College of the Holy Cross, Fall 2018 Math 244, Linear Algebra Midterm 2 Practice Problems

1. Let $W_1 = \operatorname{Span}\left(\begin{bmatrix}1\\0\\1\\0\end{bmatrix}, \begin{bmatrix}1\\1\\1\\1\end{bmatrix}\right)$ and $W_2 = \operatorname{Span}\left(\begin{bmatrix}1\\2\\3\\4\end{bmatrix}, \begin{bmatrix}2\\4\\8\\10\end{bmatrix}\right)$. Find bases for $W_1 + W_2$ and $W_1 \cap W_2$ and verify that their dimensions satisfy Theorem 1.6.18.

and $w_1 + w_2$ and verify that their dimensions satisfy Theorem 1.0.18.

- 2. Suppose $\dim(V) = n$. Show that a set of n vectors in V is linearly independent if and only if it spans V.
- 3. For each transformation below, determine (with proof) whether or not is is linear.
 - (a) $T: P(\mathbf{R}) \to P(\mathbf{R})$ defined by $T(p(x)) = xp''(x) + 5x^2p(x)$. (b) $T: \mathbf{R}^2 \to \mathbf{R}^2$ defined by $T(v_1, v_2) = (v_1 + v_2 + 3, 2v_1 + 3v_2)$. (c) $T: \mathbf{R}^2 \to \mathbf{R}^2$ defined by $T(v_1, v_2) = (\sin(v_1 + v_2), \cos(v_1 + v_2))$. (d) $T: P_2(\mathbf{R}) \to P_3(\mathbf{R})$ defined by $T(p(x)) = \int_5^x p(t) dt$.
- 4. The vertices of a triangle are (0,0), (2,1) and (1,3). Find the vertices of the triangle obtained by rotating the triangle about the origin through an angle of 60 degrees.
- 5. Let $\mathbf{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and let $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Find vectors \mathbf{v}_1 and \mathbf{v}_2 such that \mathbf{v}_1 is a scalar multiple of \mathbf{a} , \mathbf{v}_2 is perpendicular to \mathbf{a} , and $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$.
- 6. Let $\mathbf{a} \neq \mathbf{0}$ be a fixed vector in \mathbf{R}^2 , and define $R_{\mathbf{a}} : \mathbf{R}^2 \to \mathbf{R}^2$ by $R_{\mathbf{a}}(\mathbf{v}) = 2P_{\mathbf{a}}(\mathbf{v}) \mathbf{v}$, where $P_{\mathbf{a}}$ is the projection onto the line spanned by \mathbf{a} . This is called the reflection across the line spanned by \mathbf{a} .
 - (a) Show that $R_{\mathbf{a}}$ is a linear transformation.
 - (b) Find the matrix for $R_{\mathbf{a}}$ with respect to the standard basis.
 - (c) Let **b** be any nonzero vector that is perpendicular to **a**. Find the matrix for $R_{\mathbf{a}}$ with respect to the basis $\{\mathbf{a}, \mathbf{b}\}$.
- 7. Suppose $\alpha = {\mathbf{v}_1, \mathbf{v}_2}$ is a basis for V and $\beta = {\mathbf{w}_1, \mathbf{w}_2}$ is a basis for W. Let $T: V \to W$ be a linear transformation such that $[T]^{\beta}_{\alpha} = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$. Find $T(2\mathbf{v}_1 3\mathbf{v}_2)$.
- 8. For each linear transformation T given, find bases for Ker(T) and Im(T), and determine whether the transformation is injective, surjective, both or neither.

(a) $T: \mathbf{R}^4 \to \mathbf{R}^3$ whose matrix with respect to the standard bases is $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$

- (b) $T: P_3(\mathbf{R}) \to P_3(\mathbf{R})$ defined by $T(p(x)) = x^2 p'' 2p(x)$.
- 9. For each given pair of vector spaces V and W, list all possible pairs of dimensions $(\dim(\operatorname{Ker}(T)), \dim(\operatorname{Im}(T)))$ that a linear transformation $T: V \to W$ could have. For each possible pair of dimensions give an example of such a linear transformation.
 - (a) $V = \mathbf{R}^2$ and $W = \mathbf{R}^3$
 - (b) $V = \mathbf{R}^3$ and $W = \mathbf{R}^2$
 - (c) $V = W = \mathbf{R}^2$
- 10. Suppose $\alpha = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is a basis for V and $\beta = {\mathbf{w}_1, \mathbf{w}_2}$ is a basis for W. Let $T: V \to W$ be a linear transformation and suppose $T(\mathbf{v}_1) = 2\mathbf{w}_1 + 3\mathbf{w}_2$, $T(\mathbf{v}_2) = -\mathbf{w}_1 + 4\mathbf{w}_2$, and $T(\mathbf{v}_3) = \mathbf{w}_1 + 2\mathbf{w}_2$.
 - (a) Find $[T]^{\beta}_{\alpha}$
 - (b) Let $\mathbf{v} = 2\mathbf{v}_1 + \mathbf{v}_2 3\mathbf{v}_3$. Find $[\mathbf{v}]_{\alpha}$, $[T(\mathbf{v})]_{\beta}$ and $T(\mathbf{v})$.

11. Let $T: P_3(\mathbf{R}) \to P_2(\mathbf{R})$ be defined by T(p(x)) = p'(x).

- (a) Find the matrix $[T]^{\beta}_{\alpha}$ for T with respect to the bases $\alpha = \{1, x, x^2, x^3\}$ and $\beta = \{1, x, x^2\}$.
- (b) Let $p(x) = 3 + 5x + 9x^2 5x^3$. Find $[p(x)]_{\alpha}$. Find $[T(p(x))]_{\beta}$ by computing $[T]^{\beta}_{\alpha}[p(x)]_{\alpha}$. Use this to write a formula for T(p), and check that this is in fact p'(x).

12. Suppose $T : \mathbf{R}^2 \to \mathbf{R}^2$ is a linear transformation. Let $\alpha = \{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1\\3 \end{bmatrix}$, and suppose $T(\mathbf{v}_1) = 3\mathbf{v}_1$ and $T(\mathbf{v}_2) = -4\mathbf{v}_2$.

- (a) Find $[T]^{\alpha}_{\alpha}$.
- (b) Find $[T]^{\beta}_{\beta}$, where β is the standard basis for \mathbf{R}^2 .

13. Let $\mathbf{a} = \begin{bmatrix} 2\\ 1\\ -4 \end{bmatrix}$ and define $T : \mathbf{R}^3 \to \mathbf{R}^3$ by $T(\mathbf{v}) = \left(\frac{\mathbf{v} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$. (Recall this is the projection of \mathbf{v} onto the line spanned by \mathbf{a} .)

- (a) Find the matrix for T with respect to the standard bases.
- (b) Find bases for Ker(T) and Im(T).
- 14. Suppose $\operatorname{rref}(A) = \begin{bmatrix} 1 & 4 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$ and **b** is the second column of A. Find the set of all solutions of the system of equations $A\mathbf{x} = \mathbf{b}$.

15. Find the general solution of
$$\begin{bmatrix} 2 & 0 & -1 \\ 1 & 2 & 0 \\ -1 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 \\ 2 \\ 3 \\ 2 \end{bmatrix}.$$

- 16. Let $T: V \to W$ be a linear transformation.
 - (a) Suppose $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly independent. Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent.
 - (b) Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, and T is injective. Show that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly independent.