College of the Holy Cross, Fall 2018 Math 244, Midterm 1

1. Show that \mathbf{R}^2 is not a vector space if we define addition by

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_2 + y_2 \\ x_1 + y_1 \end{bmatrix}$$

and use the usual scalar multiplication. State which vector space property fails and demonstrate that it fails. You only need to show that one property fails.

- 2. Determine whether or not each subset W is a subspace of the given vector space V. Prove your assertions.
 - (a) $V = C(\mathbf{R})$, and $W = \{f \mid f'(x) + 5f(x) = 0 \text{ for all } x \in \mathbf{R}\}$ (b) $V = \mathbf{R}^2$, $W = \left\{ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \mid v_1 + v_2 - 5 = 0 \right\}$
- 3. (a) Complete the following definition. The span of a set of vectors $S = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ is
 - (b) Let $S = \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 5\\-1\\2 \end{bmatrix} \right\}$. Is $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in Span(S)? Prove your assertion.
 - (c) Suppose $\mathbf{v}_3 \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$. Prove that $\text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$. (d) Let $S = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \right\}$ and $T = \left\{ \begin{bmatrix} 7\\6\\5\\4 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right\}$. Is Span(S) = Span(T)? Prove your assertion.
- 4. (a) Complete the following definition. A subset $S = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ of a vector space V is linearly independent if
 - (b) Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent. Prove that $\{\mathbf{v}_1, \mathbf{v}_1 + 2\mathbf{v}_2, \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3\}$ is also linearly independent.
 - (c) Is the set $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$ in \mathbb{R}^3 linearly independent? Prove your assertion.
 - (d) Is the set $S = {\sin(x), \cos(x), \sin(2x)}$ in $C(\mathbf{R})$ linearly independent? Prove your assertion.
- 5. Let W be the subspace of \mathbb{R}^5 consisting of all solutions of the following system.

x_1	+	$2x_2$	+	$3x_3$	+	$4x_4$	+	$5x_5$	=	0
$2x_1$	+	$2x_2$	+	$3x_3$	+	$3x_4$	+	$4x_5$	=	0
$5x_1$	+	$5x_2$	+	$7x_3$	+	$8x_4$	+	$6x_5$	=	0

- (a) Find a basis for W.
- (b) What is the dimension of W?