

matrix B =

1 1
0 0
0 0

.
The only example with dim(Ker(T )) = 2 and dim(Im(T )) = 0 is the transforma-

tion with matrix C =

0 0
0 0
0 0

, the zero transformation.

(b) V = R3 and W = R2

Solution. Again, the dimension theorem implies dim(Ker(T ))+dim(Im(T )) = 3.
But dim(Im(T )) is at most two, so the possibilities are (1, 2), (2, 1) and (3, 0).

An example with dim(Ker(T )) = 1 and dim(Im(T )) = 2 is the transformation

with matrix A =

[
1 0 0
0 1 0

]
.
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An example with dim(Ker(T )) = 2 and dim(Im(T )) = 1 is the transformation

with matrix B =

[
1 0 0
0 0 0

]
.

The only example with dim(Ker(T )) = 3 and dim(Im(T )) = 0 is the transforma-

tion with matrix C =

[
0 0 0
0 0 0

]
, the zero transformation.

(c) V = W = R2

Solution. The possibilities are the same as in (a). Remove the third row from
the matrices in (a) to find examples of each.

10. Suppose α = {v1,v2,v3} is a basis for V and β = {w1,w2} is a basis for W . Let
T : V → W be a linear transformation and suppose T (v1) = 2w1 + 3w2, T (v2) =
−w1 + 4w2, and T (v3) = w1 + 2w2.

(a) Find [T ]βα
Solution. By definition, the coefficients of w1 and w2 in T (vj) form the jth

column of [T ]βα, so [T ]βα =

[
2 −1 1
3 4 2

]
.

(b) Let v = 2v1 + v2 − 3v3. Find [v]α, [T (v)]β and T (v).

Solution. By definition,

[v]α =

 2
1
−3


and by Proposition 2.2.15,

[T (v)]β = [T ]βα[v]α =

[
2 −1 1
3 4 2

] 2
1
−3

 =

[
0
4

]
,

so T (v) = 4w2.

11. Let T : P3(R) → P2(R) be defined by T (p(x)) = p′(x).

(a) Find the matrix [T ]βα for T with respect to the bases α = {1, x, x2, x3} and β =
{1, x, x2}.
Solution.

T (1) = 0 = 0 · 1 + 0 · x+ 0 · x2

T (x) = 1 = 1 · 1 + 0 · x+ 0 · x2

T (x2) = 2x = 0 · 1 + 2 · x+ 0 · x2

T (x3) = 3x2 = 0 · 1 + 0 · x+ 3 · x2,

so [T ]βα =

0 1 0 0
0 0 2 0
0 0 0 3

.
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(b) Let p(x) = 3 + 5x + 9x2 − 5x3. Find [p(x)]α. Find [T (p(x))]β by computing
[T ]βα[p(x)]α. Use this to write a formula for T (p), and check that this is in fact
p′(x).

Solution.

[p(x)]α =


3
5
9
−5

 so [T (p(x))]β = [T ]βα[p(x)]α =

0 1 0 0
0 0 2 0
0 0 0 3




3
5
9
−5

 =

 5
18
−15


Therefore T (p(x)) = 5 · 1 + 18 · x+ (−15) · x2, which is the derivative of p(x).

12. Suppose T : R2 → R2 is a linear transformation. Let α = {v1,v2}, where v1 =

[
1
2

]
and v2 =

[
1
3

]
, and suppose T (v1) = 3v1 and T (v2) = −4v2.

(a) Find [T ]αα.

Solution. Since T (v1) = 3v1+0v2 the first column of [T ]αα is

[
3
0

]
. Since T (v2) =

0v1 + (−4)v2, the second column of [T ]αα is

[
0
−4

]
, and thus [T ]αα =

[
3 0
0 −4

]
.

(b) Find [T ]ββ, where β is the standard basis for R2.

Solution. First, we know

v1 = e1 + 2e2

v2 = e1 + 3e2.

Solving these equations for e1 and e2 gives e1 = 3v1 − 2v2 and e2 = −v1 + v2.
Therefore

T (e1) = T (3v1 − 2v2) = 3T (v1)− 2T (v2) = 9v1 + 8v2 = 17e1 + 42e2

and

T (e2) = T (−v1 + v2) = −T (v1) + T (v2)− 3v1 − 4v2 = −7e1 − 18e2,

so

[T ]ββ =

[
17 −7
42 −18

]
.

To convince ourselves that this is correct, let’s compute T (v1) and T (v2) using
this matrix:

T (v1) =

[
17 −7
42 −18

] [
1
2

]
=

[
3
6

]
= 3v1

T (v2) =

[
17 −7
42 −18

] [
1
3

]
=

[
−4
−12

]
= −4v2
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13. Let a =

 2
1
−4

 and define T : R3 → R3 by T (v) =
(v · a
a · a

)
a. (Recall this is the

projection of v onto the line spanned by a.)

(a) Find the matrix for T with respect to the standard bases.

Solution. Since T (e1) =
2
21
a, T (e2) =

1
21
a, and T (e3) =

−4
21
a, the matrix for T is

A =
1

21

 4 2 −8
2 1 −4
−8 −4 16

 .

(b) Find bases for Ker(T ) and Im(T ).

Solution. Since

rref(A) =

1 1
2

−2
0 0 0
0 0 0

 ,

it follows that


−1

2

1
0

 ,

20
1

 is a basis for Ker(T ), and {a} is a basis for Im(T ).

14. Suppose rref(A) =

[
1 4 0 3
0 0 1 −2

]
and b is the second column of A. Find the set of

all solutions of the system of equations Ax = b.

Solution. Since Ae2 is the second column of A, and we are given that this equals b,
this means that xp = e2 is one particular solution of Ax = b. From the echelon form
of A it follows that the set of solutions of the homogeneous equation Ax = 0 is

xh = x2


−4
1
0
0

+ x4


−3
0
2
1


so the general solution of Ax = b is

x = xp + xh =


0
1
0
0

+ x2


−4
1
0
0

+ x4


−3
0
2
1

 .

15. Find the general solution of


2 0 −1
1 2 0
−1 2 1
1 2 0

x =


−1
2
3
2

.
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Solution.

rref




2 0 −1 −1
1 2 0 2

−1 2 1 3
1 2 0 2


 =


1 0 −1

2
−1

2

0 1 1
4

5
4

0 0 0 0
0 0 0 0


the general solution is

x =

−1
2
+ 1

2
x3

5
4
− 1

4
x3

x3

 =

−1
2

5
4

0

+ x3

 1
2

−1
4

1

 .

(Note that there are many alternate ways to write the general solution. The first vector
can be any particular solution of the system, and the second vector can be scaled by
any nonzero real number.)

16. Let T : V → W be a linear transformation.

(a) Suppose {T (v1), T (v2), T (v3)} is linearly independent. Show that {v1,v2,v3} is
also linearly independent.

Solution. Suppose c1v1 + c2v2 + c3v3 = 0. Then by linearity,

c1T (v1) + c2T (v2) + c3T (v3) = T (c1v1 + c2v2 + c3v3) = T (0) = 0,

so since {T (v1), T (v2), T (v3)} is linearly independent it follows that c1 = c2 =
c3 = 0. Thus {v1,v2,v3} is linearly independent.

(b) Suppose {v1,v2,v3} is linearly independent, and T is injective. Show that {T (v1),
T (v2), T (v3)} is linearly independent.

Solution. Suppose c1T (v1) + c2T (v2) + c3T (v3) = 0. Then by linearity of T ,

T (c1v1 + c2v2 + c3v3) = c1T (v1) + c2T (v2) + c3T (v3) = 0,

so c1v1 + c2v2 + c3v3 is in Ker(T ). But since T is injective, Ker(T ) = {0}, and
thus c1v1 + c2v2 + c3v3 = 0. Since {v1,v2,v3} is linearly independent, it now
follows that c1 = c2 = c3 = 0, so {T (v1), T (v2), T (v3)} is linearly independent.
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