College of the Holy Cross, Fall 2018 Math 244, Midterm 1 Solutions

1. Show that \mathbf{R}^2 is not a vector space if we define addition by

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_2 + y_2 \\ x_1 + y_1 \end{bmatrix}$$

and use the usual scalar multiplication. State which vector space property fails and demonstrate that it fails. You only need to show that one property fails.

Solution. There are a number of properties that fail.

• The associative property fails. To prove this, it suffices to find an example of vectors \mathbf{x} , \mathbf{y} and \mathbf{z} such that $(\mathbf{x} + \mathbf{y}) + \mathbf{z} \neq \mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}$. For example, if $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we have

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix}$$
$$\mathbf{x} + \mathbf{y} + \mathbf{z} = \begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}$$

• There is also no additive identity. It is easy to see that $\begin{bmatrix} 0\\0 \end{bmatrix}$ is not an additive identity, since for instance

$$\begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix} \neq \begin{bmatrix} 0\\1 \end{bmatrix}.$$

To prove that no additive identity exists, suppose $\begin{bmatrix} a \\ b \end{bmatrix}$ is an additive identity. Then for every vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbf{R}^2 we would have $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. But $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x_2 + b \\ x_1 + a \end{bmatrix}$

so this would require $x_2 + b = x_1$ and $x_1 + a = x_2$. Since a and b are fixed, this clearly cannot hold for every x_1 and x_2 . Thus there is no additive identity.

• The property $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$ also fails. For example, if c = d = 1 and $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, we have

$$(c+d)\mathbf{x} = 2\mathbf{x} = \begin{bmatrix} 2\\4 \end{bmatrix}$$
$$c\mathbf{x} + d\mathbf{x} = \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix}$$

- 2. Determine whether or not each subset W is a subspace of the given vector space V. Prove your assertions.
 - (a) $V = C(\mathbf{R})$, and $W = \{f \mid f'(x) + 5f(x) = 0 \text{ for all } x \in \mathbf{R}\}$ Solution. W is a subspace of V. To prove this we need to show that if $f, g \in W$ and $c \in \mathbf{R}$, then $cf + g \in W$. So suppose $f, g \in W$ and $c \in \mathbf{R}$. Then by definition of W, f'(x) + 5f(x) = 0 and g'(x) + 5g(x) = 0 for all $x \in \mathbf{R}$. Thus

$$(cf + g)'(x) + 5(cf + g)(x) = cf'(x) + g'(x) + 5cf(x) + 5g(x)$$

= $c(f'(x) + 5f(x)) + (g'(x) + 5g(x))$
= $c(0) + 0$
= $0.$

This proves that $cf + g \in W$, and thus W is a subspace of V.

- (b) $V = \mathbf{R}^2$, $W = \left\{ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \mid v_1 + v_2 5 = 0 \right\}$ **Solution.** W is **not** a subspace of V. It is not closed under addition or scalar multiplication. For instance, both $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ are in W, but their sum, $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ is not in W $(3 + 7 - 5 \neq 0)$. Also, $2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$ is not in W $(4 + 6 - 5 \neq 0)$.
- 3. (a) Complete the following definition. The span of a set of vectors $S = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ is **Solution.** The span of S is the set of all linear combinations of vectors in S.
 - (b) Let $S = \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 5\\-1\\2 \end{bmatrix} \right\}$. Is $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in Span(S)? Prove your assertion.

Solution. We need to determine whether of not there exist scalars c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3\\2\\1 \end{bmatrix} + c_2 \begin{bmatrix} 5\\-1\\2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

This leads to the system of equations

If we add 2 times the second equation to the third equation, we get $5c_1 = 3$, which implies $c_1 = \frac{3}{5}$. Substitution this into either the second or third equation gives $c_2 = \frac{1}{5}$. But these values of c_1 and c_2 do not satisfy the first equation. Hence the system has no solution, and therefore $\begin{bmatrix} 1\\1 \end{bmatrix}$ is not in Span(S).

solution, and therefore
$$\begin{bmatrix} 1\\1 \end{bmatrix}$$
 is not in Span(S)

(c) Suppose $\mathbf{v}_3 \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$. Prove that $\text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$.

Solution. To prove equality of two sets, we must show that each one is a subset of the other.

First suppose $\mathbf{v} \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$. Then there exist scalars c_1 and c_2 such that $\mathbf{v} =$ $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$. But this implies $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + 0\mathbf{v}_3$, so $\mathbf{v} \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$. This proves $\operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2\}) \subseteq \operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}).$

Next suppose $\mathbf{v} \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$. Then there exist scalars c_1, c_2 and c_3 such that $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$. Since we are given $\mathbf{v}_3 \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$, there are scalars b_1 and b_2 such that $\mathbf{v}_3 = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2$, and thus

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2) = (c_1 + c_3 b_1) \mathbf{v}_1 + (c_2 + c_3 b_2) \mathbf{v}_2.$$

This implies **v** is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 and thus $\mathbf{v} \in \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$. Hence $\operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) \subseteq \operatorname{Span}(\{\mathbf{v}_1, \mathbf{v}_2\}).$

(d) Let
$$S = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \right\}$$
 and $T = \left\{ \begin{bmatrix} 7\\6\\5\\4 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\}$. Is $\operatorname{Span}(S) = \operatorname{Span}(T)$? Prove your assertion.

Solution. The sets Span(S) and Span(T) are equal if and only if each one is a subset of the other. Let's denote by \mathbf{v}_1 and \mathbf{v}_2 the two vectors in S, and \mathbf{w}_1 and \mathbf{w}_2 the vectors in T. The question is asking whether or not every linear combination of \mathbf{v}_1 and \mathbf{v}_2 is a linear combination of \mathbf{w}_1 and \mathbf{w}_2 , and vice versa.

First, notice that setting $\mathbf{v}_1 = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2$ and solving the resulting system of equations, it follows that $\mathbf{v}_1 = -\mathbf{w}_1 + 8\mathbf{w}_2$, so \mathbf{v}_1 is in Span(T). Likewise, \mathbf{v}_2 is in Span(T) since $\mathbf{v}_2 = -\mathbf{w}_1 + 12\mathbf{w}_2$. Thus, for any vector \mathbf{v} in Span(S), we have $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$ for some a_1 and a_2 , so

$$\mathbf{v} = a_1(-\mathbf{w}_1 + 8\mathbf{w}_2) + a_2(-\mathbf{w}_1 + 12\mathbf{w}_2)$$

= $(-a_1 - a_2)\mathbf{w}_1 + (8a_1 + 12a_2)\mathbf{w}_2$

and therefore $\mathbf{v} \in \text{Span}(T)$. This shows $\text{Span}(S) \subseteq \text{Span}(T)$.

Similarly, since $\mathbf{w}_1 = -3\mathbf{v}_1 + 2\mathbf{v}_2$ and $\mathbf{w}_2 = -\frac{1}{4}\mathbf{v}_1 + \frac{1}{4}\mathbf{v}_2$, it follows that $\operatorname{Span}(T) \subseteq \operatorname{Span}(S)$, and thus $\operatorname{Span}(S) = \operatorname{Span}(T)$.

4. (a) Complete the following definition. A subset $S = \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ of a vector space V is linearly independent if

Solution. S is linearly independent if the only solution of $c_1\mathbf{v}_1 + \cdots + c_k\mathbf{v}_k = \mathbf{0}$ is $c_1 = \cdots = c_k = 0.$

(b) Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent. Prove that $\{\mathbf{v}_1, \mathbf{v}_1 + 2\mathbf{v}_2, \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3\}$ is also linearly independent.

Solution. Suppose $c_1 \mathbf{v}_1 + c_2 (\mathbf{v}_1 + 2\mathbf{v}_2) + c_3 (\mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3) = \mathbf{0}$. Then

 $(c_1 + c_2 + c_3)\mathbf{v}_1 + (2c_2 + 2c_3)\mathbf{v}_2 + 3c_3\mathbf{v}_3 = \mathbf{0}.$

Since $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent, this implies

$$c_1 + c_2 + c_3 = 0$$

$$2c_2 + 2c_3 = 0$$

$$3c_3 = 0.$$

The third equation implies $c_3 = 0$. Plugging this into the second equation gives $c_2 = 0$, and finally, using the first equation, we obtain $c_1 = 0$. Hence $\{\mathbf{v}_1, \mathbf{v}_1 + 2\mathbf{v}_2, \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3\}$ is linearly independent.

(c) Is the set
$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$$
 in \mathbb{R}^3 linearly independent? Prove your assertion.
Solution. Suppose $c_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + c_2 \begin{bmatrix} 4\\5\\6 \end{bmatrix} + c_3 \begin{bmatrix} 7\\8\\9 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$. This leads to the system

$$\begin{array}{rrrr} c_1 + 4c_2 + 7c_3 = 0\\ 2c_1 + 5c_2 + 8c_3 = 0\\ 3c_1 + 6c_2 + 9c_3 = 0. \end{array}$$

The echelon form of this system is

The variable c_3 is a free variable. Setting $c_3 = 1$ gives $c_1 = 1$ and $c_2 = -2$. Thus the set S is not linearly independent.

(d) Is the set $S = {\sin(x), \cos(x), \sin(2x)}$ in $C(\mathbf{R})$ linearly independent? Prove your assertion.

Solution. Suppose $c_1 \sin(x) + c_2 \cos(x) + c_3 \sin(2x) = 0$ for all x in **R**. When x = 0, this becomes $c_2 = 0$. When $x = \pi/2$, it becomes $c_1 = 0$. Thus $c_3 \sin(2x) = 0$ for all x, so setting $x = \pi/4$ gives $c_3 = 0$. Therefore S is linearly independent.

5. Let W be the subspace of \mathbb{R}^5 consisting of all solutions of the following system.

(a) Find a basis for W.

Solution. The echelon form of the system is

Solving for the basic variables x_1 , x_2 and x_3 in terms of the free variables x_4 and x_5 gives

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_4 + x_5 \\ -4x_4 + 9x_5 \\ x_4 - 8x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_4 \begin{bmatrix} 1 \\ -4 \\ 1 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ 9 \\ -8 \\ 0 \\ 1 \end{bmatrix},$$

so W = Span(S), where

$$S = \left\{ \begin{bmatrix} 1 \\ -4 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 9 \\ -8 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Neither vector in S is a scalar multiple of the other, so S is linearly independent, and therefore a basis for W.

(b) What is the dimension of W? Solution. 2