College of the Holy Cross, Fall 2018
 Math 244, Midterm 1 Solutions

1. Show that \mathbf{R}^{2} is not a vector space if we define addition by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]++^{\prime}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{2}+y_{2} \\
x_{1}+y_{1}
\end{array}\right]
$$

and use the usual scalar multiplication. State which vector space property fails and demonstrate that it fails. You only need to show that one property fails.
Solution. There are a number of properties that fail.

- The associative property fails. To prove this, it suffices to find an example of vectors \mathbf{x}, \mathbf{y} and \mathbf{z} such that $\left(\mathbf{x}+^{\prime} \mathbf{y}\right)+^{\prime} \mathbf{z} \neq \mathbf{x}+^{\prime}\left(\mathbf{y}+^{\prime} \mathbf{z}\right)$. For example, if $\mathbf{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and $\mathbf{z}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, we have

$$
\begin{aligned}
& \left(\mathbf{x}+^{\prime} \mathbf{y}\right)+^{\prime} \mathbf{z}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]++^{\prime}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& \mathbf{x}+^{\prime}\left(\mathbf{y}+^{\prime} \mathbf{z}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+^{\prime}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
\end{aligned}
$$

- There is also no additive identity. It is easy to see that $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is not an additive identity, since for instance

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]++^{\prime}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

To prove that no additive identity exists, suppose $\left[\begin{array}{l}a \\ b\end{array}\right]$ is an additive identity. Then for every vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ in \mathbf{R}^{2} we would have $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+^{\prime}\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. But

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+^{\prime}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
x_{2}+b \\
x_{1}+a
\end{array}\right]
$$

so this would require $x_{2}+b=x_{1}$ and $x_{1}+a=x_{2}$. Since a and b are fixed, this clearly cannot hold for every x_{1} and x_{2}. Thus there is no additive identity.

- The property $(c+d) \mathbf{x}=c \mathbf{x}+^{\prime} d \mathbf{x}$ also fails. For example, if $c=d=1$ and $\mathbf{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, we have

$$
\begin{aligned}
& (c+d) \mathbf{x}=2 \mathbf{x}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
& c \mathbf{x}+^{\prime} d \mathbf{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]++^{\prime}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
\end{aligned}
$$

2. Determine whether or not each subset W is a subspace of the given vector space V. Prove your assertions.
(a) $V=C(\mathbf{R})$, and $W=\left\{f \mid f^{\prime}(x)+5 f(x)=0\right.$ for all $\left.x \in \mathbf{R}\right\}$

Solution. W is a subspace of V. To prove this we need to show that if $f, g \in W$ and $c \in \mathbf{R}$, then $c f+g \in W$. So suppose $f, g \in W$ and $c \in \mathbf{R}$. Then by definition of W, $f^{\prime}(x)+5 f(x)=0$ and $g^{\prime}(x)+5 g(x)=0$ for all $x \in \mathbf{R}$. Thus

$$
\begin{aligned}
(c f+g)^{\prime}(x)+5(c f+g)(x) & =c f^{\prime}(x)+g^{\prime}(x)+5 c f(x)+5 g(x) \\
& =c\left(f^{\prime}(x)+5 f(x)\right)+\left(g^{\prime}(x)+5 g(x)\right) \\
& =c(0)+0 \\
& =0
\end{aligned}
$$

This proves that $c f+g \in W$, and thus W is a subspace of V.
(b) $V=\mathbf{R}^{2}, W=\left\{\left.\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \right\rvert\, v_{1}+v_{2}-5=0\right\}$

Solution. W is not a subspace of V. It is not closed under addition or scalar multiplication. For instance, both $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ are in W, but their sum, $\left[\begin{array}{l}3 \\ 7\end{array}\right]$ is not in W $(3+7-5 \neq 0)$. Also, $2\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ 6\end{array}\right]$ is not in $W(4+6-5 \neq 0)$.
3. (a) Complete the following definition. The span of a set of vectors $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is

Solution. The span of S is the set of all linear combinations of vectors in S.
(b) Let $S=\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]\right\}$. Is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in $\operatorname{Span}(S)$? Prove your assertion.

Solution. We need to determine whether of not there exist scalars c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

This leads to the system of equations

$$
\begin{array}{r}
3 c_{1}+5 c_{2}=1 \\
2 c_{1}-c_{2}=1 \\
c_{1}+2 c_{2}=1
\end{array}
$$

If we add 2 times the second equation to the third equation, we get $5 c_{1}=3$, which implies $c_{1}=\frac{3}{5}$. Substitution this into either the second or third equation gives $c_{2}=\frac{1}{5}$. But these values of c_{1} and c_{2} do not satisfy the first equation. Hence the system has no solution, and therefore $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is not in $\operatorname{Span}(S)$.
(c) Suppose $\mathbf{v}_{3} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$. Prove that $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$.

Solution. To prove equality of two sets, we must show that each one is a subset of the other.
First suppose $\mathbf{v} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$. Then there exist scalars c_{1} and c_{2} such that $\mathbf{v}=$ $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$. But this implies $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+0 \mathbf{v}_{3}$, so $\mathbf{v} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$. This proves $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$.
Next suppose $\mathbf{v} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$. Then there exist scalars c_{1}, c_{2} and c_{3} such that $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$. Since we are given $\mathbf{v}_{3} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$, there are scalars b_{1} and b_{2} such that $\mathbf{v}_{3}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$, and thus

$$
\begin{aligned}
\mathbf{v} & =c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3}\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}\right) \\
& =\left(c_{1}+c_{3} b_{1}\right) \mathbf{v}_{1}+\left(c_{2}+c_{3} b_{2}\right) \mathbf{v}_{2} .
\end{aligned}
$$

This implies \mathbf{v} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} and thus $\mathbf{v} \in \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$. Hence $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)$.
(d) Let $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{l}7 \\ 6 \\ 5 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$. Is $\operatorname{Span}(S)=\operatorname{Span}(T)$? Prove your assertion.

Solution. The sets $\operatorname{Span}(S)$ and $\operatorname{Span}(T)$ are equal if and only if each one is a subset of the other. Let's denote by \mathbf{v}_{1} and \mathbf{v}_{2} the two vectors in S, and \mathbf{w}_{1} and \mathbf{w}_{2} the vectors in T. The question is asking whether or not every linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} is a linear combination of \mathbf{w}_{1} and \mathbf{w}_{2}, and vice versa.
First, notice that setting $\mathbf{v}_{1}=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}$ and solving the resulting system of equations, it follows that $\mathbf{v}_{1}=-\mathbf{w}_{1}+8 \mathbf{w}_{2}$, so \mathbf{v}_{1} is in $\operatorname{Span}(T)$. Likewise, \mathbf{v}_{2} is in $\operatorname{Span}(T)$ since $\mathbf{v}_{2}=-\mathbf{w}_{1}+12 \mathbf{w}_{2}$. Thus, for any vector \mathbf{v} in $\operatorname{Span}(S)$, we have $\mathbf{v}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ for some a_{1} and a_{2}, so

$$
\begin{aligned}
\mathbf{v} & =a_{1}\left(-\mathbf{w}_{1}+8 \mathbf{w}_{2}\right)+a_{2}\left(-\mathbf{w}_{1}+12 \mathbf{w}_{2}\right) \\
& =\left(-a_{1}-a_{2}\right) \mathbf{w}_{1}+\left(8 a_{1}+12 a_{2}\right) \mathbf{w}_{2}
\end{aligned}
$$

and therefore $\mathbf{v} \in \operatorname{Span}(T)$. This shows $\operatorname{Span}(S) \subseteq \operatorname{Span}(T)$.
Similarly, since $\mathbf{w}_{1}=-3 \mathbf{v}_{1}+2 \mathbf{v}_{2}$ and $\mathbf{w}_{2}=-\frac{1}{4} \mathbf{v}_{1}+\frac{1}{4} \mathbf{v}_{2}$, it follows that $\operatorname{Span}(T) \subseteq \operatorname{Span}(S)$, and thus $\operatorname{Span}(S)=\operatorname{Span}(T)$.
4. (a) Complete the following definition. A subset $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of a vector space V is linearly independent if
Solution. S is linearly independent if the only solution of $c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}$ is $c_{1}=\cdots=c_{k}=0$.
(b) Suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. Prove that $\left\{\mathbf{v}_{1}, \mathbf{v}_{1}+2 \mathbf{v}_{2}, \mathbf{v}_{1}+2 \mathbf{v}_{2}+3 \mathbf{v}_{3}\right\}$ is also linearly independent.
Solution. Suppose $c_{1} \mathbf{v}_{1}+c_{2}\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)+c_{3}\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}+3 \mathbf{v}_{3}\right)=\mathbf{0}$. Then

$$
\left(c_{1}+c_{2}+c_{3}\right) \mathbf{v}_{1}+\left(2 c_{2}+2 c_{3}\right) \mathbf{v}_{2}+3 c_{3} \mathbf{v}_{3}=\mathbf{0}
$$

Since $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent, this implies

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =0 \\
2 c_{2}+2 c_{3} & =0 \\
3 c_{3} & =0 .
\end{aligned}
$$

The third equation implies $c_{3}=0$. Plugging this into the second equation gives $c_{2}=0$, and finally, using the first equation, we obtain $c_{1}=0$. Hence $\left\{\mathbf{v}_{1}, \mathbf{v}_{1}+2 \mathbf{v}_{2}, \mathbf{v}_{1}+2 \mathbf{v}_{2}+3 \mathbf{v}_{3}\right\}$ is linearly independent.
(c) Is the set $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]\right\}$ in \mathbf{R}^{3} linearly independent? Prove your assertion.

Solution. Suppose $c_{1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+c_{2}\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]+c_{3}\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. This leads to the system

$$
\begin{array}{r}
c_{1}+4 c_{2}+7 c_{3}=0 \\
2 c_{1}+5 c_{2}+8 c_{3}=0 \\
3 c_{1}+6 c_{2}+9 c_{3}=0
\end{array}
$$

The echelon form of this system is

$$
\begin{aligned}
c_{1}-c_{3} & =0 \\
c_{2}+2 c_{3} & =0 \\
0 & =0 .
\end{aligned}
$$

The variable c_{3} is a free variable. Setting $c_{3}=1$ gives $c_{1}=1$ and $c_{2}=-2$. Thus the set S is not linearly independent.
(d) Is the set $S=\{\sin (x), \cos (x), \sin (2 x)\}$ in $C(\mathbf{R})$ linearly independent? Prove your assertion.
Solution. Suppose $c_{1} \sin (x)+c_{2} \cos (x)+c_{3} \sin (2 x)=0$ for all x in \mathbf{R}. When $x=0$, this becomes $c_{2}=0$. When $x=\pi / 2$, it becomes $c_{1}=0$. Thus $c_{3} \sin (2 x)=0$ for all x, so setting $x=\pi / 4$ gives $c_{3}=0$. Therefore S is linearly independent.
5. Let W be the subspace of \mathbf{R}^{5} consisting of all solutions of the following system.

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=0 \\
2 x_{1}+2 x_{2}+3 x_{3}+3 x_{4}+4 x_{5}=0 \\
5 x_{1}+5 x_{2}+7 x_{3}+8 x_{4}+6 x_{5}=0
\end{array}
$$

(a) Find a basis for W.

Solution. The echelon form of the system is

$$
\begin{array}{lll}
x_{1} & & -x_{4}-x_{5}=0 \\
& x_{2} & +4 x_{4}-9 x_{5}=0 \\
& x_{3} & -x_{4}+8 x_{5}=0
\end{array}
$$

Solving for the basic variables x_{1}, x_{2} and x_{3} in terms of the free variables x_{4} and x_{5} gives

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{4}+x_{5} \\
-4 x_{4}+9 x_{5} \\
x_{4}-8 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{4}\left[\begin{array}{c}
1 \\
-4 \\
1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
9 \\
-8 \\
0 \\
1
\end{array}\right],
$$

so $W=\operatorname{Span}(S)$, where

$$
S=\left\{\left[\begin{array}{c}
1 \\
-4 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
9 \\
-8 \\
0 \\
1
\end{array}\right]\right\}
$$

Neither vector in S is a scalar multiple of the other, so S is linearly independent, and therefore a basis for W.
(b) What is the dimension of W ?

Solution. 2

