College of the Holy Cross, Fall 2018
 Math 244, Linear Algebra
 Midterm 2 Practice Problems

1. Let $W_{1}=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)$ and $W_{2}=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ 8 \\ 10\end{array}\right]\right)$. Find bases for $W_{1}+W_{2}$ and $W_{1} \cap W_{2}$ and verify that their dimensions satisfy Theorem 1.6.18.
2. Suppose $\operatorname{dim}(V)=n$. Show that a set of n vectors in V is linearly independent if and only if it spans V.
3. For each transformation below, determine (with proof) whether or not is is linear.
(a) $T: P(\mathbf{R}) \rightarrow P(\mathbf{R})$ defined by $T(p(x))=x p^{\prime \prime}(x)+5 x^{2} p(x)$.
(b) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T\left(v_{1}, v_{2}\right)=\left(v_{1}+v_{2}+3,2 v_{1}+3 v_{2}\right)$.
(c) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $T\left(v_{1}, v_{2}\right)=\left(\sin \left(v_{1}+v_{2}\right), \cos \left(v_{1}+v_{2}\right)\right)$.
(d) $T: P_{2}(\mathbf{R}) \rightarrow P_{3}(\mathbf{R})$ defined by $T(p(x))=\int_{5}^{x} p(t) d t$.
4. The vertices of a triangle are $(0,0),(2,1)$ and $(1,3)$. Find the vertices of the triangle obtained by rotating the triangle about the origin through an angle of 60 degrees.
5. Let $\mathbf{a}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and let $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find vectors \mathbf{v}_{1} and \mathbf{v}_{2} such that \mathbf{v}_{1} is a scalar multiple of $\mathbf{a}, \mathbf{v}_{2}$ is perpendicular to \mathbf{a}, and $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$.
6. Let $\mathbf{a} \neq \mathbf{0}$ be a fixed vector in \mathbf{R}^{2}, and define $R_{\mathbf{a}}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $R_{\mathbf{a}}(\mathbf{v})=2 P_{\mathbf{a}}(\mathbf{v})-\mathbf{v}$, where P_{a} is the projection onto the line spanned by \mathbf{a}. This is called the reflection across the line spanned by a.
(a) Show that R_{a} is a linear transformation.
(b) Find the matrix for R_{a} with respect to the standard basis.
(c) Let \mathbf{b} be any nonzero vector that is perpendicular to \mathbf{a}. Find the matrix for $R_{\mathbf{a}}$ with respect to the basis $\{\mathbf{a}, \mathbf{b}\}$.
7. Suppose $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for V and $\beta=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is a basis for W. Let $T: V \rightarrow W$ be a linear transformation such that $[T]_{\alpha}^{\beta}=\left[\begin{array}{cc}3 & -2 \\ 4 & 1\end{array}\right]$. Find $T\left(2 \mathbf{v}_{1}-3 \mathbf{v}_{2}\right)$.
8. For each linear transformation T given, find bases for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$, and determine whether the transformation is injective, surjective, both or neither.
(a) $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ whose matrix with respect to the standard bases is $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right]$
(b) $T: P_{3}(\mathbf{R}) \rightarrow P_{3}(\mathbf{R})$ defined by $T(p(x))=x^{2} p^{\prime \prime}-2 p(x)$.
9. For each given pair of vector spaces V and W, list all possible pairs of dimensions $(\operatorname{dim}(\operatorname{Ker}(T)), \operatorname{dim}(\operatorname{Im}(T)))$ that a linear transformation $T: V \rightarrow W$ could have. For each possible pair of dimensions give an example of such a linear transformation.
(a) $V=\mathbf{R}^{2}$ and $W=\mathbf{R}^{3}$
(b) $V=\mathbf{R}^{3}$ and $W=\mathbf{R}^{2}$
(c) $V=W=\mathbf{R}^{2}$
10. Suppose $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for V and $\beta=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is a basis for W. Let $T: V \rightarrow W$ be a linear transformation and suppose $T\left(\mathbf{v}_{1}\right)=2 \mathbf{w}_{1}+3 \mathbf{w}_{2}, T\left(\mathbf{v}_{2}\right)=$ $-\mathbf{w}_{1}+4 \mathbf{w}_{2}$, and $T\left(\mathbf{v}_{3}\right)=\mathbf{w}_{1}+2 \mathbf{w}_{2}$.
(a) Find $[T]_{\alpha}^{\beta}$
(b) Let $\mathbf{v}=2 \mathbf{v}_{1}+\mathbf{v}_{2}-3 \mathbf{v}_{3}$. Find $[\mathbf{v}]_{\alpha},[T(\mathbf{v})]_{\beta}$ and $T(\mathbf{v})$.
11. Let $T: P_{3}(\mathbf{R}) \rightarrow P_{2}(\mathbf{R})$ be defined by $T(p(x))=p^{\prime}(x)$.
(a) Find the matrix $[T]_{\alpha}^{\beta}$ for T with respect to the bases $\alpha=\left\{1, x, x^{2}, x^{3}\right\}$ and $\beta=$ $\left\{1, x, x^{2}\right\}$.
(b) Let $p(x)=3+5 x+9 x^{2}-5 x^{3}$. Find $[p(x)]_{\alpha}$. Find $[T(p(x))]_{\beta}$ by computing $[T]_{\alpha}^{\beta}[p(x)]_{\alpha}$. Use this to write a formula for $T(p)$, and check that this is in fact $p^{\prime}(x)$.
12. Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear transformation. Let $\alpha=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, and suppose $T\left(\mathbf{v}_{1}\right)=3 \mathbf{v}_{1}$ and $T\left(\mathbf{v}_{2}\right)=-4 \mathbf{v}_{2}$.
(a) Find $[T]_{\alpha}^{\alpha}$.
(b) Find $[T]_{\beta}^{\beta}$, where β is the standard basis for \mathbf{R}^{2}.
13. Let $\mathbf{a}=\left[\begin{array}{c}2 \\ 1 \\ -4\end{array}\right]$ and define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by $T(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$. (Recall this is the projection of \mathbf{v} onto the line spanned by a.)
(a) Find the matrix for T with respect to the standard bases.
(b) Find bases for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.
14. Suppose $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & 4 & 0 & 3 \\ 0 & 0 & 1 & -2\end{array}\right]$ and \mathbf{b} is the second column of A. Find the set of all solutions of the system of equations $A \mathbf{x}=\mathbf{b}$.
15. Find the general solution of $\left[\begin{array}{ccc}2 & 0 & -1 \\ 1 & 2 & 0 \\ -1 & 2 & 1 \\ 1 & 2 & 0\end{array}\right] \mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 3 \\ 2\end{array}\right]$.
16. Let $T: V \rightarrow W$ be a linear transformation.
(a) Suppose $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly independent. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is also linearly independent.
(b) Suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent, and T is injective. Show that $\left\{T\left(\mathbf{v}_{1}\right)\right.$, $\left.T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly independent.
